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Abstract 

The problem of technical devices evaluation and choosing is not easy decision making 
process. The technological development and the availability of many different technical 
solutions with different performance parameters specify complex combinatorial choice 
problems. The night vision devices (NVD) have become quite popular recently and are an 
example of complex technical choice with conflicting performance parameters. The paper 
describes important NVD parameters that should be considered and a multicriteria 
optimization approach for smart NVD choice. The proposed approach uses popular 
weighted sum method to comply with different user preferences by defining relative 
weights among NVD parameters considered as objective functions. The practical 
applicability of the proposed approach has been demonstrated by some case study 
examples of choosing night vision goggles satisfying different user preferences. Real set of 
devices offered on Internet are used to formulate and solve optimization tasks reflecting 
user’s preferences. The proposed multicriteria choice approach can be used for all types of 
night vision devices and other technical devices also to make a smart choice corresponding 
to decision-makers preferences and restrictions. 

 
Keywords: night vision devices choice, multicriteria optimization, weighted sum method, case 
study examples. 

 
1. Introduction 
The problem of the technical device evaluation and choosing based on mathematical quantative 
analysis could be a complex combinatorial problem. The technological development and the 
availability of many design variants and different technical solutions with different performance 
parameters define sets of devices to choose from. Due to the combinatorial nature of the 
available choices all of them have to be evaluated and selected by complex decision-making 
processes. One of the possible ways to solve that kind of problems could be the using of proper 
optimization methods. The choosing of night vision devices (NVD) is an example for such 
complex selection problem.  

The night vision devices are used to enhance visual capability during low light level 
(night) activities as security, hunting, wildlife observation, boating, law enforcement, etc. Night 
vision devices use two different technologies – light enhancement or thermal imaging. The 
NVD using light enhancement technology are more popular and come in many different types 
with different parameters. They intensify available ambient illumination making it possible to 
see in the dark despite insufficient light for normal vision [4]. The NVD are basically composed 
of optical system (objective) which projects an image onto the photocathode of an image 
intensifier tube (IIT) which in its turn produces a light intensified image that is viewed through 
another optical system (ocular). All of these modules including the needed for IIT electrical 
power supply are mounted in some mechanic construction as a complete (and usually portable) 
device. Depending on the optical magnification and application area there are different types of 
night vision devices – night vision goggles, night vision binoculars and monoculars, night 
vision digital cameras (still or video), night vision sights, etc. The device parameters – 
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resolution, field of view, brightness gain, distortion, eyepiece dioptric adjustment, objective 
focus range, mechanical adjustments, weight, center of gravity, working range, price, etc., 
influence NVD performance [25, 26] 

 
 

2. Night vision devices parameters and their impact on the performance 
The performance of the NVD depends on many device parameters. The goal of the current 
paper is to propose a mathematical quantative approach to the problem of choosing proper 
device considering the user preferences about the NVD performance. The paper focuses on the 
device parameters and their importance from the user point of view. The device parameters 
values shown in the datasheets could be used as objective basis for comparison when trying to 
make a proper choice. The NVD parameters discussed bellow affect on the NVD performance 
and most of them should be considered when making a reasonable choice. 
 
2.1. Depth perception and stereopsis 
The depth perception and stereopsis could be treated as two sides of an important NVD 
parameter depending on the NVD type i.e. monocular, biocular or binocular construction [17]. 
Depth perception is the ability to estimate absolute distances between an object and the 
observer or the relative distances between two objects, i.e. how far to the left or right the object 
is and whether the different objects are in front or behind each other [15]. Stereopsis goes with 
binocular perception and is the result of the two retinae viewing slightly different images of the 
same object [21, 27]. Only night vision binoculars constructed as two independent 
optoelectronic channels add the advantage of depth perception and stereopsis imaging and 
should be preferred to the monocular and biocular constructions when depth perception and 
stereopsis are expected [11, 12].  
 
2.2. Field of view  
The field of view (FOV) is NVD parameter defining the amount of visual information provided 
via the device. In principle, the larger the FOV is the more information is available. It 
determines the width or spatial angle of the outside scene that can be viewed measured 
horizontally and vertically. In terms of impact on the NVD performance, FOV can be 
considered to be as important as another NVD parameter described bellow – NVD resolution 
[14]. The binocular NVD type provides an effect of increasing the field of view by a partial 
display overlap [2, 20]. 
 
2.3. Resolution  
The resolution is an essential NVD evaluating parameter. The resolution by definition is the 
ability of distinguishing between close objects, i.e. the detail or fidelity of the image. The 
quality of the optics and the IIT technology define the NVD resolution. The resolution is, 
perhaps, the most important parameter in determining the image quality of any NVD system 
[11].  
 
2.4. Signal-to-noise ratio  
Signal to noise ratio (SNR) plays a key role in night vision performance. An image intensifier 
tube's SNR determines the low-light resolution capability and measures the light signal 
reaching the eye, divided by the perceived noise as seen by the eye. The higher the SNR is the 
better is the ability of the IIT to resolve objects under low illumination conditions [18, 24]. 
 
2.5. Luminance gain  
The parameter luminance gain (also called brightness gain) is the number of times an image 
intensifier tube amplifies the light input. It could be measured as IIT gain or as system gain. 
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The IIT gain is reduced by the system’s lenses and is affected by the quality of the optics and/or 
any filters, so the system gain is a more important parameter to the user [15, 22]. 
 
2.6. IIT photocathode’s sensitivity  
By definition the sensitivity or photoresponse is the ability of the photocathode material to 
produce an electrical response when subjected to light photons. The different IIT production 
technologies result in so called IIT “generations” with different photocathode’s sensitivity. For 
example, the Generation 2 IIT are sensitive to light from about 400 nm to about 900 nm 
whereas the more sensitive 3rd Generation tubes are sensitive from about 600 nm to a little over 
900 nm. The Gen 3 tubes are about 4 to 5 times more sensitive to night sky illumination than 
the Gen 2 tubes but they also cost significantly more [26]. The higher the photocathode’s 
sensitivity value is the better is the ability to produce a visible image under darker conditions. 

 
2.7. Distortion   
Distortion can be defined as any difference in the apparent geometry of the outside scene as 
viewed on or through the display. Sources of distortion in the display image include the image 
source and display optics. Three types of distortion are most significant to the night vision 
devices: geometric, "S" and sheer [11, 22]. The ideal design will project the image from the 
display to the viewer without altering the shape of the image. Because all distortions reduce the 
image quality the better NVD would have low distortions.      

 
2.8. Mechanical adjustments  
All night vision devices have some mechanical construction and as they include optical systems 
their mechanic should provide some typical for the optical systems adjustments.   

2.8.1. Objective focus range 
The objective lens focus range is independent of the eyepiece (ocular) focus. Focusing of the 
near objects or far objects is possible by the objective focus adjustment. Usually different NVD 
models provide adjustments for near objects from 0.20 m to 1 m and to infinity for far objects. 

2.8.2. Eyepiece (ocular) dioptric adjustment  
The eyepiece focus adjusts the spherical lens power to compensate for the user's refractive error 
(hyperopia or myopia) to get proper accommodation. Usually NVD provide different 
adjustments range between –6 and +6 dpt [26].    

2.8.3. Interpupillary adjustment  
Interpupillary distance is the distance between the centers of the viewer pupils. It determines 
the stereo separation of the two images which are combined in the brain to produce stereo 
perception. Mean interpupillary distance is important in the design of stereoscopic display 
devices and the production of stereoscopic content [13]. The interpupillary adjustment of the 
centers of a binocular's exit pupils is needed to adjust to the different users’ eyes interpupillary 
distance. 
 
2.9. Exit pupil   
The exit pupil is the image of the stop of the optical system. When the eye pupil is fully within 
the exit pupil of the NVD then the entire FOV is observed; if the eye pupil is only partially in 
the exit pupil then the observer will still see the entire FOV but it will be reduced in brightness. 
From a visual capability standpoint it is important for the exit pupil to be as large as possible to 
ensure the eye pupil will remain within it to permit viewing through the NVD [11, 20]. 

 
2.10. Eye relief   
The exit pupil is located at a distance called the optical eye relief and is defined as the distance 
from the last optical element to the exit pupil [11]. As with so many other NVD parameters, 
larger eye relief usually means larger and heavier optics but allows the use of eyeglasses. 
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2.11. Optical lens system   
The night vision devices have optical systems and the optical lenses characteristics also affect 
the NVD performance. The f-number is a measure of the size and light-collecting ability of the 
lens system [16]. The f-number of a lens is given by the ratio of the focal length of the lens to 
the aperture (the opening through which light passes). A lens with a large aperture has a small f-
number and therefore lets more light to pass through than a smaller diameter lens. The pay off 
is that aberrations become increasingly noticeable as the f-number decreases [19].  
 
2.12. Weight  
The NVD are mainly portable devices and their weight is a very important parameter to 
consider.  In general, the NVD weight depends on the NVD type – monocular, biocular or 
binocular because of the fact that optoelectronic channels number of modules (number of the 
objectives, IITs and oculars) and their weights affect the overall device weight. For head-
mounted devices (the majority of the devices) the center of gravity is at some distance from the 
support point and the bigger weight means bigger rotating moment and bigger neck load [20].    
 
2.13. Battery lifetime duration 
As it was pointed out the NVD are mainly portable devices using image intensifier tube. The 
IIT itself needs some electrical power supply to operate and usually it is battery power supply. 
Depending on the used battery types (3V coin type or two 1.5V standard AA types) and their 
capacity, the NVD operational time duration, i.e. battery lifetime duration is different and 
should be considered also when NVD performance is evaluated.  
 
2.14. Dimensions  
The NVD overall dimensions depend on the NVD type (monocular, binocular or binocular) and 
by the dimensions of the used optoelectronic channel modules (objective, IIT and ocular). The 
NVD length, the NVD center of gravity and the NVD weight define a rotating moment 
provoking weariness and discomfort during the long time usage. In most cases this rotating 
moment can not be avoided but decreasing of the discomfort by decreasing of the NVD 
dimensions helps to avoid degrading NVD performance [20]. 
 
2.15. Working range  
Last but not least an important NVD performance parameter is the working range. Whilst there 
are many different NVD parameters and external conditions that affect the NVD working range 
it is important to know some data for working ranges to evaluate the NVD performance. There 
exist different types working ranges – detection, orientation, recognition or identification but 
one of them is enough to compare different NVD models of the same type (goggles vs. goggles, 
binoculars vs. binoculars, etc.) [3, 23].  

Some generalized typical data for the detection range of NVD with different IIT 
technological generations are shown in the Table 1 [4]:  

 
Table 1: Typical NVD detection range using different IIT generations 

NVD generation Gen 2 Super 
Gen 2 

Gen 3  
OMNI I, II 

Gen 3 
OMNI III 

Gen 3 
OMNI IV GEN IV 

Detection Range (m) 170 270 240 290 360 430 
 

There exist a few investigations how the NVD parameters influence on the NVD 
performance. A comparative evaluation of the parameters influence on the panoramic night 
vision goggles (PNVGII) performance used in air force is conducted by the U.S. Army 
Aeromedical research laboratory. The results show that the relative importance of the NVD 
parameters depend on the application area and the NVD parameters impact on the device 
performance could not be avoided [1, 17].  
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3. The NVD choice problem and multicriteria approach  
As a result of a technological development there exist a constantly growing number of different 
NVD types and models with different parameters values. The user preferences should be 
dominant for the importance of the NVD parameters and their values. Most of the offered NVD 
have specifications datasheets with information about the NVD essential parameters values and 
that information can be used to make an intelligent choice. Some flexible objective approach 
based on a quantative evaluation is needed to make a choice considering the NVD parameters 
importance and values accordingly to the different user’s preferences. 

When choosing the NVD the user acts as a decision-maker and should consider all the 
relevant costs and benefits of the options for the set of devices to choose from and to adequately 
address all of his/her preferences. The preferred device should be that which comes close to the 
decision maker’s objectives, which may often conflict. In practice, it is unlikely that some 
device will perform best against all objectives and can be clearly preferred; each one will 
demonstrate different advantages and disadvantages. Describing the balance between 
objectives, and identifying the preferred option is a complex problem. The choice is usually 
done intuitively based on the decision-maker experience. The choice of a NVD adjusted to the 
user requirements is an example of complex combinatorial problem characterized by the 
presence of many conflicting preferences (criteria) about the NVD parameters values. For 
example, choosing of the NVD using the latest technological solutions reflects on higher prices 
to pay. It is reasonable to look for the “user best” device among the offered NVD, i.e. whose 
parameters values are best accordingly to the user point of view. There are considerable 
advantages in making an explicit decision-aiding framework ensuring that all concerns are 
identified and addressed and the reasons behind a particular choice are made clear. The 
advantages of such a structured approach are particularly apparent where there are many 
alternative devices with numerous different parameters values. 

The multicriteria techniques model a decision maker’preferences to express in an 
explicit manner a choice between options involving a number of often conflicting objectives. 
Through the aggregation of disparate information onto a common index of utility they aim to 
provide a rational basis for classifying choices. They give the option to identify the preferences 
and trade-offs between the benefits and disbenefits of all alternatives. The problem of NVD 
choice by flexible adjusting to the user preferences could be formulated as multicriteria 
optimization problem if the parameters of the different NVD are considered as objective 
functions. In other words, the choosing of a proper NVD means choosing of a device with 
parameters values as close to the user expected values as possible. Some of the NVD 
parameters values reflect in better NVD performance when increasing, while the other – when 
decreasing. The generalized multicriteria optimization problem definition can be formulated as:  
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where P1(x), P2(x), …, PJ(x) are the J objective functions expressing the NVD parameters that 
should be maximized i.e. bigger values increase NVD performance; N1(x), N2(x), …, NK(x) are 
the K objective functions of the NVD parameters that should be minimized i.e. lower values 
increase NVD performance; Pij and Nik represents the j-th respectively k-th parameters values of 
the i-th device and are known constants; x = (x1, x2, …, xI) are binary integer variables 
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corresponding to the indexes i = 1, 2, …, I, of each particular NVD considered to be a candidate 
for the “user best” NVD as a result of multicriteria optimal choice.  

There should be pointed out that such formulation of the multicriteria optimization 
problem is a formulation of linear integer combinatorial choice problem. The result of its 
solution is a choice of one particular NVD from a defined set of NVD with predetermined and 
known parameters values. The above formulation has no additional restrictions on the 
parameters values and all choices of a particular NVD are feasible. The Pareto optimal choice 
depends on the decision-maker preferences.  

The applicability of the proposed multicriteria NVD choice approach is demonstrated 
by case study numerical examples.   
 
 
4. Case study examples for night vision goggles choice by multicriteria 

optimization approach  
The night vision goggles (NVG) are the most widely used device type both for military and 
civil applications. To illustrate the proposed approach applicability some practically proven 
parameters with values data for real binoculars type NVG are collected from the Internet 
published offers (see Table 2). Other parameters as described in section 2 could be considered 
also but the shown in Table 2 NVG parameters are adequate for a case study example. 

Table 2: NVG parameters data 

No NVG Resolution, 
Lp/mm 

FOV, 
deg 

Battery life, 
hours 

Detection 
range, 

m 

Minimum 
focus range, 

cm 

Length, 
(Dimensions) 

mm 

Weight, 
gr 

Price, 
$ 

 User criteria  P1 P2 P3 P4 N1 N2 N3 N4 

1 ATN Cougar 
Gen 1  40 30 15 

(10-20) 150 100 137 
(137x125x50) 800 629 

2 NZT-22  
Gen 1 40 36 15 120 25 180 

(180x120x170) 740 1350 

3 MV-221G 
Gen. 2+ 32 40 40 125 25 114 

(114x114x64) 482 2699 

4 ATN Night Cougar-2  
Gen 2+ 

36 
(32-40) 30 15 

(10-20) 150 100 137 
(137x125x50) 800 2695 

5 ПН-9К  
Gen. 2+ 

34 
(30-38) 36 10 180 25 127 

(127x105x50) 750 4943 

6 ATN Night Cougar-
CGT Gen 2+ 

50  
(45-54) 30 15 

(10-20) 250 100 137 
(137x125x50) 800 3696 

7 ATN Night Cougar-
HPT Gen 2+ 

59 
(54-64) 30 15 

(10-20) 300 100 137 
(137x125x50) 800 4519 

8 Dipol 221H  
Gen 2+ 59 40 30 300 25 117 

(117x112x58) 650 6052 

9 ATN Night Cougar-3  
Gen 3 64 30 15 

(10-20) 300 100 137 
(137x125x50) 800 4889 

10 ATN Night Cougar-
3A Gen 3 

68 
(64-72) 30 10-20 

(15) 325 100 137 
(137x125x50) 800 5629 

11 ATN Night Cougar-4  
Gen 4 

68 
(64-72) 30 15 

(10-20) 325 100 137 
(137x125x50) 800 9299 

12 ATN PS-23  
Gen 2+ 

 41 
(36-45) 40 35 200 25 151 

(151x85x120) 700 2420 

13 ATN PS-23  
Gen CGT 

50 
(45-54) 40 35 200 25 151 

(151x85x120) 700 3995 

14 ATN PS-23  
Gen 3 64 40 35 300 25 151 

(151x85x120) 700 5685 

15 ATN PS-23  
Gen 4 72 40 35 350 25 151 

(151x85x120) 700 11149 

 
Considering the NVG parameters from Table 2 as users’ criteria for a preferable choice a 
multicriteria optimization problem can be formulated: 
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where P1(x), P2(x), P3(x), P4(x) are the NVG resolution, field of view, battery lifetime duration 
and working range which values should be chosen as big as possible; Pi1, Pi2, Pi3, Pi4, are 
resolution, field of view, battery lifetime duration and working range values of the i-th device 
from table 2; N1(x), N2(x), N3(x), N4(x) are the NVG objective focus range, length, weight and 
price which values should be chosen as low as possible; Ni1, Ni2, Ni3, Ni4, are objective focus 
range, length, weight and price values of the i-th device from table 2; x = (x1, x2, …, x15) are 
binary integer variables corresponding to each of the fifteen NVG shown in Table 2. 

The widely used approach for solving multiobjective optimization problems is to 
transform a multiple objective (vector) problem into single-objective (scalar) problems. Among 
decision methods, weighted-sum aggregation of preferences is by far the most common, as it is 
a direct specification of importance weights. The weighted sum method transforms multiple 
objectives into an aggregated scalar objective function by multiplying each objective function 
by a weighting coefficient and summing up all contributors to look for the Pareto solution [5]. 

The NVG parameters in task formulation (5)-(8) are quite different by nature and values 
and could not be aggregated as comparable objectives. Thus the normalization is needed for 
objectives of different units to be comparable criteria and their weights correctly to represent 
their relative importance [6, 7]. The following normalization scheme is chosen 

 
minmax
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jj

jj
j PP
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P




  for maximizing objectives,  (9) 

  
minmax

max*

kk

kk
k NN

NN
N




  for minimizing objectives.  (10) 

It supplies parameters values between 0 and 1 based on the maximal and minimal objective 
values of the parameters [6, 8]. The max and min values for each of the objectives (criteria) and 
their differences are shown in Table 3. 
 

Table 3: Objectives min and max values and their differences 
Criteria 

Value P1 P2 P3 P4 N1 N2 N3 N4 

max 72 40 40 350 100 180 800 11149 
min 32 30 10 120 25 114 482 629 

(max–min) 40 10 30 230 75 66 318 10520 
 

The normalization not only transforms data to have comparable values but also 
transforms the problem to a maximizing problem [8]. The weighted sum method requires 
multiplying each of the normalized objective functions by some weighting coefficients and 
summarizing them into a single objective function. So, the following optimization choice 
problem is defined:  
   
 



 88 

maximize (w1P1*(x) + w2P2* (x) + w3P3* (x) + w4P4* (x) + 
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 1
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 1
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iw , 10  iw , (15) 

where wi=(1, 2,…, 8) are weighting coefficients for each of the objective functions. If 1
8

1


i
iw  

and 10  iw , the weighted objectives sum is said to be a convex combination of objectives 
[9]. The solution of the transformed single objective optimization problem determines one 
particular Pareto optimal point. When weights are changed the weighted sum method defines 
different single objective optimization problem with different Pareto solutions points.  

Using of the weighted sum method is based on the decision-maker’s composite measure 
of importance across all the device parameters values i.e. all criteria are weighted according to 
how important each is regarded in relation to the others. The weights represent a preference set 
for a particular DM and probably they will change with the different decision makers. For the 
goal of numerical experimentation some practical preferences of four imaginary users are 
chosen:  

 User 1 has equal preferences for all NVG parameters.  
 User 2 puts more weight on the price and weight then the other NVG parameters.  
 User 3 is interested in better NVG resolution but stresses much more on the NVG 

detection range and is less interested in the price and other parameters.  
 User 4 looks is equally keen on better NVG resolution, detection range and lower 

weight and price and is not interested at all in other parameters. 
The corresponding sets of weight coefficients are shown in Table 4. 
 

Table 4: Sets of weight coefficients 
  w1 w2 w3 w4 w5 w6 w7 w8 
 (Resolution) (FOV) (Bat. life) (Det. range) (Focus range) (Lenght) (NVG Weight) (NVG Price) 

Set 1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 
Set 2 0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.20 
Set 3 0.20 0.10 0.10 0.30 0.05 0.10 0.10 0.05 
Set 4 0.25 0.0 0.0 0.25 0.0 0.0 0.25 0.25 

 
Two types of optimization tasks are defined for “unrestricted” and “restricted” optimization 
choices. “Unrestricted” optimization choice tasks implement different sets of weight 
coefficients. When those tasks are extended by additional restrictions for some parameters 
values the “restricted” optimal choice is performed. 
 
4.1. Numerical examples for “unrestricted” NVG choice  
Four numerical examples are presented in this section to demonstrate the applicability of the 
proposed multicriteria NVG choice approach. All optimizations were performed using the 
weighted sum method and the Lingo software [10] on PC under Windows XP OS. The four 
numerical examples corresponding to the sets of weight coefficients from Table 4 are 
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formulated. Each table row defines particular optimization task – Task 1 (for set 1), Task 2 (for 
set 2), Task 3 (for set 3) and Task 4 (for set 4) following the model: 
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






 15

1i
i

1i x
40

32P  + w2








 15

1i
i

2i x
10

30P + w3








 15

1i
i

3i x
30

10P + w4








 15

1i
i

4i x
230

120P +  

  + w5








 15

1i
i

1i x
75

N100 + w6








 15

1i
i

2i x
66

N180 + w7








 15

1i
i

3i x
318

N800 + w8








 15

1i
i

4i x
10520

N11149 )  (16) 

subject to 

 1x
15

1i
i 



, ix  [0, 1], (17) 

 1
1


i

iw , 10  iw , (18) 

where Pi1, Pi2, Pi3, Pi4, are resolution, field of view, battery lifetime duration and working range 
values of the i-th device from table 2; Ni1, Ni2, Ni3, Ni4, are objective focus range, length, weight 
and price values of the i-th device from table 2 and w1, w2, w3, w4, w5, w6, w7 and w8 are weight 
coefficients with values from corresponding row of Table 4. The task solutions define Pareto 
optimal choices shown in Table 5. 
 

Table 5: Pareto optimal “unrestricted” choices for different sets of weight coefficients 
Tasks/ 
Weight 

coefficients 

Resolution 
lp/mm 

FOV, 
deg 

Battery 
life, 

hours 

Detection 
range, 

m 

Min.  
focus 

range, cm 

Length, 
mm 

Weight 
gr 

Price, 
$ 

Chosen NVG 
from Table 2 

Task 1 59 40 30 300 25 117 650 6052 

Set 1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 

No 8.  
Dipol 221H 

Gen 2+  

Task 2 32 40 40 125 25 114 482 2699 

Set 2 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 

 No 3.  
MV-221G 

Gen 2+ 

Task 3 72 40 35 350 25 151 700 11149 

Set 3 0.20 0.10 0.10 0.30 0.05 0.10 0.10 0.05 

No 15.  
ATN PS-23 

Gen 4  

Task 4 64 40 35 300 25 151 700 5685 

Set 4 0.25 0.0 0.0 0.25 0.0 0.0 0.25 0.25 

No 14.  
ATN PS-23 

Gen 3  
 
The chosen devices satisfy the relative user’s importance of different parameters defined by 
their numerical weights. Four different choices are available as results of optimization tasks 
solution. If some user is not satisfied with the result of the choice he or she can try another 
weight coefficients combination. Due to the fact that the choice is done from a known finite 
discrete set of devices any weights combination satisfying (18) could be used to get a feasible 
Pareto optimal choice. So, the solved four numerical examples are adequate to demonstrate the 
applicability of the proposed choice approach by adjusting to the different users’ preferences 
choice strategy.  
 
4.2. Numerical examples of “restricted” NVG choice  
To refine more precisely the user preferences a “restricted” choice problem can be formulated. 
It is possible to add restrictions on some parameter values to comply with tighter DM 
preferences. The NVG optimal choice problem (16)-(18) can be extended by adding of 
restrictions for some NVG parameters. For example, price not bigger then some upper limit 
Pricemax and/or detection range above some lower limit Det.Rangemin and/or resolution with 
lower limit Resolutionmin. Combinations of similar restrictions could define different 
optimization tasks: 
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 Task 1e - Task 1 with additional restrictions about the NVG resolution and price: 

 


15

1i
i1i xP Resolutionmin = 50, (19) 

  


15

1
4

i
ii xN Pricemax = 5500. (20) 

 Task 2e - Task 2 with additional restriction about the NVG price:   

 


15

1
4

i
ii xN Pricemax = 2500. (21) 

 Task 3e - Task 3 with additional restrictions about the NVG resolution, detection 
range and price: 

  


15

1i
i1i xP Resolutionmin = 50, (22) 

   

  


15

1i
i4i xP Det.Rangemin = 220, 

 


15

1
4

i
ii xN Pricemax = 4000. (23) 

 Task 4e - Task 4 with additional restrictions about the NVG detection range and 
price: 

  


15

1i
i4i xP Det.Rangemin = 200, (24) 

 


15

1
4

i
ii xN Pricemax = 5000. (25) 

The solutions of the Task 1e, 2e, 3e, 4e defining different NVG choices are shown in Table 6.  
 

Table 6: Pareto optimal “restricted” choices  
Tasks/ 
Weight 

coefficients 

Resolution 
lp/mm 

FOV, 
deg 

Battery 
life, 

hours 

Detection 
range, 

m 

Min. 
focus 

range, cm 

Length, 
mm 

Weight 
gr 

Price, 
$ 

Chosen 
NVG 

from Table2 
50 40 35 200 25 151 700 3995 

Task 1e Resolutionmin 
50  Pricemax 

5500 
Set 1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 

No 13. 
ATN PS-23 
Gen CGT 

 41 40 35 200 25 151 700 2420 
 Task 2e 

 Pricemax 
2500 

Set 2 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 

No 12. 
ATN PS-23 

Gen 2+ 

50  30 15 250 100 137 800 3696 
Task 3e Resolutionmin 

50  Det.Rangemin 
220  Pricemax 

4000 
Set 3 0.20 0.10 0.10 0.30 0.05 0.10 0.10 0.05 

No 6. 
ATN Night 

Cougar-CGT 
Gen 2+ 

64 30 15 300 100 137 800 4889 
Task 4e 

 Det.Rangemin 
200  Pricemax 

5000 
Set 4 0.25 0.0 0.0 0.25 0.0 0.0 0.25 0.25 

No 9. 
ATN Night 
Cougar-3 

 Gen 3 
 
The “restricted” NVG choice approach allows more precisely refining of the user preferences 
by adding of restrictions for some NVG parameters. This is illustrated by solutions of Task 1e, 
2e, 3e and 4e where different parameters numerical limits result in different devices choices. 
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4.3. Numerical examples discussion  
The solutions of optimizations Tasks 1 – 4, shown in Table 5 illustrate the possibility to choose 
the devices complying with the different user’s preference strategies, expressed via sets of 
weight coefficients.  

The differences between the chosen devices in Table 6 and Table 5 demonstrate the 
influence of the additional parameters restrictions. Unlike the “unrestricted” choices described 
in section 4.1 introducing of some parameters restrictions or combinations of restrictions could 
result to unfeasible optimization tasks. It is evident that if those additional restrictions are 
unrealistic or their combinations can not be satisfied by any particular device the choice will be 
impossible. It is the decision maker’s expertise that could help to resolve that unfeasibility. 
Usually the software for optimization tasks solving provides some post optimization analysis 
that could help to define the unfeasible restrictions which should be changed appropriately.  

The formulated integer linear optimization tasks can be solved by means of most of the 
existing optimization software systems. The described in the paper case study examples are 
solved by Lingo v.11 [10] software system on PC with Intel processor at 2.6 GHz, 1 GB RAM 
under Windows XP platform. The solution times were about a second or less but obviously 
depend on the size of the formulated tasks i.e. on the number of devices and parameters to 
choose from and on the computational power. The used number of devices and parameters data 
from Table 2 are chosen as illustrative numerical data for the case study examples but the sizes 
of the solved examples are close to the practical needs and the solution times could be an 
acceptable merit for the real applications. Any other number of devices and different parameters 
can be used appropriately to the particular applications and user requirements. Increasing of the 
devices number increases the complexity of the combinatorial choice problem and validates the 
need of quantative multicriteria choice approach using.  

 
 

5. Conclusion  
The paper presents a multicriteria optimization approach for intelligent night vision devices 
choice. The availability of many night vision devices technological designs with different 
performance parameters defines a complex combinatorial decision-making choice process. The 
used multicriteria approach gives flexible options to identify the user’s preferences and trade-
offs between the benefits and disbenefits of all alternative choices. In this approach, 
multicriteria optimization tasks are defined and solved by the weighted sum method. The 
weighted sum is extensively used method for multicriteria optimization and was chosen as it is 
simple to understand and easy to implement. Other multicriteria optimization methods could be 
used and investigated upon the suitability and advisability for night vision devices choice.  

The night vision devices parameters are considered as objective functions to be 
optimized and using of the weight coefficients is a direct reflection of the user’s relative 
importance among them. The real engineering choice problem depends not only on the 
importance weights, but also on the parameters limits restricted by the user. Two types of 
optimization tasks are defined for “unrestricted” and “restricted” optimal choices. Unrestricted 
optimization tasks implement different sets of weight coefficients. The solution of each task 
gives different device choices satisfying different users’ preferences. This type of formulated 
optimization tasks is always feasible because of the nature of combinatorial choice from finite 
discrete sets of devices with known parameters values. The “restricted” optimal choice is based 
on adding of some parameters values restrictions. The corresponding optimizations tasks allow 
better refining of the users preferences but it is possible to formulate unrealistic parameters 
restrictions leading to unfeasible choices. The users experience and the tools of post 
optimization analysis could be used to overcome those unfeasibility problems.  

The practical applicability of the introduced NVD choice approach has been 
demonstrated by a case study examples to chose a night vision goggles satisfying different user 
preferences from real set of devices offered on Internet. “Unrestricted” NVG choice is 
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demonstrated by solving of four optimization tasks reflecting four different users’ preference 
strategies for the relative importance of NVG parameters. Other four optimization tasks are 
solved by introducing additional parameters restrictions to get possibly better “restricted” NVG 
choices.  

The proposed multicriteria optimization choice approach can be used for other night 
vision devices (night vision binoculars, sights, etc.) and also for other types of technical devices 
considering appropriate performance parameters.   

The multicriteria techniques are decision aiding tools that do not replace the role of the 
decision-maker or its responsibility for the decision taking but they are a good tool to supply 
reasonable alternatives to make a smart choice. 
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