
 1

Software

V2

Neculai Andrei

Academy of Romanian Scientists,

Center for Advanced Modeling and Optimization,

Ilfov Street, No. 3, Bucharest 5, Romania,

E-mail: neculaiandrei1948@gmail.com

Technical Report

October 16, 2020

This Technical Report is the second version of the list of the software I have written

and tested along the years. The software in this version of this paper is an improvement

of the software I listed in the Technical Report from December 8, 2011, where I

introduced some new software elaborated along the years. The programs and

subroutines are organized on directories and subdirectories. In each directory I placed a

number of programs I have elaborated in my research activity. Some other information

concerning the algorithms or the results of the software is also included. The list of

chapters and their contents is as follows:

Support Programs

1. ENORM Program for computing the Euclidian norm of a vector.

(This is a variant of function enorm from MINPACK1)

2. PERFORM Program for Profile Performance Analysis.

There are three subroutines:

PERF2N for analysis of two algorithms (ALG1 versus ALG2) subject

to the number of iterations, of function evaluations and CPU time in

sense of Dolan and Morè. [See: Dolan, E.D., & Moré, J.J., (2002).

Benchmarking optimization software with performance profiles.

Mathematical Programming, 91, 201-213.]

PERFNN for analysis of at least 20 algorithms subject to the number of

iterations, of function evaluations and CPU time in sense of Dolan and

Morè. [See: Dolan, E.D., & Moré, J.J., (2002). Benchmarking

optimization software with performance profiles. Mathematical

Programming, 91, 201-213.]

mailto:neculaiandrei1948@gmail.com

 2

PERLOG for performance analysis of two algorithms according to the

index

)log(

)log(
B

A

i
a

a
r  ,

where
Aa and

Ba referes to the number of iterations, or the number of

functions evaluartions, or the CPU time respectively corresponding to

the algorithm A or B.

A complete description of these algorithms could be find in:

N. Andrei, Criticism of the Unconstrained Optimization Algorithms

Reasoning, Editura Academiei Române, Bucureşti, 2009.

ISBN: 978-973-27-1669-4 (pp. 89-94)
December 30, 2004

3. GRADIENT Approximation of derivatives of a function using forward or central

finite difference.

The step length is sqrt of epsilon machine.
April 1983

4. JACOBIAN Program for computation of the sparse Jacobian with minimization of

the number of function evaluations.

The algorithm is described in the paper:

N. Andrei, RP - a package for efficient calculation of sparse jacobian

matrix for nonlinear systems of equations using finite differences.

Technical Report, Bucharest, April 15, 1983.

(Please see the file: JACOBIAN.DOC)
April 15, 1983

5. LS A collection of subroutines for one-dimensional searching used in

nonlinear optimization.

The following subroutines belong to this collection:

 L1 Golden search

 L2 Fibonacci search

 L3 Quadratic interpolation of Powell technique

 L4 Dichotomous search
April, 1990

6. LINE-

SEARCH

Line search: Backtracking versus Wolfe versus Moré – Thuente in

context of Steepest Descent Method.

The purpose of this program is to see 3 line search subroutines

(backtracking, Wolfe and Strong Wolfe) in some particular Fortran

implementation.

♦ Subroutine BACK (backtracking) is authored by Andrei.

♦ Subroutine WOLFE (standard Wolfe conditions) is coauthored by

Shanno and Phua with some additional modifications by Andrei.

♦ Subroutine MTLINES (strong Wolfe conditions) is coauthored by

Moré and Thuente.

A description of these algorithms could be find in:

N. Andrei, Criticism of the Unconstrained Optimization Algorithms

Reasoning, Editura Academiei Române, Bucureşti, 2009.

ISBN: 978-973-27-1669-4 (pp. 122-133)

 3

August 30, 2006

7. AORDER Subroutine for setting the elements of an array in ascending order. The

elements of the array may be positive or negative.

This subroutine is accompanied by an main program illustrating the

calling of the subroutine.
 Array to be ordered (increasingly)

 1 0.1000000000000E+02

 2 0.9000000000000E+01

 3 0.8000000000000E+01

 4 -0.6000000000000E+01

 5 0.6000000000000E+01

 6 0.5000000000000E+01

 7 0.4000000000000E+01

 8 0.3000000000000E+01

 9 0.2000000000000E+01

 10 0.1000000000000E+01

 Ordered array

 1 -0.6000000000000E+01

 2 0.1000000000000E+01

 3 0.2000000000000E+01

 4 0.3000000000000E+01

 5 0.4000000000000E+01

 6 0.5000000000000E+01

 7 0.6000000000000E+01

 8 0.8000000000000E+01

 9 0.9000000000000E+01

 10 0.1000000000000E+02

August, 1995

<><><><><><><><><><>

Numerical Linear Algebra

1. SIMEQ Directory SIMEQ

Simultaneous linear equations system solving

SIMEQ subroutine for solving linear algebraic systems of equations (the

dense case). The matrix and its inverse are stored in (NxN) arrays.

SIMEQL subroutine for solving linear algebrais systems of equations

(the dense case). In this case the matrix and its inverse are stored in one-

dimensional arrays on rows in natural order, i.e. [row1, row2, ...

rowKC].

Both subroutines implements the Gauss method of ellimination with

column pivoting to determine the solution vector and the inverse of the

matrix.

Calling sequence:

 CALL SIMEQ (A,RHS,KC,AINV,X,IERR)

 CALL SIMEQL(A,RHS,KC,AINV,X,IERR)

 where:

 A = The array of the system's matrix.

 RHS = The right-hand-side of the system.

 KC = The order of the system (The number of variables).

 AINV = The array of the inverse of the matrix.

 X = The solution vector of the system.

 IERR = Return code with the following values:

 0 if the matrix is singular,

 4

 1 if the matrix is non-singular.

January 21, 1995

2. BT Directory BT

Program for Block Triangularization of a large-scale sparse matrix.

The following subroutines are invokated: RP02A, RP02B, RP02D,

RP02C, RP02E.

RP02A subroutine, for a given large-scale sparse matrix A, row packed,

if it is possible; permute its rows and columns to the lower-block-

triangular form. The matrix is permuted to the form PAQ, according to P

and Q permutation matrices, so that the non-zero elements in the off-

diagonal blocks preceed those in the diagonal blocks, which are in order.

If the user introduce his matrix by columns, then RP02A subroutine will

produce the upper-block-triangular form and the corresponding

permutation matrices.

RP02B subroutine, for a given pattern of non-zeros of a sparse matrix,

finds a row permutation that makes the matrix have a maximum number

of non-zero elements on its diagonal, using a depth first search with look

ahead technique.

RP02C This subroutine, for a given pattern of non-zeros of a sparse

matrix, finds a symmetric permutation that makes the matrix lower block

triangular, using the Tarjan's depth first search algorithm. To obtain the

best results, the user must first permute the structure of the matrix so that

it has a zero-free diagonal. This can be done using RP02B subroutine.

November 2, 1992

3. RF Directory RF

Program for solving large-scale linear algebraic systems

 A*X=B or AT*X=B

taking into account the sparsity of the A matrix. (AT is the transpose

of the matrix A)

This is a package of subroutines dedicated to compute the Product Form

of Inverse (PFI) with a preassigned pivot procedure, to solve

corresponding large-scale systems of linear equations, exploiting sparsity

in all cases.

The calling sequence is as follows:

 MAIN ---- RF02A

 RF02C ---- MRM03A

 MFTRAN ---- RM02A

 MBTRAN ---- RM02A

where:

 RF02A determine a permutation of rows and columns of the matrix to

 the "bump and spike" structure.

 RF02C compute the Product Form of Inverse of the matrix permuted to

 this form "bump and spike"

 MRM03A compress the arrays a and indl in order to create more room

 for PFI generation.

 MFTRAN is for forward transformation of the RHS term of the system

 to compute the solution of A*X = B.

 X = A**(-1)*B = QP*(Tn*......(T1*B)).

 MBTRAN is for backward transformation of the RHS term of the

 system to compute the solution of AT*X = B.

 5

 X = A**(-T)*B = B*(((QP)*Tn)*......T1).

 RM02A is for insitu permutation of a vector according to a permutation

 vector.

The theory of Product Form of Inverse (PFI) factorization is described in:

N. Andrei, Criticism of the linear programming algorithms reasoning.

Romanian Academy Publishing House, Bucharest, 2011.

ISBN: 978-973-27-2076-9 (pages: 1239-273)
December 4, 1995

4. LU Directory LU

Package for Solving Large-Scale Linear Algebraic Systems with LU

Factorization and Markowitz Procedure for Pivots Selection

The calling sequence is as follows:

 LU ----- RF01A

 --- RM01A,

 --- RM04A.

 ----- RS01A

 where:

 LU Main program for solving linear algebraic systems of equations

 Ax=b or ATx=b using LU factorization of the matrix with

 Markowitz's pivot selection strategy.

 RF01A Subroutine for LU factorization of the matrix A.

 RS01A Subroutine for solving large-scale systems of linear equations

 computing: A**(-1)*b or A**(-T)*b, for a given vector b, using the

 LU factorization of the matrix A (given by RF01A subroutine),

 exploiting the sparsity in all cases.

 RM01A Subroutine for sorting the non-zeros of a sparse matrix from

 arbitrary order to column order, but unordered within each column.

 RM04A Subroutine for compressing the column / row array of U

 factor (from the LU factorization of a sparse matrix) in order to

 eliminate the spaces between columns / rows.

♦ The file LU.DOC contains a number of 15 examples of linear algebraic

systems solved by LU package.

The theory of LU factorization is described in:

N. Andrei, Criticism of the linear programming algorithms reasoning.

Romanian Academy Publishing House, Bucharest, 2011.

ISBN: 978-973-27-2076-9 (pages: 287-316)

May 3, 1995

<><><><><><><><><><>

Zero of nonlinear functions

1. ZERO1 In sub-directory ZERO, directory: SOFT-ANDREI-TOTAL:

A simple algorithm for computing zero of a nonlinear function of a

variable in a given interval [a,b].

 6

The Fortran program and 5 examples are presented in file zero1.doc

(see directory: LUCRARI-MANUSTRISE-ANDREI (total).

For function: 2() 4,f x x  one zero in interval [0,3] is:
 a= 0.0000000000000E+00 fa=-0.4000000000000E+01
 b= 0.3000000000000E+01 fb= 0.5000000000000E+01

 Solution: 0.2000000000015E+01 Function value: 0.5820766091347E-10

 Number of iterations; 36

March 28, 1975

2. ZERO2 Fortran program in subdirectory ZERO of the directory SOFT-

ANDREI-TOTAL.

A simple algorithm for computing all the zeros of a nonlinear function

of a variable in a given interval [a,b]. b>a. The program include 14

examples of nonlinear functions for which the zeros (roots) are

presented.

For example, the function: 4 2() 5 4f x x x   in interval [3, 3],  has

four zeros:
 Zero # 1

 ZERO: -0.2000000000001E+01 Function value: 0.6977529665164E-11

 Number of iterations: 52

 Number of function evaluations: 53

 Zero # 2

 ZERO: -0.1000000000003E+01 Function value: -0.1745270594711E-10

 Number of iterations: 50

 Number of function evaluations: 51

 Zero # 3

 ZERO: 0.9999999999994E+00 Function value: 0.3477662602336E-11

 Number of iterations: 66

 Number of function evaluations: 67

 Zero # 4

 ZERO: 0.1999999999997E+01 Function value: -0.3488764832582E-10

 Number of iterations: 50

 Number of function evaluations: 51

 =======================================

 TOTAL # OF iterations: 218

 TOTAL # of function evaluations: 222

The graphical representation of this function is given in Figure 1. Observe it

has exactly four zeros (roots).

Fig. 1. Function
4 2() 5 4f x x x  

 April 16, 1975

<><><><><><><><><><>

 7

Solving Nonlinear Algebraic Systems F(x) = 0

1. NEWTON Newton method without line search.

The method is described in:

N. Andrei, Criticism of the Unconstrained Optimization Algorithms

Reasoning, Academiei Publishing House, Bucharest, 2009, Chapter 6,

(pages: 243-255).

The Newton system is solved by means of the LA05** package by J.K.

Read with minor modifications by N. Andrei.

In directory NEWTON there are the following nonlinear algebraic

systems:

1) CANAL – Flow in a chanel problem,

2) CAVITATE – Flow in a driven cavity problem,

3) CIRCUIT – Circuit design problem,

4) E1 – Calculul temperaturii stationare într-un reactor.

5) E2 – Calculul fractiei de conversie a unei substante într-un reactor

 Chimic,

6) PROPAN - Propan combustion in aer - Reduced Formulation,

7) REACTOR - Stationar solution of a chemical reactor,

8) ROBOT - Robot kinematics problem,

9) SOLID - Solid Fuel Ignition.

June 1, 2006

2.

GRFLOW Gradient Flow Algorithm for solving nonlinear algebraic systems

,0)(xF where)].(,),([)(1 xfxfxF m

The algorithm is as follows:

,1 kkk dxx 

where kd is computed as solution ofthe following system of linear

algebraic equations:

).()()()()()(
1

2

k

T

kkk

m

i

kikik

T

kk xFxFhdxfxfxFxFhI 















 





If)(xfi are convex and positive for all ;,,1 mi  ;))((nxFrank 

1 and ,kh then the algorithm is quadratically convergent to a

local solution of the system.

FLOW.FOR is the main program for the Gradient Flow Algorithm for

solving F(x) = 0. Some variants of this Fortran program can be found in

FLOWC.FOR and FLOWZ.FOR.

In directory ACAD there are the following problems (please see

MINPACK-2 collection):

GFLOWS1 – Circuit design problem,

 8

GFLOWS2 – Propan combustion problem,

GFLOWS3 – Stationar solution of a chemical reactor,

GFLOWS4 – Robot kinematics problem,

GFLOWS5 – Solid fuel ignition problem,

GFLOWS6 – Flow in a driven cavity problem,

GFLOWS7 – Flow in a chanel problem,

GFLOWS8 – Human heart dipole problem.

The mathematical description of these problems, as well as their solution

can be studied in:

N. Andrei, Criticism of the Unconstrained Optimization Algorithms

Reasoning, Academiei Publishing House, Bucharest, 2009, Chapter 6,

(pages: 243-255).

The theoretical aspects of the gradient flow method are presented in:

N. Andrei, Criticism of the Unconstrained Optimization Algorithms

Reasoning, Academiei Publishing House, Bucharest, 2009, Chapter 15.

The performances of the gradient flow method are shown in chapter 15 of

this monography, (pages: 675-679).

Please, see the paper: Gradient Flow Algorithm for Systems of

Nonlinear Equations, (ZEROF.PDF) (ZEROS.RTF).

April 4, 2004

3. LEV-

MARQ

Levenberg-Marquardt Algorithm for solving nonlinear algebraic systems

.0)(xF

This directory contains the following problems (please see MINPACK-2

collection):

LMS1 – Circuit design problem,

LMS2 – Propan combustion problem,

LM3 – Stationar solution of a chemical reactor,

LMS4 – Robot kinematics problem,

LMS5 – Solid fuel ignition problem,

LMS6 – Flow in a driven cavity problem,

LMS7 – Flow in a chanel problem,

A description of this algorithm together with the applications are

presented in: N. Andrei, Criticism of the Unconstrained Optimization

Algorithms Reasoning, Academiei Publishing House, Bucharest, 2009,

Chapter 14.3 (pages: 636-655)
November 12, 2004

January 10, 2007 (modified)

<><><><><><><><><><>

Linear programming

 9

1. AFFINE-

SCALING

Main program Affine Scaling with Rows Partitioning for solving

Linear Programming Problems:

Min xcT
 subject to bAx  , .0x

The program implements an algorithm described into the book:

N. Andrei, Programarea Matematică - Metode de punct interior,

Editura Tehnică, 1999, chapter 5, section 5.4. (pages: 125-157)

The program uses two dimensional arrays and doesn't takes the

advantage of sparsity of the matrix A.
May 21, 1998

2. SPLIT Splitting the dense columns of a Linear Programming Problem.

Please see: Chapter 15 of the book:

N. Andrei, "Criticism of the Linear Programming Algorithms

Reasoning". Romanian Academy Publishing - Bucharest, Romania.

2010. (pages: 605-612)
June 9, 2010

3. BCR Balance Rows Reduction in linear programming.

The idea of this program is to eliminate the balance constraints, i.e. the

constraints with zero RHS term.

The package has two main components. The first one eliminate the

balance constraints and solve the reduced problem. The second one

recover the solution from the solution of the reduced problem.

Please see: Chapter 16, Section 2, pp. 591-605 of the book:

N. Andrei, Criticism of the Linear Programming Algorithms Reasoning.

Romanian Academy Publishing – Bucharest, 2011. (pages: 591-612)
January 21, 1993

4. ISLO Interactive System for maintaing Linear Programming Problems.

This is an interactive package for solving linear programming problems

using PFI of the basis having the possibility to establish the

optrimization conditions at the very beginning of the process.
January 12, 1995

5. ASLO Advanced System for Linear Optimization.

The LU factorization of the basis (subroutines LA05AD, LA05BD,

LA05CD, LA05ED and MC20AD) is used to implement the primal

simplex method.

The input of the problem is in MPS format.
December 16, 1992

6. ASLONEW Advanced System for Linear Optimization – New version.

7. CALP A collection of Linear Programming Applications in ALLO Language.

Se prezintă 10 prototupuri de modele de programare linară în limbajul

ALLO, direct utilizate în context industrial.

See: N. Andrei, O colecţie de aplicaţii de programare liniară în

limbajul ALLO. Technical Report No.4/2007, September 3, 2007. (88

pagini cu CD) (see files: FRONT-RT3-2007.DOC & RT3-2007.DOC in

directory CALP)

Please, see the directory CALP in LINEAR-PROGRAMMING. Please,

 10

see the Technical Report RT3-2007.doc. The mathematical models in

ALLO language are placed in the directory MODELS.

September 3, 2007

<><><><><><><><><><>

SAMO Technology
Advanced System for Linear Optimization

1. ALLO Directory ALLO_LANGUAGE

ALLO is a mathematical programming language having the ability

to write linear programming models.

It is fully algebraic, being notable for its syntax which is very simple but

comprehensive, with a small number of reserved keywords. The compiler

associated to ALLO language translate the model into the equivalent

MPS form, directly admited by any professional linear optimizer.

The directory ALLO_LANGUAGE contains the following

subdirectories:

♦ ALLO-source:

- Subdirectory ALLO contains three executable programs: ALLOPAS1

.EXE and ALLOPAS2.EXE for compiling an ALLO textsource and

DSOLVER.EXE for solving the generated linear programming problem.

- Subdirectories PAS1 and PAS2 contains Fortran and C programs which

implement the ALLO compiler. The list of subroutines is described in

LIST-OF-SUBROUTINES.DOC file.

- Subdirectory MODELE contains 11 prototypes of linear programming

models in ALLO language.

-ALLO language is also described in ALLO.RTF file (17 pages,

September 10, 2004)

♦ APPLIC: includes 25 prototypes of linear programming models in

ALLO language.

♦ DOC: contains some files describing the ALLO language.

- ALLO language is explained in LANGALLO.RTF file (english

version, 16 pages, September 10, 2004)

- The documents ALLO1.DOC and ALLO2.DOC present a collection

of linear programming models including: allocation models, assembling

models, desassembling, desassembling-assembling, transportation

models, diet models, production modelswith optimal selection of

technologies, systems with stocks, combined models of production with

stocks, discrete production models.

♦ EXE: contains an old version of ALLO compiler (executables), SAMO

executable, DSOLVER for solving a linear programming problem and

HOPD which is HOPDM package by Gondzio.

The language ALLO is described in a number of papers as:

 11

- N. Andrei, Gh. Borcan, ALLO: Algebraic Language for Linear

Optimization. Technical Report, LSSO-2-95, Research Institute

for Informatics, Bucharest, September 1995.

- N. Andrei, Gh. Borcan, ALLO – Limbaj algebric pentru

optimizare liniară. Revista Română de Informatică şi

Automatică, vol.8, nr. 3, 1998, pp.55-67.

- N. Andrei, Pachete de Programe, Modele şi Probleme de Test

pentru Programarea Matematică, Editura MATRIXROM,

Bucureşti, 2001.

- N. Andrei, Critica Raţiunii Algoritmilor de Programare Liniară,

Editura Academiei Române, Bucureşti, 2011. (pages: 815-830)

Martie 8, 2007

2. SAMO Directory INSTAL_SAMO

Advanced informatic technology for linear programming modeling

and optimization.

SAMO – is an advanced informatic technology for linear programming

modeling and optimization at an industrial level. SAMO permits

conceptualization, elaboration, maintainance, modification and solving

large-scale linear programming models. The system SAMO is based of

the language ALLO which is a dialect of the natural language used by the

user to conceptualize, to build up, to modify linear programming models

in algebraic format, as well as on the ALLO compiler which translate the

algebraic format of the model in MPS format.

SAMO uses a professional optimizer able to solve large-scale linear

programming problems.

SAMO allows generation and solving of linear programming prototypes.

SAMO is described in:

TR18.DOC file: SAMO - tehnologie informatică avansată pentru

modelare şi optimizare. (Advanced informatioc technology for modeling

and optimization.) Description of SAMO. Illustration of an ecran capture

of this technology. (Martie 8, 2007)

SAMO.MSI is windows installer package. To install SAMO, the serial

number is: CB48T H668K C9W64

A description of SAMO, as well as some prototypes of industrial models

in ALLO language, working under SAMO technology are presented in:

N. Andrei, Critica Raţiunii Algoritmilor de Programare Liniară, Editura

Academiei Române, Bucureşti, 2011. (pages: 642-752)

N. Andrei, Pachete de Programe, Modele şi Probleme de Test pentru

Programarea Matematică, Editura MATRIXROM, Bucureşti, 2001.

(Lucrarea conţine 13 prototipuri de modele de programare liniară

exprimate în limbajul ALLO.)

Martie 8, 2007

New Version: June 8, 2011

<><><><><><><><><><>

 12

Unconstrained optimization

Direct Search Methods

1. UNO Directory UNO

UNCONSTRAINT OPTIMIZATION METHODS

using

DIRECT SEARCHING TECHNIQUES

 The following techniques are implemented:

 - Hook-Jeeves - form searching, (HOOKJ.FOR

 - Rosenbrook - rotation of coordinates, (ROSE.FOR)

 - Powell - conjugate directions, (POWEL.FOR)

 - Nelder-Mead - Simplex, (NELMED.FOR)

 - Parallel with Axes Searching. (CPA.FOR)

These methods are implemented with different onedimensional

optimization methods like:

 L1 - golden section,

 L2 – Fibonacci search,

 L3 - Quadratic fitting of Powell,

 L4 - Simple lambda =1.0.

The theory behind all these direct search methods is presented in:

N. Andrei, Criticism of the Unconstrained Optimization Algorithms

Reasoning, Academy Publishing House, Bucharest, 2009, Chapter

16.
April 1991

New version: August 8, 2007

2. FIBO Directory FIBONACCI

O subrutină de calcul a minimului unei funcţii neliniare de o

variabilă, pe un interval dat, bazată pe metoda de căutare directă

Fibonacci.

The Fibonacci search method is presented in: fibonacci.doc file.
Februarie 4, 1980

3. MAXFUN Directory MAXFUN

O subrutină de calcul a maximului unei funcţii neliniare de o

variabilă, bazată pe metoda de interpolare pătratică Powell.

The maxfun search method is described in: maxfun.doc file.
Septembrie 23, 1980

4. PSO-UO Directory PSO-UO

Particle Swarm Optimization for unconstrained optimization
In this directory I included three Fortran programs for minimizing the

Rosenbrock function (extended and generalized) and the Wood

function using the particle swarm optimization method.
May 21, 2014

5. DEEPS Directory DEEPS-TOTAL

This directory contains a number of 13 sub-directories as follows:

DEEPS1

 13

A simple deep random search method for unconstrained

optimization. Preliminary computational results
This sub-directory includes:

a) Thechnical Report No. 1/2020: R2020T1.DOC describing the method,

b) The Fortran package DEEPS.FOR which implements the algorithm and

c) The file FUNCNAME.TXT with the name of the minimizing functions.

DEEPS implements an algorithm based on direct search without using

derivatives. The numerical experiments include 115 unconstrained

optimization problems.

See: N. Andrei, A simple deep random search method for unconstrained

optimization. Preliminary computational results. Technical Report No.

1/2020, February 29, 2020, Bucharest.

DEEPS2

Comparison of DEEPS algorithm using a simple deep random

search method versus Steepest Descent for solving an

unconstrained optimization problem with a narrow positive cone.
This sub-directory includes the Technical Report No. 2/2020:

R2020T2.DOC describing the method.

DEEPS3

Influence of local bounds “lobndc” and “upbndc” defining the

size of the local domains on performances of the DEEPS

algorithm.
This sub-directory includes:

a) Technical Report No.3/2020: R2020T3.DOC describing the influence of

bounds

b) The Fortran package DEEPS2.FOR which implements the algorithm and

c) The file FUNC115.TXT with the name of the minimizing functions.

DEEPS4

Performances of DEEPS algorithm for solving large-scale

unconstrained optimization problems.
The sub-directory includes:

a) Technical Report No.4/2020: R2020T4.DOC describing the performances

of DEEPS for solving large-scale problems

b) The Fortran package DEEPS4.FOR which implements the algorithm and

c) The file FUNC115.TXT with the name of the minimizing functions.

The package DEEPS4.FOR can solve large-scale minimization problems up

to 500 variables. For example for solving the problem DIXMAANA

(CUTE) with 500 variables, DEEPS4 gives a local optimal solution in 1685

iterations, 94162 evaluations of the minimizing function and 27.32 seconds.

DEEPS5

Performances of DEEPS for solving 16 real applications of

unconstrained optimization.
This sub-directory contains:

a) Technical Report No.5/2020: R2020T5.DOC,

b) The Fortran package DEEPS5.FOR which implements the algorithm and

c) The file FUNC16.TXT with the name of the minimizing functions

included in this numerical experiments.

DEEPS6

 14

A new simple deep random search method for unconstrained

optimization

This subdirectory contains:

a) Technical Report No.6/2020: R2020T6.DOC
b) The Fortran package DEEPS6.FOR which implements the algorithm and

c) The file FUNCNAME.TXT with the name of the minimizing functions

included in this numerical experiments.

DEEPS7

Solution of Human Heart Dipole unconstrained optimization

problem by means of DEESP6 and Nelder-Mead methods

This subdirectory contains:

a) Technical Report No.7/2020: R2020T7.DOC
b) The Fortran package DEEPS7.FOR which implements the algorithm and

c) The file FUNCNAME.TXT with the name of the minimizing functions

included in this numerical experiments.

DEEPS8

A simple deep random search method for unconstrained

optimization
This subdirectory contains:

a) Technical Report No.8/2020: R2020T8.DOC

b) The Fortran packages DEEPS2.FOR (for distance among the trial points),

DEEPS4.FOR (for large-scale optimization), DEEPS5.FOR (with 16

applications) which implements the algorithm and

c) The file FUNC116.TXT and FUNC16.TXT with the name of the

minimizing functions included in these numerical experiments.

DEEPS9

A two level random search method for unconstrained

optimization
This subdirectory contains:

a) Subdirectory APRIL:

 - PAS (steepest descent method)

 - REZ (rezults for solving 16 applications)

 - DEEP8L.FOR (for solving large-scale problems – Final)

 - DEEPS8A.FOR (for solving 16 applications – Final)

 - DEEPS8Z.FOR (For computing the maximum distance – Final)

 - FUNC16.TXT (with name of the applications - Final)

 - FUNC115.TXT (with name of the 115 problems - Final)

b) Subdirectory NELMEAD (Nelder – Mead method) with:

 - FUNCNEL.TXT (with name of the functions)

 - NELMEAD.FOR (Fortran code for Nelder-Mead method in

 implementation of R, Oneill and modified by John Burkardt)

c) Technical Report No. 9/2020: R2020T9 (April 19, 2020)

DEEP8L.FOR is taylored for solving large-scale unconstarined optimization

problems up to 500 variables. The numerical experiments include solving

the problems: VARDIM, EG3, DIXMAANA, Broyden Tridiagonal,

Broyden Pentadiagonal and DESSCHNF.

DEEPS8A.FOR is designed for solving 16 applications of unconstrained

optimization: Weber(1), Weber(2), Weber(3), Enzyme reaction, Solution of

a chemical reactor, Robot kinematics problem, Solar Spectroscopy,

Estimation of parameters, Propan combustion in air, Gear train with

 15

minimum inertia, Human Heart Dipole, Neurophysiology, Combustion

application, Circuit design, Termistor and Optimal design of a Gear Train.

The performances of DEEPS8A is presented in Table 5 below.

Table 5. Performances of DEEPS for solving 16 unconstrained optimization applications

Nr. n N M
iter nfunc cpu *()f x 0()f x

1. 2 2 5 118 1473 0.01 -264.453135 -37.473137

2. 2 3 5 67 1318 0.0 9.56074405 78.594324

3. 2 5 10 167 9160 0.0 8.74984910 78.602864

4. 4 30 50 28 42903 0.02 0.308765E-03 0.531317E-02

5. 6 50 100 1375 6989983 2.76 0.747292E-04 0.196173E+08

6. 8 5 10 43 2459 0.0 0.182801E-07 5.334258

7. 4 5 10 4 233 0.0 8.3163822 9.958700

8. 4 100 500 54 2705727 1.73 0.3185759-01 2.905300

9. 5 9900 100 10 10013014 4.83 0.2467602E-04 0.331226E+08

10. 2 5 3 15 342 0.0 1.7441520 2563.3250

11. 8 50 300 2404 36265585 26.67 0. 996608E-04 0.190569

12. 6 1000 6 1044 7999853 3.87 0.854501E-04 23.917600

13. 10 3 10 25 856 0.0 0.406198E-08 121.998899

14. 9 50 50 3731 9654682 23.62 0.103618E-03 2964.578187

15. 3 100 500 15 752179 4.73 175.565438 0.233591E+10

16. 4 10 50 6 3090 0.0 0.3886716E-13 0.737081E-03

Total 9106 74442856 68.24

NELMEAD.FOR is designed to solve the above 16 applications by Nelder-

Mead method in implementation of R. Oneill and modified by John Burkard

and Neculai Andrei. Table 16 below shows the performances of Nelder-

Mead method.
Table 6. Performances of Nelder-Mead for solving 16 applications

(FORTRAN77 version by R. ONeill [73], modifications by John Burkardt)

Nr. n iter nfunc cpu *()f x 0()f x

1. 2 42611 141379 0.03 -264.45314 -37.473137

2. 2 5749 17111 0.01 9.560739 78.594324

3. 2 485 1515 0 8.749843 78.602864

4. 4 50589 257709 0.10 0.307599E-03 0.531317E-02

5. 6 4853773 40285964 9.37 0.472465E-05 0.196173E+08

6. 8 18824 131208 0.05 0.682946E-08 5.334258

7. 4 3553 19323 0.05 6.872370 9.958700

8. 4 1420090 7962328 3.61 0.318572E-01 2.905300

9. 5 218408 1304415 0.34 0.738972E-05 0.331226E+08

10. 2 50 151 0 1.744152 2563.3250

11. 8 12179330 116416638 39.66 0.109955E-03 0.190569

12. 6 749358 5880897 1.29 0.166672E-06 23.917600

13. 10 180224 1478094 0.53 0.606737E-07 121.998899

14. 9 995980 9939092 18.61 0.853510E-03 2964.578187

15. 3 3063875 10945869 70.68 175.091316 0.233591E+10

16. 4 8026086 36117397 5.58 0.751550E-12 0.737081E-03

Total 31808985 230899090 149.94

The Technical Report R2020T9.DOC contains an Appendix with the

mathematical expression of the applications considered in these numerical

experiments.

DEEPS10

A two level random search method for solving the Elastic Plastic

Torsion from MINPACK2
This directory contains:

A1EPT.FOR – Fortran program for solving the Elastic Plastic Torsion

application from MINPACK2 with 2500 variables

R2020T10.DOC – Technical Report with results of optimization by DEEPS.

Figures 1 and 2 show the solution of this application with 2500 variables

 16

Fig. 1. Solution of Elastic Plastic Torsion application. nx=50, ny=50. Surface

Fig. 2. Solution of Elastic Plastic Torsion application. nx=50, ny=50. Contour.

DEEPS11

Performances of DEEPS for solving 120 Unconstrained

Optimization Problems
This directory contains:

- DEEPSPR.FOR

- DEEPS.OUT

- DEEPS.REZ

- FUNC120.TXT

- R2020T11.DOC

For solving 120 problems (16 applications and 104 test problems) with the

number of variables in the range [2-40] the following results was obtained

by DEEPSPR.

Table 1. Performances of DEEPS

--

2 118 1473 0 -0.2644531350428E+03 1. Weber Function (1) (Andrei, U71)

2 67 1318 0 0.9560744054913E+01 2. Weber Function (2) (Kelly, pp. 119)

2 167 9160 0 0.8749849108484E+01 3. Weber Function (3) (Kelly, pp. 119)

4 28 42903 2 0.3087657632221E-03 4. Enzyme reaction (Andrei, U79) (A)

6 1375 6989983 270 0.7472925581554E-04 5. Solution of a chemical reactor (A)

8 43 2459 1 0.1828017526180E-07 6. Robot kinematics problem (A)

4 4 233 0 0.8316382216967E+01 7. Solar Spectroscopy (A)

4 54 2705727 127 0.3185724691657E-01 8. Estimation of parameters (A)

 17

5 10 10013013 369 0.2467602087429E-04 9. Propan combustion in air (A)

2 15 342 0 0.1744152005590E+01 10. Gear train with minimum inertia (A)

8 2404 36265585 2527 0.9966084682095E-04 11. Human Heart Dipole. Andrei U84,

6 1044 7999853 380 0.8545018926146E-04 12. Neurophysiology (A)

10 25 856 0 0.4061987800161E-08 13. Combustion application (A)

9 3731 9654682 3297 0.1036184837525E-03 14. Circuit design (A)

3 15 752179 844 0.1742216236340E+03 15. Thermistor (A)

4 6 3090 0 0.3886716443010E-13 16. Optimal design of a Gear Train (A)

2 50 5803 0 0.9835611823309E-10 17. Rosenbrock - Valley of Banana

2 101 101022 2 0.4898425367948E+02 18. Freudenstein-Roth

10 123 6261804 362 0.8062621526502E-07 19. White & Holst Function

4 11 5558 1 0.3423435068941E-08 20. Miele & Cantrell Function

2 20 40234 1 0.8214653544885E-07 21. Himmelblau (F-P, pp. 326)

2 10 20123 0 -0.1031628453449E+01 22. Three-hump camelback (1) (F-P, pp.

2 13 1448 0 0.9837324056667E-10 23. Three-hump camelback (2) (F-P, pp.

4 71 365146 9 0.3554618463965E-07 24. Wood Function (Andrei U13, pp.42)

2 66 35282 0 0.1100000000002E+02 25. Sum of different power (x1=45,

2 34 171947 3 -0.1008600148064E+02 26. Shekel function (F-P, pp. 111)

8 33 1664504 188 0.5587091822711E-08 27. DENSCHNA function

2 13 112880 1 0.2472169120657E-12 28. DENSCHNB function

4 124 6211517 374 0.6407636682735E-08 29. DENSCHNC function

2 5 252020 7 0.3706190909725E-10 30. Griewank function

2 19 9776 0 0.2392264124841E-10 31. Brent function

2 4 201408 3 0.9875204934203E-11 32. Booth function

2 3 151310 2 0.6418934775920E-12 33. Matyas function

3 21 105187 1 0.2144472045122E-07 34. Colville function (Andrei, U25)

2 6 3002326 166 -0.9999999999711E+00 35. Easom function

8 280 19003 1 0.2866445718079E-04 36. Beale function (Andrei, U16)

4 5 2502036 65 0.8730870071490E-09 37. Powell function (Andrei, U62)

2 8 4010395 81 -0.1913222954963E+01 38. McCormick function

2 4 2001074 27 0.3510557725703E-08 39. Himmelblau function (-11,-7)

2 6 304420 3 0.2409465011726E-09 40. Leon function

2 4 101964 1 0.1356415499635E-11 41. Price4 function

2 6 151312 2 -0.3791237203937E-02 42. Zettl function

8 63 3210964 141 0.4490426129186E-08 43. Sphere function

8 21 1069087 46 0.5508803806450E-08 44. Elipsoid function

2 4 414840 7 0.5922563192900E+01 45. Himmelblau (Problem 29/428)

3 3 302066 14 0.2293552829184E-09 46. Himmelblau (Problem 30/428)

2 4 8204 1 0.3013714813619E-09 47. Himmelblau (Problem 33/430)

2 6 3012421 56 -0.3523860737488E+00 48. Zirilli function

2 3 15519 1 -0.7833233140723E+02 49. Styblinski function

2 3 15482 0 -0.1999999999992E+01 50. Trid function

2 28 1404941 46 0.4913822073228E-08 51. Scaled Quadratic function

3 6 122003 5 0.6981231133934E-08 52. Schittkowski 241, pp. 65

6 46 933332 104 0.3535955270103E-07 53. Schittkowski 271, pp. 95

2 2 4070 0 0.7731990565293E+00 54. Schittkowski 308, pp. 131

5 4 4139 1 0.2541928088954E-08 55. Brown's almost linear system

4 6 60194 4 0.9175380652822E-09 56. Kelley function. Andrei U72

4 18 180402 13 0.7034029261395E-08 57. A nonlinear system. Andrei U73

2 2 10363 1 -0.1819999999998E+02 58. Zangwill function. Andrei U14

3 2 10392 0 -0.3923048452734E+00 59. Circular function. Andrei U19

2 20 102710 11 0.3424486241119E-06 60. Polexp function. Andrei U21

2 1 5200 1 -0.5000000000000E+00 61. Dulce function. Andrei U20

4 3 154211 53 0.1291674224865E-13 62. Cragg & Levy. Andrei U41, pp.49

5 84 6828 1 0.1285216666786E-06 63. Broyden. Andrei U45, pp.50

8 501 2562184 392 0.9392975075304E+00 64. Broyden (n=10). Andrei U45, pp.50

10 501 2571775 379 0.8789736953485E+00 65. Broyden (n=20). Andrei U45, pp.50

5 33 170845 8 0.9648130225310E-12 66. Full rank (n=5). Andrei U47, pp.51

8 16 80264 8 0.2290198352507E-05 67. Full rank (n=10). Andrei U47, pp.51

4 34 170467 7 0.5306897356432E-05 68. Full rank (n=20). Andrei U47, pp.51

5 8 41333 10 0.2246918386265E-08 69. Trigonometric (n=5). Andrei U48,

9 12 601813 273 0.1026902990869E-07 70. Trigonometric (n=10). Andrei U48,

10 10 1001508 514 0.1097167273012E-07 71. Trigonometric (n=20). Andrei U48,

5 9 46626 8 0.7161813414106E-08 72. Brown function. Andrei U75, pp.59

4 20 203504 243 0.8582220162694E+05 73. Brown & Dennis, Andrei U32, pp.46

2 2 51661 2 -0.2345811576100E+01 74. Hosaki function

5 48 5559 1 0.1920078161404E-08 75. Cosmin function

10 50001 25603049 2209 0.1828116187903E+02 76. BDQRTIC (CUTE)

10 10001 5121416 385 0.9090909868030E-01 77. DIXON3DQ (CUTE)

4 56 282842 9 0.2495604369176E+01 78. ENGVAL1 (CUTE)

5 75 76091 3 0.1522038725998E+01 79. Extended Penalty Function

10 140 4549 1 0.2421900361697E-06 80. Broyden pentadiagonal

2 6 69034 4 0.9000000000179E+00 81. Teo function

2 5 25068 0 0.7415391589066E-02 82. Coca function

2 29 15001 0 -0.1249999999982E+01 83. Nec function. Andrei, U30, pp.46

4 1 5214 1 0.3420673059839E-18 84. QuadraticPowerExp. Andrei, U51,

8 10 51586 2 0.9558267583740E-11 85. NONDQUAR (CUTE)

40 191 297249 89 0.1515302199717E-05 86. ARWHEAD (CUTE)

4 5227 31209850 988 0.9904978234274E-04 87. CUBE (CUTE)

5 87 43635706 1832 0.6318587675248E-05 88. NONSCOMP (CUTE)

10 148 50672 4 0.1456219360103E-05 89. DENSCHNF (CUTE)

12 151 78087 6 0.1261454444921E-06 90. BIGGSB1 (CUTE)

10 12 62424 4 0.1023966649364E-07 91. Borsec6

2 21 1926879 13 0.3686757105536E+02 92. Three terms all quadratics

3 18 1650274 24 0.1102124984312E-04 93. Mishra9

2 17 1559944 13 0.2785637644975E-08 94. Wayburn1

2 11 570063 5 0.1044643130973E-08 95. Wayburn2

10 178 920355 70 0.6666667449697E+00 96. Dixon & Price

15 165 855048 88 0.7426386427905E-06 97. Qing

2 12 618990 7 -0.3873724182168E+04 98. Quadratic 2 variables

2 20 100338 2 -0.6850076846409E+02 99. Rump

4 60 311669 23 0.3995735589349E+00 100. Extended Cliff (CUTE)

10 121 627317 44 0.9898969553451E+00 101. NONDIA (CUTE)

4 16 817016 54 -0.3499997429359E+01 102. EG2 (CUTE)

8 110 570563 47 0.1217995131007E-06 103. LIARWHD (CUTE)

4 16 80331 12 0.1212871287929E+02 104. Full Hessian (m=50)

2 39 1954856 143 0.2807057782276E-10 105. A nonlinear algebraic system

4 14 72067 2 -0.3739004994563E+02 106. ENGVAL8 (CUTE)

10 9 22568 11 0.1000000011710E+01 107. DIXMAANA (CUTE)

10 7 36106 18 0.1000000011413E+01 108. DIXMAANB (CUTE)

5 6 30831 7 0.1000000002733E+01 109. DIXMAANC (CUTE)

5 113 582712 22 0.8897747881327E-07 110. DIAG-AUP1

10 52 1710 0 -0.9499999882112E+01 111. EG3 (COS)

10 62 63026 5 0.1885210564357E-07 112. VARDIM (CUTE)

4 412 1068904 33 -0.9999606442786E+00 113. A narrow positive cone

10 14 16328 3 -0.2718123003131E+01 114. Ackley

10 20001 51044836 4250 -0.1942809040946E+02 115. Modified Wolfe

2 460 1176773 1 -0.3530815425299E+01 116. Peak function

3 79 800719 19 0.2492301853743E+02 117. Function U18 (Andrei, pp. 43)

2 1 1025 0 -0.1400147716590E-05 118. Function U23 (Andrei, pp. 44)

5 7 70128 3 0.3763764398013E-08 119. Sum Squares

10 63 64020 6 0.5383942407341E-08 120. VARDIM MODIFIED (**8)

 18

 Total number of iterations = 99913

 Total number of function evaluations = 295010496

 Total Elapsed time (centeseconds) = 21930

DEEPS12

Comparison Between the Performances of DEEPS and Nelder-

Mead for solving 120 Unconstrained Optimization Problems
This directory contains:

- DEEPSPR.FOR (DEEPS algorithm)

- DEEPS.OUT

- DEEPS.REZ

- func120.txt

- f.bmp

- NMPF.FOR (Nelder-Mead algorithm)

- NELMIN.OUT

- NELMIN.REZ

- PERF2N.FOR

- R2020T12.DOC (Technical Report)

For solving 120 problems (16 applications and 104 test problems) with the

number of variables in the range [2-40] the following results was obtained

by Nelder-Mead.

Table 2. Performances of NELMEAD

n iter nfunc cpu f(x*) Name

2 42611 141379 5 -0.2644531412951E+03 1. Weber Function (1) (Andrei, U71)

2 5749 17111 1 0.9560739834844E+01 2. Weber Function (2) (Kelly, pp. 119)

2 485 1515 0 0.8749843722120E+01 3. Weber Function (3) (Kelly, pp. 119)

4 50589 257709 26 0.3075992528786E-03 4. Enzyme reaction (Andrei, U79) (A)

6 4853773 40285964 1549 0.4724650698678E-05 5. Solution of a chemical reactor (A)

8 18824 131208 3 0.6829467973914E-08 6. Robot kinematics problem (A)

4 3553 19323 4 0.6872370208734E+01 7. Solar Spectroscopy (A)

4 1420090 7962328 281 0.3185723794137E-01 8. Estimation of parameters (A)

5 218408 1304415 24 0.7389721566503E-05 9. Propan combustion in air (A)

2 50 151 0 0.1744152013241E+01 10. Gear train with minimum inertia (A)

8 12179330 116416638 3181 0.1098385128966E-06 11. Human Heart Dipole. Andrei U84,

6 749358 5880897 135 0.1666727283741E-06 12. Neurophysiology (A)

10 180224 1478094 55 0.6067373743983E-07 13. Combustion application (A)

9 995980 9939092 1867 0.8535102372545E-03 14. Circuit design (A)

3 3063875 10945869 7870 0.1750913166362E+03 15. Thermistor (A)

4 8026086 36117397 408 0.7515500076120E-19 16. Optimal design of a Gear Train (A)

2 127791 414317 3 0.2734165291417E-08 17. Rosenbrock - Valley of Banana

2 7772 21242 0 0.4898425367977E+02 18. Freudenstein-Roth

10 4695026 36081186 899 0.2997209356058E-09 19. White & Holst Function

4 28366709 134400344 16145 0.2728619079879E-22 20. Miele & Cantrell Function

2 549 1801 0 0.2410661272377E-09 21. Himmelblau (F-P, pp. 326)

2 4138 12917 0 -0.1031628453487E+01 22. Three-hump camelback (1) (F-P, pp.

2 12681 40251 0 0.1791830653421E+01 23. Three-hump camelback (2) (F-P, pp.

4 9355302 47490787 544 0.9110670262491E-09 24. Wood Function (Andrei U13, pp.42)

2 110941 357658 3 0.1100000000000E+02 25. Sum of different power (x1=45,

2 13395 38020 0 -0.5065439735221E+01 26. Shekel function (F-P, pp. 111)

8 32893597 239932420 27981 0.1913163675383E-15 27. DENSCHNA function

2 147386 476192 5 0.1325420598527E-13 28. DENSCHNB function

4 1417159 6039693 489 0.3150644529618E-12 29. DENSCHNC function

2 711418 2298258 65 0.3219646771413E-14 30. Griewank function

2 52622 184115 5 0.1293393700200E-14 31. Brent function

2 52304 201225 2 0.4104965908510E-13 32. Booth function

2 717578 2004520 24 0.2799993833942E-14 33. Matyas function

3 8195333 31914397 401 0.8289711921786E-07 34. Colville function (Andrei, U25)

2 1649974 5224920 233 -0.8110381996167E-04 35. Easom function

8 19783086 132373529 6021 0.6615259847323E-09 36. Beale function (Andrei, U16)

4 1559835 6876985 87 0.1285824459516E-08 37. Powell function (Andrei, U62)

2 4266 12315 0 -0.1913222954978E+01 38. McCormick function

2 237967 809851 6 0.4908320623628E-14 39. Himmelblau function (-11,-7)

2 63610 212134 2 0.1174796918677E-05 40. Leon function

2 1802097 6173224 53 0.1068218485126E-07 41. Price4 function

2 78275 246644 2 -0.3791237220468E-02 42. Zettl function

8 133777215 999990013 25833 0.1025689019328E+00 43. Sphere function

8 26546059 200996384 5589 0.3701062404756E-13 44. Elipsoid function

2 95 193 0 0.5924864255508E+01 45. Himmelblau (Problem 29/428)

3 1439 4699 0 0.7544044265105E-06 46. Himmelblau (Problem 30/428)

2 17452184 52356544 3420 0.1596984695221-312 47. Himmelblau (Problem 33/430)

2 18886 63700 1 -0.1526394417735E+00 48. Zirilli function

2 285 769 0 -0.7833233140632E+02 49. Styblinski function

2 755782 2507508 50 -0.2000000000000E+01 50. Trid function

2 110285272 441135983 2857 0.1892243360928E-12 51. Scaled Quadratic function

3 7510 29043 1 0.1143027552724E-03 52. Schittkowski 241, pp. 65

6 966 4340 0 0.2273917223761E-08 53. Schittkowski 271, pp. 95

2 1029 3374 0 0.7731990567225E+00 54. Schittkowski 308, pp. 131

5 34744 190100 3 0.2297883703351E-06 55. Brown's almost linear system

4 81407052 368163139 6071 0.1422943777975E-13 56. Kelley function. Andrei U72

4 831618 3641092 48 0.1050959372381E-11 57. A nonlinear system. Andrei U73

2 8908 24481 0 -0.1820000000000E+02 58. Zangwill function. Andrei U14

3 3969 14757 0 -0.3923048452658E+00 59. Circular function. Andrei U19

2 333330006 999990001 51593 0.3252892765785E-15 60. Polexp function. Andrei U21

2 18157983 63360019 1366 -0.5000000000000E+00 61. Dulce function. Andrei U20

 19

4 95011309 435691620 52987 0.7500494352983E-17 62. Cragg & Levy. Andrei U41, pp.49

5 732002 4006517 74 0.3752106106972E-14 63. Broyden. Andrei U45, pp.50

8 5888828 44813788 1125 0.2027502384709E-13 64. Broyden (n=10). Andrei U45, pp.50

10 5354896 45896404 2071 0.1657738109364E-13 65. Broyden (n=20). Andrei U45, pp.50

5 32105835 172990716 5657 0.5600659081408E-15 66. Full rank (n=5). Andrei U47, pp.51

8 48480940 345462434 24336 0.1455367377274E-12 67. Full rank (n=10). Andrei U47, pp.51

4 10669233 51885942 1207 0.3021412301497E-13 68. Full rank (n=20). Andrei U47, pp.51

5 26934031 142029901 33429 0.2760740072636E-14 69. Trigonometric (n=5). Andrei U48, p

8 45798374 344886928 135910 0.1356472192863E-03 70. Trigonometric (n=10). Andrei U48,

10 4250369 37671143 19528 0.2795056123570E-04 71. Trigonometric (n=20). Andrei U48,

5 203955743 999990002 170652 0.1945484835526E-03 72. Brown function. Andrei U75, pp.59

4 250 448 1 0.8582220220393E+05 73. Brown & Dennis, Andrei U32, pp.46

2 7205 21445 0 -0.1127794026972E+01 74. Hosaki function

5 38414 191802 2 0.2120535922759E-11 75. Cosmin function

10 201534 1833324 58 0.1828116175371E+02 76. BDQRTIC (CUTE)

10 3233930 28345714 652 0.9090909101913E-01 77. DIXON3DQ (CUTE)

4 67202284 307509056 6519 0.2495604366214E+01 78. ENGVAL1 (CUTE)

5 18287 107384 1 0.1522244423034E+01 79. Extended Penalty Function

10 516284 4324701 157 0.2616410786262E-11 80. Broyden pentadiagonal

2 114222 324189 13 0.9000000000000E+00 81. Teo function

2 15239 44506 0 0.3603393492868E-11 82. Coca function

2 220243 770819 6 -0.1250000000000E+01 83. Nec function. Andrei, U30, pp.46

4 249997502 999990008 38652 0.6498415264253E-22 84. QuadraticPowerExp. Andrei, U51,

8 157576603 999990001 32857 0.1061987603079E+00 85. NONDQUAR (CUTE)

10 129703558 999990012 38047 0.2568702260532E+00 86. ARWHEAD (CUTE)

4 1221660 5840002 98 0.1170242033020E-03 87. CUBE (CUTE)

5 164045317 883130211 16416 0.9253097139544E-09 88. NONSCOMP (CUTE)

10 1255946 11901044 483 0.2432712919620E-11 89. DENSCHNF (CUTE)

12 45543080 371730317 15144 0.2014644810372E-11 90. BIGGSB1 (CUTE)

10 133332459 999990011 49722 0.1683728521419E+02 91. Borsec6

2 2424 7088 0 0.1273426289635E+03 92. Three terms all quadratics (-10,-7

3 148 300 0 0.5510270894397E-03 93. Mishra9

2 18567784 57590805 657 0.6454558509586E-14 94. Wayburn1

2 50268833 142015420 1619 0.7079093388257E-15 95. Wayburn2

10 136976950 999990005 37149 0.1005563480381E+04 96. Dixon & Price

15 3688046 45451698 1895 0.2261032544726E-09 97. Qing

2 1797 5885 0 -0.3873724182186E+04 98. Quadratic 2 variables

2 253 826 0 -0.1640345171681E+02 99. Rump

4 212439967 854777872 52900 0.3995732273681E+00 100. Extended Cliff (CUTE)

10 642708 4988085 164 0.5455027073350E-12 101. NONDIA (CUTE)

4 3424718 16773818 876 -0.3447779105873E+01 102. EG2 (CUTE)

8 59110575 410824970 13094 0.1517431852535E-11 103. LIARWHD (CUTE)

4 12770 57246 18 0.1212871287129E+02 104. Full Hessian (m=50)

2 1875451 5018254 334 0.1833800208498E-15 105. A nonlinear algebraic system (App.

4 104963 474395 7 -0.3739004995170E+02 106. ENGVAL8 (CUTE)

10 79384557 699911844 312619 0.1000000000000E+01 107. DIXMAANA (CUTE)

10 115678296 999990003 476546 0.1001251911045E+01 108. DIXMAANB (CUTE)

5 519054 2611878 424 0.1000000000000E+01 109. DIXMAANC (CUTE)

5 207132 1046318 18 0.3533704907427E-12 110. DIAG-AUP1

10 685883 5148183 471 -0.8184677637534E+01 111. EG3 (COS)

10 35829692 279603425 10377 0.4467510264809E-10 112. VARDIM (CUTE)

4 7261027 38333938 595 -0.9999999949881E+00 113. A narrow positive cone

10 281032 2414390 398 0.3841368041779E+01 114. Ackley

10 7664639 69463156 3609 -0.1165685424949E+02 115. Modified Wolfe

2 1609811 5320855 741 -0.4105766136014E-05 116. Peak function

3 117079 492835 11 0.2492301853327E+02 117. Function U18 (Andrei, pp. 43)

2 13116974 39350868 1855 0.3541982800515-316 118. Function U23 (Andrei, pp. 44)

5 168469 738431 12 0.6048706368964E-13 119. Sum Squares

10 17305874 131238244 6037 0.3070835264168E-10 120. VARDIM MODIFIED (**8)

 Total CPU time (centeseconds) = 1733441 (4.5 hours)

Figure 1 shows the Dolan and Moré’s performance profiles of these

algorithms

Fig. 1. Performance profiles of DEEPS and NELMED for solving 120 problems

DEEPS13

A two level random search method for unconstrained

optimization.
This directory contains:

DEEPSPR.for (Fortran package)

FUNC120.TXT

NMPF.FOR (Fortran package of Nelder-Mead)

 20

NELMIN.out

NELMIN.rez

NELMIN.tot

PERF2N.for (Fortran package for comparing algorithms)

R2020T13.DOC (The paper: A two level random search method for

unconstrained optimization. 54 pages)
Figure 5 presents the performance profiles of these algorithms.

Fig. 5. Performance profiles of DEEPS and NELMED for solving 16

applications of unconstrained optimization

DEEPS14

Numerical experiments with DESCON for solving 14 applications

of unconstrained optimization
This directory contains:

descon14.for

descon14.out

descon14.rez

func14.txt

R2020T14/doc (The paper: Numerical experiments with DESCON for

solving 14 applications of unconstrained optimization. 10 pages)

Performances of DESCON

--

 n iter fgcnt time(c) fx* gnorm Name of Application

 --

 2 1878 10001 0 -0.2644531414650E+03 0.8208740831576E+00 1. Weber Function (Andrei, U71)

 4 48 143 0 0.3075056038514E-03 0.6886760990097E-08 2. Enzyme reaction (Andrei, U79) (A)

 6 85 264 0 0.9665994663683E-15 0.4231231612938E-07 3. Solution of a chemical reactor (A)

 8 1843 10006 2 0.5463981044793E-05 0.1781782618260E-02 4. Robot kinematics problem (A)

 4 12 38 0 0.8312307692553E+01 0.8585722387648E-07 5. Solar Spectroscopy (A)

 4 46 150 0 0.3185717881375E-01 0.6936429307668E-08 6. Estimation of parameters (A)

 5 724 2246 0 0.1224151943762E-06 0.8166044868424E-07 7. Propan combustion in air (A)

 2 14 154 0 0.1751192213346E+01 0.7760986494009E-07 8. Gear train with minimum inertia (A)

 8 1916 10002 1 0.1120571259805E-01 0.1686188462847E-03 9. Human Heart Dipole. Andrei U84, pp.65

 6 93 632 0 0.4539057615171E+01 0.4484463269794E-07 10. Neurophysiology (A)

 10 51 142 0 0.6898812079492E-10 0.8219103504792E-07 11. Combustion application (A)

 3 1839 10005 9 0.1726024568705E+03 0.1334938231384E+02 12. Thermistor (A)

 4 1842 10004 0 0.2387780742094E-02 0.8995056760928E-04 13. Optimal design of a Gear Train (A)

 9 739 2166 2 0.1454860731888E-13 0.1554041459749E-06 14. Circuit design (A)

 --

 TOTAL 11130 55953 14.00 centeseconds

 Date: --- Month: 6 Day: 3 Year: 2020

DEEPS15
Numerical experiments with CUBIC for solving 14 applications of

unconstrained optimization

This directory contains:

cubic14.for

cubic14.out

cubic14.rez

func14.txt

R2020T15.doc (The paper: Numerical experiments with CUBIC for solving

14 applications of unconstrained optimization. 11 pages)

 21

Performances of CUBIC

 --

 n iter fgcnt time(c) fx gnorm Name of Applications

 --

 2 1288 5001 1 -0.2643790043149E+03 0.6876989703321E+00 1. Weber Function (Andrei, U71)

 4 39 116 0 0.3075056060090E-03 0.1140193575396E-06 2. Enzyme reaction (Andrei, U79) (A)

 6 94 287 0 0.7468342084540E-15 0.4147895225729E-07 3. Solution of a chemical reactor (A)

 8 333 5017 1 0.4829469121831E+00 0.4942442115598E+00 4. Robot kinematics problem (A)

 4 10 31 0 0.8312307695614E+01 0.7104616347572E-06 5. Solar Spectroscopy (A)

 4 30 96 0 0.3187570933023E-01 0.5862905229454E-06 6. Estimation of parameters (A)

 5 555 1670 0 0.4799163454696E-05 0.1371052281519E-05 7. Propan combustion in air (A)

 2 11 138 0 0.1751192330768E+01 0.9461910026439E-06 8. Gear train with minimum inertia (A)

 8 940 5006 1 0.1199116073210E-01 0.8786818146807E-01 9. Human Heart Dipole. Andrei U84, pp.65

 6 24 79 0 0.4539057615171E+01 0.3989872629134E-08 10. Neurophysiology (A)

 10 50 139 0 0.4967405721874E-09 0.3630146049766E-06 11. Combustion application (A)

 3 395 5003 6 0.1721497388951E+03 0.2361553857583E+01 12. Thermistor (A)

 4 7 101 0 0.2322924674570E-04 0.7867065011382E-06 13. Optimal design of a Gear Train (A)

 9 563 1639 3 0.8544333431670E-14 0.2890489586180E-06 14. Circuit design (A)

 --

 TOTAL 4339 24323 12.00 centeseconds

 Date: ---> Month: 6 Day: 3 Year: 2020

DEEPS16
Numerical experiments with CG-DESCENT for solving 14 applications

of unconstrained optimization

This directory contains:

cgdescent14.for

descent14.out

descent14.rez

func14.txt

R2020T16.doc (The paper: Numerical experiments with CG-DESCENT for

solving 14 applications of unconstrained optimization. 10 pages)

Performances of CG-DESCENT

 --

 n iter fgcnt time(c) fx gnorm Name of Applications

 --

 2 130 526 0 -0.2644531414650E+03 0.4360555021096E+00 1. Weber Function (Andrei, U71)

 4 87 183 0 0.3075057506207E-03 0.9351232549738E-06 2. Enzyme reaction (Andrei, U79) (A)

 6 242 531 0 0.1546034033470E-11 0.8328999653862E-06 3. Solution of a chemical reactor (A)

 8 13 79 0 0.1045002080991E-04 0.2937120722379E-02 4. Robot kinematics problem (A)

 4 34 73 0 0.6872367741557E+01 0.3753421634575E-06 5. Solar Spectroscopy (A)

 4 638 1436 0 0.3194075831746E-01 0.9984546877919E-06 6. Estimation of parameters (A)

 5 9001 18039 1 0.1327993904766E-03 0.3013599273355E-03 7. Propan combustion in air (A)

 2 14 86 0 0.1745268282541E+01 0.6851854457169E-01 8. Gear train with minimum inertia (A)

 8 2 57 0 0.1790818193032E+00 0.3756017838954E-01 9. Human Heart Dipole. Andrei U84, pp.65

 6 39 100 0 0.4539057615171E+01 0.3103946255578E-07 10. Neurophysiology (A)

 10 55 114 0 0.1279714516413E-09 0.1142557208812E-06 11. Combustion application (A)

 3 32 462 1 0.1721680788246E+03 0.2931072079241E+03 12. Thermistor (A)

 4 1 56 0 0.1743310601795E-01 0.5889113990961E-03 13. Optimal design of a Gear Train (A)

 9 7485 15457 11 0.2419744215211E-10 0.8313476443084E-06 14. Circuit design (A)

 --

 TOTAL 17773 37199 13.00 centeseconds

 Date: --- Month: 6 Day: 4 Year: 2020

 Line Search with Appproximate Wolfe conditions

DEEPS17
Comparison of modern conjugate gradient methods: DESCON,

CUBIC, CG-DESCENT (4.1) for solving 14 small-scale applications of

unconstrained optimization

This directory contains:

CGDESCENT

CUBIC

DESCON

R2020T17.doc (The paper: Comparison of modern conjugate gradient

methods: DESCON, CUBIC, CG-DESCENT (4.1) for solving 14 small-

scale applications of unconstrained optimization. 8pages)

DEEPS18
Numerical experiments with L-BFGS for solving 14 applications of

unconstrained optimization

This directory contains:

func14.txt

lbfgs14.for

lbfgs14.out

lbfgs14.rez

R2020T18.doc (The paper: Numerical experiments with L-BFGS for

solving 14 applications of unconstrained optimization. 10pages)

Table 5 contains the performances ofDESCON, CUBIC, CG-DESCENT

 22

and L-BFGS for solving 14 applications of unconstarined optimization.

Table 5

Performances of DESCON, CUBIC, CG-DESCENT and L-BFGS

 iter fgcnt time

DESCON 11130 55953 15

CUBIC 4339 24323 12

CG-DESCENT(w) 17773 37199 14

CG-DESCENT(aw) 17773 37199 13

L-BFGS 22029 30723 6

DEEPS19
Properties of the DEEPS algorithm for solving unconstrained

optimization problems

This directory contains:

deepsPR.for

func120.txt

R2020T19.doc (The paper: Properties of the DEEPS algorithm for solving

unconstrained optimization problems. 6 pages)

DEEPS20

Performances of DEEPS for solving some difficult unconstrained

optimization problems
This directory contains:

deepsPR.for

func120.txt

R2020T20.doc (The paper: Performances of DEEPS for solving some

difficult unconstrained optimization problems. 7 pages)

 April 20 – May 17, 2020

<><><><><><><><><><>

Conjugate Gradient Methods

1. CGALL

CGLOOP

Package implementing 23 Conjugate Gradient Algorithms. The

package implements 80 unconstrained test function examples.

The following CG algorithms have been implemented:

1) Hestenes – Stiefel,

2) Fletcher – Reeves,

3) Polak-Ribiere-Polyak,

4) Polak-Ribiere-Polyak plus,

5) CD - Conjugate Descent (Fletcher),

6) Liu – Storey,

7) Dai – Yuan,

8) Dai - Liao,

9) Dai - Liao plus,

10) Andrei (SDC), (Please see the paper: N. Andrei, A Dai-Yuan conjugate

gradient algorithm with sufficient descent and conjugacy conditions for unconstrained

optimization. Applied Mathematics Letters, 21, (2008), pp.165-171.)

11) hybrid Dai – Yuan,

 23

12) hybrid Dai - Yuan zero,

13) Gilbert – Nocedal,

14) Hu and Storey,

15) Touat-Ahmed and Storey,

16) Hybrid LS – CD,

17) Birgin - Martinez (scaled Perry),

18) Birgin - Martinez plus (scaled Perry),

19) scaled Polak-Ribiere-Polyak,

20) scaled Fletcher-Reeves,

21) New cg from PRP: beta=(ytg+ -yty stg+/gtg)/yts

 (Please, see (8.3.130) in the BOOK. Please, see (5.5.40) in the CG-BOOK.),

22) New cg from DY: beta = ytg+/yts-ytg+*stg/(yts**2)
 (Please, see (8.3.102) in the BOOK. Please, see (5.5.12) in the CG-BOOK.),

23) New cg from DY: beta=max(0,ytg/yts)*(1-stg/yts),

24) New cg: Please see the paper: W07P26.pdf

Please see the books:

1) (BOOK) N. Andrei, Critica Raţiunii Algoritmilor de Optimizare fără

 Restricţii. Editura Academiei Române, Bucureşti, 2009.

2) (CG-BOOK) N. Andrei, Metode Avansate de Ggradient Conjugat

 pentru Optimizare fără Restricţii. Editura Academiei Oamenilor de

 Ştiinţă, Bucureşti, 2009.

The Fortran program CGLOOP.FOR implements the above 20

conjugate gradient algorithms using the loop unrolling of depth 5.

Subdirectory APPLIC contains 7 applications from MINPACK-2.

Please see OPISAPL.DOC file.

February 8, 2007

2. CG-

ACCELERAT
This package implements a number of 24 conjugate gradient algorithms

accelerated by means of a procedure presented in:

N. Andrei, Acceleration of conjugate gradient algorithms for

unconstrained optimization. Applied Mathematics and Computation,

vol. 213, Issue 2, 2009, pp. 361-369.

DOI information: 10.1016/j.amc.2009.03.020

The package implements 80 unconstrained test function examples.

The following conjugate gradient algorithms have been implemented:

1) Hestenes – Stiefel,

2) Fletcher – Reeves,

3) Polak-Ribiere-Polyak,

4) Polak-Ribiere-Polyak plus ,

5) CD - Conjugate Descent (Fletcher),

6) Liu – Storey,

7) Dai – Yuan,

8) Dai – Liao,

9) Dai - Liao plus,

10) Andrei (ACGSD/2)
(Please see the paper:

Andrei, N., A Dai-Yuan conjugate gradient algorithm with sufficient descent and

conjugacy conditions for unconstrained optimization.

Applied Mathematics Letters, vol 21, 2008, pp. 165-171.

 24

Please, see the book:

Advanced Conjugate Gradient Methods for Unconstrained Optimization.

Chapter 5, section 5, Remark 5.5.1.

Academy of Romanian Scientists Publishing House, Bucharest, 2009.),

11) hybrid Dai – Yuan,

12) hybrid Dai - Yuan zero,

13) Gilbert – Nocedal,

14) Hu and Storey,

15) Touat-Ahmed and Storey,

16) Hybrid LS – CD,

17) Birgin - Martinez (scaled Perry),

18) Birgin - Martinez plus (scaled Perry),

19) scaled Polak-Ribiere-Polyak
(Please see the paper:

Andrei, N., Scaled memoryless BFGS preconditioned conjugate gradient algorithm

for unconstrained optimization.

Optimization Methods and Software, vol.22, No.4, 2007, pp.561-571.),

20) scaled Fletcher-Reeves
(Please see the paper:

Andrei, N., Scaled memoryless BFGS preconditioned conjugate gradient algorithm

for unconstrained optimization.
Optimization Methods and Software, vol.22, No.4, 2007, pp.561-571.),

21) New cg from PRP
Please, see the book:

Advanced Conjugate Gradient Methods for Unconstrained Optimization.

Chapter 5, section 5, Remark 5.5.2.

Academy of Romanian Scientists Publishing House, Bucharest, 2009.),

22) New cg from DY (ACGSD)
(Please see the paper:

Andrei, N., Another nonlinear conjugate gradient algorithm for unconstrained

optimization.

Optimization Methods and Software, vol.24, No.1, 2009, pp.89-104.),

23) New CG from DY (ACGSDz)
(Please see the paper:

N. Andrei, Another nonlinear conjugate gradient algorithm for unconstrained

optimization.
Optimization Methods and Software, vol.24, No.1, February 2009, pp. 89-104.),

24) New cg from PRP and DYc Please see the paper:
(N. Andrei, New Conjugate Gradient Algorithms for Unconstrained Optimization

Encyclopedia of Optimization, Second Edition, 2009.

C.A. Floudas and P.M. Pardalos (Eds.), Volume N, pp. 2560-2571, Springer.)

The subdirectory APPLICATIONS contains 5 applications from

MINPACK-II collection, as follows:

APPL1.FOR - elastic-plastic torsion problem,

APPL2.FOR - pressure distribution in a journal bearing problem,

APPL3.FOR - optimal design with composite materials problem,

APPL5.FOR - steady state combustion problem,

APPL7.FOR - Minimal Surface Area Problem.

All these applications have been solved using all 25 conjugate gradient

algorithms. The results are enlisted in *.doc files.

 25

Fig. 1. Solution of the application A1 - Elastic-Plastic Torsion.

200, 200nx ny 

Fig. 2. Solution of the application A2 - Pressure Distribution in a Journal

Bearing. 200, 200nx ny 

Fig. 3. Solution of the application A3 - Optimal Design with Composite

Materials. 200, 200nx ny 

 26

Fig. 4. Solution of the application A4 - Steady-State Combustion.

200, 200nx ny 

Fig. 5. Solution of the application A5 - Minimal Surfaces with Enneper

boundary conditions. 200, 200nx ny 

Fig. 6. Evolution of ()g k given by HS algorithm for minimizing Extended

Hiebert function.

 27

The norm of gradient ()g k is:

0.8335591087430E+05

 0.1770302860649E+05

 0.1290104898224E+03

 0.2202119533104E+04

 0.1128337396401E+03

 0.2510029662606E+04

 0.3112527173225E+04

 0.4760512089568E+03

 0.6871298669484E+02

 0.1197855311342E+05

 0.1207581561453E+05

 0.3458177452260E+02

 0.1034945886632E+03

 0.5609625857035E+03

 0.1078967162139E+04

 0.6620819548126E+03

 0.1787862322948E+02

 0.4539204111787E+03

 0.1067589106626E+04

 0.3678916480927E+03

 0.6861727730327E+01

 0.3594559195106E+03

 0.4227395335853E+03

 0.1523510891905E+02

 0.1749839153294E+01

 0.1539429121421E+03

 0.9512788103020E+02

 0.3761432997981E+02

 0.1934700602985E+00

 0.5261841571038E+01

 0.6658363856712E-01

 0.2459542556525E-02

 0.9613587612598E-06

Observe that out 33 iterations only for the last two the norm of gradient is

below
210

 and
610

 respectively.

March 30, 2009

3. CCOMB

NDOMB

The package includes two hybrid conjugate gradient algorithms as a

convex combination of PRP and DY.

CCOMB is a Fortran package implementing a New Hybrid Conjugate

Gradient Algorithm as a Convex Combination of PRP and DY

conjugate gradient algorithms for unconstrained optimization in which

the parameter theta is selected from the conjugacy condition.

The search direction in CCOMB algorithm is as follows:

,11 k

CCOMB

kkk sgd  

,)1(DY

k

CCOMB

k

PRP

k

CCOMB

k

CCOMB

k  

.
))((

)())((
22

11

2

11

kkk

T

kk

T

k

kk

T

kk

T

kk

T

kCCOMB

k
ggsygy

ggysygy










NDOMB is a Fortran package implementing a New Hybrid Conjugate

Gradient Algorithm as a Convex Combination of PRP and DY

 28

conjugate gradient algorithms for unconstrained optimization in which

the parameter theta is selected from the Newton direction.

The search direction in NDOMB algorithm is as follows:

,11 k

NDOMB

kkk sgd  

,)1(DY

k

NDOMB

k

PRP

k

NDOMB

k

NDOMB

k  

.
))((

))(()(

1

22

1

1

2

11

k

T

kk

T

kkk

k

T

kk

T

kkk

T

kk

T

kNDOMB

k
sygygg

sygyggsgy










In both algorithms if ,0k then set ,0k if ,1k set .1k

The CCOMB and NDOMB algorithms are detailed in the papers:

N. Andrei, "Hybrid conjugate gradient algorithm for unconstrained

optimization". Journal of Optimization Theory and Applications,

vol.41, (2009), pp.249-264.

N. Andrei, "New hybrid conjugate gradient algorithms for

unconstrained optimization". C.A. Floudas and P.M. Pardalos, (Eds.)

Encyclopedia of Optimization, second edition, 2009, Springer, pages:

2560-2571.

N. Andrei, "Performance profiles of conjugate gradient algorithms for

unconstrained optimization". C.A. Floudas and P.M. Pardalos, (Eds.)

Encyclopedia of Optimization, second edition, 2009, Springer, pages:

2938-2953.

June 24, 2009

4. CGSYS CGSYS is a package dedicated to compute the minimizer of a

differentiable function with a large number of variables.

The search direction of this algorithm is a linear combination of

1 kg and ,ks where the coefficients in this linear combination are

computed in such a way that both the descent and the conjugacy

conditions to be guaranteed at every iteration.

The search direction is computed as:

1 1k k k k kd g s     ,

2 2

1 1() ()T T

k k k k k

k

k

y s g t s g u
   




,

2 2

1 1 1 1() ()T T

k k k k k k

k

k

y g g t s g g u
     




,

2

1 1 1()() ().T T T

k k k k k k k ky g s g g y s    

The parameters t and u are set 7 /8t  and 0.01u  .

The algorithm is described in:

N. Andrei, An accelerated conjugate gradient algorithm with

guaranteed descent and conjugacy conditions for unconstrained

optimization. Technical Report, March 6, 2009.

(Please see the paper: cgsyspap.doc)

 29

The subdirectory APPLIC contains 7 applications from MINPACK-II

collection.

October 24, 2008

5. CGSECM Conjugate gradient algorithm based on the equality of the Newton

direction with the conjugate gradient direction and modified secant

condition.

The algorithm depends on the scalar parameter .

The search direction is as follows:

,11 kkkk sgd  

If ,0 then:

,0,max 11

k

T

k

k

T

k

k

T

k

k

T

k
k

sy

gs

sy

gy  










If ,0 then:

,10,max 1

2

1
































 

k

T

k

k

T

k

kk

T

k

k

T

k
k

sy

gs

ssy

gy

.)(3)(6 11 k

T

kkkk sggff  

February 12, 2008

6. CGHSDY

(HSDY9,

HSDYNG,
HSDYPLUS)

A hybrid conjugate gradient algorithm with convex combination of HS

and DY and Newton direction.

There are three variants of hybrid conjugate gradient algorithms:

1) HSDY9 algorithm:

The search direction is computed as follows:

,11 kkkk sgd  

,
1

11



 


k

T

k

k

T

kk

T

k
k

gg

gygs


If ,10  k then ,1

k

T

k

k

T

k
k

sy

gs 

If ,1k then ,

2

1

k

T

k

k

k
sy

g  (DY)

If ,0k then .1

k

T

k

k

T

k
k

sy

gy  (HS)

2) HSDYNG algorithm

In this algorithm the parameter k is computed in 6 different ways:

a) Hybrid CG with Newton and secant equation:

,
1

1




k

T

k

k

T

k
k

gg

gs


b) Hybrid CG with Newton and spectral gradient:

 30

,
/))((

1

11

2

1



 


k

T

k

k

T

kk

T

kk

T

k

T

kk

T

k

k
gg

gygsssygs


c) Hybrid CG with Newton a modification of the above formula:

,
1

11



 


k

T

k

k

T

kk

T

k
k

gg

gygs


d) Hybrid CG with Newton and Zhang et all approximation of sHs:

,
))/(1(

)/(*)(

1

11

k

T

kk

T

k

k

T

kk

T

kk

T

k
k

sygg

sygygs















,)(3)(6 11 k

T

kkkk sggff  

e) Hybrid CG with Newton and Zhang et all approximation of Hs and

 sHs:

,

1

)(1

1

1
12


































k

T

k

k

T

k

k

T

k

k

T

k
k

T

k

k

k

sy
gg

sy

gy
gs

s








f) Hybrid CG with Newton and Zhang et all approximation of Hs and

 sHs:

,
)/1(1

1

k

T

kk

T

k

k

T

k
k

sygg

gs











,)(3)(6 11 k

T

kkkk sggff  

With this value of k the value of k is computed as:

DY

kk

HS

kkk  )1(,

If ,1k then set ,DY

kk  

If ,0k then set .HS

kk  

3) HSDYPLUS algorithm

In this algorithm the parameters k and k are computed as follows:

,

1

)(1

1

1
12


































k

T

k

k

T

k

k

T

k

k

T

k
k

T

k

k

k

sy
gg

sy

gy
gs

s








,)(3)(6 11 k

T

kkkk sggff  

.
))(/1(

0,max 1

2

1






















 

k

T

k

k

T

kk

k

T

k

k

T

k
k

sy

gss

sy

gy

The theoretical developments of HYBRID algorithm are described into

the papers:

N. Andrei, Another hybrid conjugate gradient algorithm for

 31

Unconstrained Optimization, Numerical Algorithms, vol.47, no.2,

February 2008, pp.143-156.

N. Andrei. Accelerated hybrid conjugate gradient algorithm with

modified secant condition for unconstrained optimization. Numerical

Algorithms, vol. 54 (2010), pp.23-46.
April 2, 2007

7. CONGRAD

(AML5382,

PCONMIN,

MCONMIN)

Package for unconstrained minimization using the conjugate gradient

algorithm of Shanno with Beale's restart procedure.

Prof. Shanno sent me a copy of the package on October 17, 1983. I

modified it in some respects, including the possibility to work on a

train of numerical experiments.

The algorithm is described in:

Shanno, D.F., (1978) Conjugate gradient methods with exact searches.

Mathematics of Operations Research, vol.3, no.3, August 1978,

pp.244-256.

The subdirectory MINPACK includes 7 applications from MINPACK-

II collection.

The package aml5382.for implements the conjugate gradient algorithm

BFGS preconditioned, in variant given by Shanno, with a train of 80

unconstarined optimization test functions. This is a variant of the

Shanno’s package which I modified in some respects. The line search

procedure is incorporated into the package. Another variant of this

package is given by PCONMIN.

The package MCONGRAD, wich includes the subroutine CONGRAD

uses the numerical derivatives facilities. The subroutine NUMGRAD is

designed for numerical derivatives computation.

November 26, 2001

8. CONMINEX Another variant of the package for unconstrained minimization using

the conjugate gradient algorithm by Shanno and Phua with Beale's

restart procedure.

Mainly, this package is the same as CONGRAD.
March: 27, 2007

9. CONMIN Another variant of the package implementing the conjugate gradient by

Shanno and Phua.

Subroutine CONMIN is described in the papers:

1) Shanno, D.F., Conjugate gradient methods with inexact searches.

 Mathematics of Operations Research, vol. 3, No. 3, August 1978,

 pp. 244256.

2) Shanno, D.F., On the convergence of a new conjugate gradient

 algorithm.

 SIAM J. Numer. Anal., vol.15, No.6, December 1978,

 pp.1247-1257.

3) Shanno, D.F., Phua, K.H., Algorithm 500. Minimization of

 unconstrained multivariate functions.

 ACM TOMS, vol.2, No.1, March 1976, pp.87-94.

4) Andrei, N., Criticism of the unconstrained optimization

 32

 algorithms reasoning.

 Academy Publishing House, Bucharest 2009.

 ISBN 978-973-27-1669-4

 (Chapter 8, pp.317-448.)

Remark:
Professor Shanno sent me the Fortran subrutine CONMIN in October 17,

1983. I modified it in some respects.

October 15, 2004

10. DLDC DLDC is a subroutine dedicated to compute the minimizer of a

differentiable function with a large number of variables.

Mainly, this is a modification of the Dai-Liao conjugate gradient

algorithm with guaranteed descent and conjugacy conditions.

The search direction is computed as:

,0,max 11
11 k

k

T

k

k

T

k
kk

k

T

k

k

T

k
kkk s

sy

gs
ts

sy

gy
gd 

 








 

The parameters k and kt are computed as solution of the following

linear algebraic system:

 ,)()(11 kk

T

kkk

T

kk agstgy  

,)()(2

1

2

1 kk

T

kkkk

T

kk bgstgsy  

where

),()(11   k

T

kk

T

kk gygsva

).)(()(11

2

1   k

T

kk

T

kkk

T

kk gsgygyswb

The scalar parameters w and v are introduced in such a way that the

algorithm to satisfies the sufficient descent condition and the conjugacy

condition respectively. These parameters are assigned to the values:

),1(1 k

T

k gsw .1.0v

The algorithm is described in:

N. Andrei, (2009) An accelerated modified Dai-Liao conjugate

gradient algorithm with guaranteed descent and conjugacy conditions

for unconstrained optimization. Technical Report, July 16, 2009.

(Please see the Technical Report: n41a09.doc)

N. Andrei, Another accelerated conjugate gradient algorithm with

guaranteed descent and conjugacy conditions for large-scale

unconstrained optimization. Technical Report, January 29, 2010.

(Please see the paper in DLDCNEW.DOC file)

The directory MINPACK includes 5 applications from MINPACK-II

collection.
May 8, 2009

11. DLDN DLDN is a subroutine dedicated to compute the minimizer of a

differentiable function with a large number of variables.

Mainly, this is a variant of a modification of the Dai-Liao conjugate

gradient algorithm with guaranteed descent and conjugacy conditions.

The search direction is computed as:

 33

,0,max 11
11 k

k

T

k

k

T

k
kk

k

T

k

k

T

k
kkk s

sy

gs
ts

sy

gy
gd 

 








 

The parameters k and kt are computed as solution of the following

linear algebraic system:

 ,)()(11 kk

T

kkk

T

kk agstgy  

,)()(2

1

2

1 kk

T

kkkk

T

kk bgstgsy  

where

),()(11   k

T

kk

T

kk gygsva

).)(()(11

2

1   k

T

kk

T

kkk

T

kk gsgygyswb

The scalar parameters w and v are introduced in such a way that the

algorithm to satisfies the sufficient descent condition and the conjugacy

condition respectively. These parameters are assigned to the values:

,8/7w .1.0v

The algorithm is not too much sensitive to the values of these

parameters.

January 29, 2010

12. DESCON DESCON is a subroutine dedicated to compute the minimizer of a

differentiable function with a large number of variables.

The search direction is computed as:

1 1 ,k k k k kd g s    

1 1

T T

k k k k k
k T

k k

y g t s g

y s
  

 ,

where k and kt are scalar parameters which are computed as:

2

1 1() ()T T

k k k k k k k

k

k

b y g a y s g
t

 



,

1

1

()
,

T

k k k k
k T

k k

a t s g

y g
 






2

1 1 1()() (),T T T

k k k k k k k ky g s g g y s    

 1() ,T

k k k ks g   

 1 1() ,T T

k k k k ka v s g y g  

2

1 1 1() ()().T T T

k k k k k k k kb w g y s y g s g   

0v  and 0w  are known scalar parameters.

The algorithm is described in:

- N. Andrei, An accelerated conjugate gradient algorithm with

guaranteed descent and conjugacy conditions for large-scale

unconstrained optimization.

ICI Technical Report, November 29, 2010.

Please see the Technical Report: R5A11.DOC file.

- N. Andrei, Another conjugate gradient algorithm with guaranteed

 34

descent and conjugacy conditions for large-scale unconstrained

optimization. Journal of Optimization Theory and Applications, vol.

159, Number 1, 2013, pp159-182.

Please, see the paper: JOTA-2013.pdf (paper published in JOTA)

- N. Andrei, Nonlinear Conjugate Gradient Methods for

Unconstrained Optimization, vol. 158 Springer Optimization and Its

Applications, Springer, 2020, (Chapter 7, pp.227-245)

A comprehensive numerical comparasions between DESCON and

some other conjugate gradient algorithms are presented into the paper

N. Andrei, A numerical study on efficiency and robustness of some

conjugate gradient algorithms for large-scale unconstrained

optimization. Technical Report, June 6, 2013.
(Please see the paper: ANpaper.doc.)

Fig. 1. Performance profile of DESCONa versus HS and versus PRP

Fig. 2. Performance profile of DESCONa versus DL (1t ) and versus

CG-DESCENT

The subdirectory MINPACK2 contains 5 applications from the

MINPACK-2 Collection.
November 22 2010

13. HS This package implements the Hestenes and Stiefel (HS) conjugate

gradient algorithm using loop unrollong of depth 5.

The search direction is computed as:

,11 kkkk sgd  

.1

k

T

k

k

T

k
k

sy

gy 

January 10, 2013

14. hDY The package implements the hybrid Day and Yuan conjugate gradient

algorithm using loop unrolling of depth 5.

The search direction is computed as:

 35

,11 kkkk sgd  

,,min,max

2

11

2

1



























 

k

T

k

k

k

T

k

k

T

k
k

k

T

k

k

k
sy

g

sy

gy

sy

g
c 

where 05263157.0c and k is the step length computed by the

Wolfe line search conditions.

March 29, 2013

15. HYBRID,

HYBRIDM,
AHYBRIDM

A hybrid conjugate gradient algorithm with Convex combination of HS

and DY and Newton direction with secant condition.

This subdirectory contains three packages: HYBRID, HYBRIDM,

AHYBRIDM.

In HYBRID it is assumed that the pair),(kk ys satisfies the secant

condition.

The search direction is as follows:

.11 k

C

kkk sgd  

A parameter k is computed as:

.
1

1




k

T

k

k

T

k
k

gg

gs


If ,10  k then

k

T

k

k

k

k

T

k

k

T

k
k

C

k
sy

g

sy

yg
2

11)1(   .

If ,1k then .

2

1

k

T

k

kDY

k

C

k
sy

g  

If ,0k then .1

k

T

k

k

T

kHS

k

C

k
sy

yg  

The theoretical developments of HYBRID algorithm are described into

the paper:

N. Andrei, (2008) Another hybrid conjugate gradient algorithm for

Unconstrained Optimization, Numerical Algorithms, vol.47, no.2,

February 2008, pp.143-156.

HYBRIDM is an extension of the HYBRID package authored by N.

Andrei. In HYBRIDM it is assumed that the pair),(kk ys satisfies the

modified secant condition given by Zhang, Deng and Chen into the

paper: J.Z. Zhang, N.Y. Deng and L.H. Chen, "New quasi-Newton

equation and related methods for unconstrained optimization", JOTA,

102 (1999), p. 147-167.

AHYBRIDM is an acceleration of the HYBRIDM package.

The directory APPLIC contains 7 applications from MINPACK-II

 36

collection.

AHYBR1.FOR - Elastic-Plastic Torsion Problem,

AHYBR2.FOR - Pressure Distribution in a Journal Bearing Problem,

AHYBR3.FOR - Optimal Design with Composite Materials Problem,

AHYBR4.FOR - Inhomogeneous Superconductors. Ginzburg-Landau

 (1-dimensional) problem,

AHYBR5.FOR - Steady State Combustion Problem,

AHYBR6.FOR - Jones Clusters (Molecular Conformation) Problem,

AHYBR7.for - Minimal Surface Area Problem.

April 8, 2008

16. ACGA A nonlinear conjugate gradient algorithm which is a modification of

the Dai and Yuan [A nonlinear conjugate gradient method with a

strong global convergence property, SIAM J. Optim. 10 (1999), pp.

177–182] conjugate gradient algorithm satisfying a parameterized

sufficient descent condition with a parameter k is proposed. The

parameter k is computed by means of the conjugacy condition, thus

an algorithm which is a positive multiplicative modification of the

Hestenes and Stiefel [Methods of conjugate gradients for solving linear

systems, J. Res. Nat. Bur. Standards Sec. B 48 (1952), pp. 409–436]

algorithm is obtained. The algorithm can be viewed as an adaptive

version of the Dai and Liao [New conjugacy conditions and related

nonlinear conjugate gradient methods, Appl. Math. Optim. 43 (2001),

pp. 87–101] conjugate gradient algorithm.

The search direction is computed as:

1 1 ,A
k k k kd g s   

1
1

1
.

T
T

A k k
k k k kT T

k k k k

g y
y s g

y s y s
 



 
  

 

The algorithm is described in the paper:
N. Andrei, Another nonlinear conjugate gradient algorithm for unconstrained

optimization. Optimization Methods & Software, Vol. 24, No. 1, February

2009, 89–104.

July 31, 2008

17. CGSECM Conjugate gradient algorithm based on the equality of the Newton

direction with the conjugate gradient direction and modified secant

condition. The search direction is computed as:

1 1 ,k k k kd g s   

1 1max ,0 1 ,
T T
k k k k

k T T T
k k k k k k

y g s g

y s s s y s




 
 

   
     

    

1 16() 3() ,T
k k k k kf f g g s     

0,

1



 


 a parameter.

February 12, 2008

18. HYBRID7 Accelerated conjugate gradient algorithm based on the equality of the

 37

Newton direction with the conjugate gradient direction and 7 BFGS

approximations of the Hessian used in modified secant condition.

The algorithm is described in:

Andrei, N., Another hybrid conjugate gradient algorithm for

unconstrained optimization. Numerical Algorithms, vol. 47, (2008),

pp.143-156.

Andrei, N., Accelerated hybrid conjugate gradient algorithm with

modified secant condition for unconstrained optimization. Numerical

Algorithms (2010) vol.54, pp.23-46.

(Please see the Technical Report: n14a09.pdf)

Methods for BFGS updating:

1) Secant condition. The pair),(kk ys satisfies the secant condition

(1) () ()B k s k y k 

Please see HYBRID algorithm described in:

Andrei, N., Another hybrid conjugate gradient algorithm for

unconstrained optimization, Numerical Algorithms, vol. 47, (2008),

pp.143-156.

2) The pair),(kk ys satisfies the modified secant condition

 .1 kkk ysB 

2

k

kk
kk

s

s
yy


 ,

.)()(2 11 k

T

kkkkk sggff  

3) The pair),(kk ys satisfies the modified secant condition

 .~
1 kkk ysB 

kkkk sgcyy ~ ,

where c is a positive constant, suggested by Li and Fukushima [2001].

4) The pair),(kk ys satisfies the modified secant condition

 .*

1 kkk ysB 

,}0,max{
2

*

k

k
kkk

s

s
yy 

 .)()(2 11 k

T

kkkkk sggff  

suggested by Yuan and Wei [2010].

5) 1kB is approximated by Yuan's formula [1991].

k

T

k

T

kk
k

kk

T

k

k

T

kkk
kk

sy

yy
t

sBs

BssB
BB 1

where

 38

)(
2

11   k

T

kkk

k

T

k

k gsff
ys

t

and kt belongs to the interval]100,01.0[.

6) kk

T

k sBs 1 is from the interpolation condition by Yuan.

111)(2   k

T

kkkkk

T

k gsffsBs

7) kk

T

k sBs 1 is from the Hermite interpolation condition. If the function

f is cubic along the line between 1kx and kx then by considering the

Hermite interpolation we get:

)(624 111 kkk

T

kk

T

kkk

T

k ffgsgssBs  

October 6, 2010

New version September 23, 2013

19. PRP Polak-Ribière-Polyak conjugate gradient algorithm.

The search direction is computed like:

,11 kkkk sgd  

.1

k

T

k

k

T

k
k

gg

gy 

January 15, 2013

20. PRP-DC Three-term Conjugate Gradient Algorithms in three variants:

 1) PRP Modified Method (Andrei) (PRPDC)

 2) Zhang, Zhou and Li (ZZL)

 3) Zhang, Xiao and Wei (ZXW)

The search direction in version PRPDC:

 .)()()(
1

11121 kk

T

kkk

T

kkk

T

k

k

k ygssgygsy
g

d  

The search direction in version ZZL:

.
2

1

2

1
11 k

kk

k

T

k
k

kk

k

T

k
kk y

g

gs
s

g

gy
gd




 

The search direction in version ZXW:

 .)()(
1

1111 kk

T

kkk

T

k

k

T

k

kk ygssgy
sy

gd  

The algorithm PRP modified (PRP-DC) is described in the paper:

N. Andrei, A modified Polak–Ribie`re–Polyak conjugate gradient

algorithm for unconstrained optimization.

Optimization, Vol. 60, No. 12, December 2011, 1457–1471.

(Please se the paper: optimiz11.pdf)
August 25, 2009

21. ACGA Another Nonlinear Conjugate Gradient Algorithm for Unconstrained

Optimization.

The search direction in ACGA is computed as:

 39

,11 k

A

kkk sgd  

.
1

1
1












 k

T

k

k

T

k

k

T

k
k

k

T

k

A

k gs
sy

yg
y

sy


Please see the paper:

Andrei, N., (2009), Another Nonlinear Conjugate Gradient Algorithm

for Unconstrained Optimization, Optimization Methods and Software,

vol.24, No.1, February 2009, pp. 89-104.
July 31, 2008

22. ACGHES Accelerated conjugate gradient algorithm based on the equality of the

Newton direction with the conjugate gradient direction and using the

Hessian / vector product.

The search direction in this algorithm is computed as:

,
)(

)(

1

2

111

2

11

kk

T

k

k

T

kkk

T

k
kk

sxfs

gsgxfs
gd











where the Hessian / vector product is computed using the finite

difference:

,
)()(

)(11
1

2



 



 kkk

kk

xfsxf
sxf

,
)1(2 1

k

km

s

nx 





m is epsilon machine.

The algorithm is described in:

Andrei., N., (2009) Accelerated conjugate gradient algorithm with

finite difference Hessian/vector product approximation for

unconstrained optimization. Journal of Computational and Applied

Mathematics, vol. 230, 2009, pp. 570-582.

Please see the paper jcam2009.pdf.

The directory MINPACK contains 7 applications from MINPACK-II

collection:

ACGHES1.FOR - elastic-plastic torsion,

ACGHES2.FOR – pressure distribution in a journal bearing problem,

ACGBES3.FOR - optimal design with composite materials problem,

ACGHES4.FOR - Inhomogeneous Superconductors. Ginzburg-

 Landau (1-dimensional) problem,

ACGHES5.FOR - steady state combustion problem,

ACGHES6.FOR - Jones Clusters (Molecular Conformation)

 Problem,

ACGHES7.FOR - minimal surface area problem.

February 12, 2008

23. ACGHESM Accelerated conjugate gradient algorithm based on the equality of the

Newton direction with the conjugate gradient direction and using the

Hessian / Vector product.

The Hessian / vector product is computed by finite difference using 5

 40

different increments. The package is testing the numerical

performances of this conjugate gradient algorithm subject to the values

of increments for Hessian / vector product approximations.

The search direction in this algorithm is computed as:

,
)(

)(

1

2

111

2

11

kk

T

k

k

T

kkk

T

k
kk

sxfs

gsgxfs
gd











where the Hessian / vector product is computed using the finite

difference:

,
)()(

)(11
1

2



 



 kkk

kk

xfsxf
sxf

where m is epsilon machine and  is estimated by the following

methods:

1) Schlick-Fogelson (TNPACK) (SF)

,
)1(2 1

k

km

s

nx 





2) Schlick-Fogelson (variant) (SFV)

,
)1(2 1

k

km

s

x 





3) Nash (Truncated-Newton) (NASH)

,1(1 km x

4) Dembo-Steihaug (DS)

k

m

s


  ,

5) O'Leary (LEARY)

1

2

2 (1)
.

m k

k

x

s


 


The algorithm is described in:

N. Andrei, Accelerated conjugate gradient algorithm with finite

difference Hessian/vector product approximation for unconstrained

optimization. Journal of Computational and Applied Mathematics, 230

(2009) 570-582.

February 23, 2010

24. ACGSEC

This algorithm uses a hybrid approach by considering a convex

combination of Hestenes and Stiefel (HS) and Dai and Yuan (DY)

conjugate gradient algorithms.

ACGSEC is an accelerated conjugate gradient algorithm based on the

equality of the Newton direction with the conjugate gradient direction

and secant condition.

The search direction is computed as:

,11 kkkk sgd  

 41

.0,max 11

k

T

k

k

T

k

k

T

k

k

T

k
k

sy

gs

sy

gy  










The algorithm is described in:

Andrei, N., (2010) Accelerated hybrid conjugate gradient algorithm

with modified secant condition for unconstrained optimization.

Numerical Algorithms (2010) vol.54, pp.23-46.

(Please see the Technical Report n14a09.doc: „Accelerated hybrid

conjugate gradient algorithm with modified secant condition for

unconstrained optimization”, February 23, 2009.)

February 22, 2008

25. ACGMSEC This algorithm uses a hybrid approach by considering a convex

combination of Hestenes and Stiefel (HS) and Dai and Yuan (DY)

conjugate gradient algorithms.

ACGMSEC is an accelerated conjugate gradient algorithm based on

the equality of the Newton direction with the conjugate gradient

direction and modified secant condition.

The search direction is computed as:

,11 kkkk sgd  

,10,max 1

2

1
































 

k

T

k

k

T

k

kk

T

k

k

T

k
k

sy

gs

ssy

gy

.)(3)(6 11 k

T

kkkk sggff  

 is a parameter. If 0 we get the ACGSEC algorithm.

The algorithm is described in:

Andrei, N., (2010) Accelerated hybrid conjugate gradient algorithm

with modified secant condition for unconstrained optimization.

Numerical Algorithms (2010) vol.54, pp.23-46.

(Please see the Technical Report n14a09.doc: „Accelerated hybrid

conjugate gradient algorithm with modified secant condition for

unconstrained optimization”, February 23, 2009.)

The directory MINPACK2 contains 7 applications from MINPACK-II

collection.
February 11, 2008

26. SCALCG

ASCALCG

Scaled Conjugate Gradient Algorithm BFGS Preconditioned

with Powell restart. The package implements 80 unconstrained test

function examples.

The search direction in this algorithm is computed as:

  
 k

k

T

k

k

T

k
kkkk y

sy

gs
gd 1

1111 

 .1 1
1

1

2

1 k

k

T

k

k

T

k
k

k

T

k

k

T

k

k

T

k

k

k s
sy

gy

sy

gs

sy

y





























 




 

 42

At step r when
2

11 2.0   rr

T

r ggg the algorithm is restarted using

the above search direction. Otherwise, for any 1 rk the search

direction 1kd is computed using a double upddate scheme as:

  
 r

r

T

r

k

T

r
rkr y

sy

gs
gv 1

111 

 ,1 1
1

1

2

1 r

r

T

r

k

T

r
r

r

T

r

k

T

r

r

T

r

r

r s
sy

gy

sy

gs

sy

y





























 




 

   r

r

T

r

k

T

r
rrr y

sy

ys
yw 11 

 ,1 1

2

1 r

r

T

r

r

T

k
r

r

T

r

k

T

r

r

T

r

r

r s
sy

yy

sy

ys

sy

y





























  

with wich the search direction is computed as follows:

.1
)()(111

1 k

k

T

k

k

T

k

k

T

k

T

k

k

T

k

k

T

kk

T

k
k s

sy

sg

sy

wy

sy

swgwsg
vd 

 












The algorithm is presented in:

- Andrei, N., (2007) A scaled BFGS preconditioned conjugate gradient

algorithm for unconstrained optimization. Applied Mathematics

Letters, 20 (2007), p.645-650.

- Andrei, N., (2006) Scaled memoryless BFGS preconditioned

conjugate gradient algorithm for unconstrained optimization.

Optimization Methods and Software, vol.22, Number 4, August 2007,

pp.561-571.

- Andrei, N., (2007) Scaled conjugate gradient algorithms for

unconstrained optimization.

Computational Optimization and Applications, vol.38, Number 3,

December 2007, pp.401-416.

- Andrei, N., Nonlinear Conjugate Gradient Methods for

Unconstrained Optimization, vol. 158 Springer Optimization and Its

Applications, Springer, 2020, (Chapter 8, pp.261-277)

In the SCALCG subroutine there is the logical argument parameter

accelerat. If accelerat is false, then SCALCG algorithm is used.

Otherwise, if accelerat is true, then the ASCALCG algorithm is

considered.

ASCALCG is Accelerated Scaled Conjugate Gradient Algorithm

BFGS Preconditioned with Powell restart.

ASCALCG is an acceleration of the SCALCG algorithm.

ASCALCG is used when the logical parameter accelerat in SCALCG

subroutine is set to true.

 43

The algorithm is presented in:

Andrei, N., (2010) Accelerated scaled memoryless BFGS

preconditioned conjugate gradient algorithm for unconstrained

optimization. European Journal of Operational Research, Vol. 204,

2010, pp.410-420.

The package implements 80 unconstrained test function examples.

In SCALCG subdirectory there are three files with numerical

comparisons, as follows: comp-1.doc contains comparison of

SCALCG versus ASCALCG, comp-2.doc include comparison of

ASCALCG versus DESCON, comp-3.doc gives comparisons of

ASCALCG versus CG-DESCENT.
June 15, 2005

Implementation of the acceleration scheme, March 5, 2008

27. THREECG A three-term conjugate gradient algorithm which satisfies both the

descent condition and the conjugacy condition.

The direction is computed as:

 ,11 kkkkkk ysgd   

2

1 11 ,
T T

k k k k k
k T T T

k k k k k k

y s g y g

y s y s y s
  

 
    
 
 

1 .

T

k k
k T

k k

s g

y s
 

Fig. 1. THREECG versus CG_DESCENT.

Table 1. Performance of THREECG versus CG_DESCENT

 for solving 5 applications from MINPACK-2 collection.

1,000,000 variables. cpu seconds.

 THREECG CG_DESCENT

#iter #fg cpu #iter #fg cpu

A1 1111 2253 306.04 1145 2291 436.05

A2 2837 5702 979.27 3368 6737 1571.53

A3 4507 9104 1904.79 4841 9684 2904.12

A4 1413 2864 1128.70 1806 3613 2093.79

 44

A5 1333 2689 546.20 1226 2453 713.89

TOTAL 11201 22612 4865.00 12386 24778 7719.38

The algorithm is described in:

N. Andrei, A simple three-term conjugate gradient algorithm for

unconstrained optimization. Journal of Computational and Applied

Mathematics, vol. 241, 2013, pp. 19-29.

(Please see the file: threecg-r2.doc)
September 28, 2012

28. TTS An accelerated subspace minimization three-term conjugate gradient

algorithm for unconstrained optimization.

This is a three-term conjugate gradient algorithm for which the search

direction is computed as:

 kkkkkk ybsagd   11 ,

  ,)()(
1

1

2

11  


 k

T

kkkk

T

kk

T

kk

k

k gyygsgya 

 .)())((
1

11

2

1  


 k

T

kk

T

kkk

T

kkk

T

k

k

k gsgyygysyb  ,

 ,)(2

k

T

kk yy

k

T

k

k

T

k
k

sy

yy 2)(
2 ,

 .
))(())((11

1

k

T

k

k

T

kk

T

k

k

T

k

k

T

kk

T

k
k

T

kk
ss

yssg

sy

yyyg
yg 

 

Fig. 1. TTS versus HS, DL (t=1), DY and PRP.

The algorithm is described in:

N. Andrei, An accelerated subspace minimization three-term

conjugate gradient algorithm for unconstrained optimization.

Numerical Algorithms, vol.65, (2014), pp.859-874.

 45

April, 5, 2013

29. TTSNC This is a variant of an accelerated subspace minimization three-term

conjugate gradient algorithm for unconstrained optimization in which

the three-term search direction is equal to the Newton direction.

The search direction is computed as:

 1 1k k k k k kd g a s b y     ,

 ,
)()(2 11

k

T

k

k

T

kk

k

T

k

k

T

k
k

yy

gy

sy

gy
a  




 ,))(())((
)(

1
112 k

T

kk

T

kk

T

kkk

T

k

k

T

k

k yygygysy
yy

b   

 .
))(())((11

1

k

T

k

k

T

kk

T

k

k

T

k

k

T

kk

T

k
k

T

kk
ss

yssg

sy

yyyg
yg 

 

TTSNC is very close to TTS. The three-term conjugate gradient

algorithm TTS is obtained as the minimization of the quadratic

approximation model of function f in a subspace spanned by

kk sg ,1 and .ky In this algorithm the searching direction is

computed as above, where the parameters ka and kb are determined

as:

k

T

k

k

T

kk

k

T

k

k

T

kk

T

k
k

yy

gy

sy

gsgy
a 111)(2  







,

k

T

k

k

T

kk

T

k

k

T

k

k

T

kkk

T

k
k

yy

gsgy

yy

gysy
b 11

2

1

)(

))(( 






.

Observe the difference between these two formulae for ka and

kb computation. It is the explicit presence of the term 1k

T

k gs into the

formulae for ka and kb computation in TTS.

The algorithm is presented in:

N. Andrei, Another three-term conjugate gradient algorithm for

unconstrained optimization. Technical Report, September 11, 2013

(Please see the file ttsnc.doc)

 46

September 11, 2013

30. THRCG2 THRCG2 implements an accelerated conjugate gradient algorithm with

three terms, that at each iteration both the descent and the conjugacy

conditions are guaranteed.

The search direction is computes as:

 ,11 kkkkkk ysgd   

,1 11

2

k

T

k

k

T

k

k

T

k

k

T

k

k

T

k

k

k
sy

gy

sy

gs

sy

y
v  
















 ,1

k

T

k

k

T

k
k

sy

gs 

 .0,1max
2














k

k

T

k

y

sy
v

The algorithm is described in:

N. Andrei, A variant of three-term conjugate gradient algorithm for

unconstrained optimization. Technical Report, August 9, 2013

(Please see the file thrcg2.doc)

Fig. 1. THRCG2 versus CG-DESCENT

August 9, 2013

 47

31. TTDES TTDES implements a three-term conjugate gradient algorithm obtained

by minimizing the one-parameter quadratic model of the objective

function in which the symmetrical approximation of the Hessian matrix

satisfies the general quasi-Newton equation: ,1

1 kkk ysB 

  with

0 .

The search direction is computed as:

,111
1111 k

k

T

k

k

T

k
k

k

T

k

k

T

kk

T

k
kkkk y

sy

gs
s

sy

gsgy
ggQd 

 





where

.)(
2 222

2 k

T

kkk

k

syys
s



This choice of the parameter  makes the condition number of

1

()T T
k k k k k

k T T
k k k k

s y s y s
Q I

y s y s





  

approach its minimum.

The algorithm is described in:

- N. Andrei, A new three-term conjugate gradient algorithm for

unconstrained optimization. Numerical Algorithms, vol.68, (2015),

pp.305-321.

- N. Andrei, Nonlinear Conjugate Gradient Methods for

Unconstrained Optimization, vol. 158 Springer Optimization and Its

Applications, Springer, 2020, (Chapter 9, pp.334-345)

(Please see the file: paper-ttdes.doc)

October 24, 2013

32. TTCG TTCG implements an accelerated conjugate gradient algorithm with

three terms, that at each iteration both the descent and the conjugacy

conditions are guaranteed.

The search direction is computes as:

 ,11 kkkkkk ysgd   

,21 11

2

k

T

k

k

T

k

k

T

k

k

T

k

k

T

k

k

k
sy

gy

sy

gs

sy

y
 
















 48

 ,1

k

T

k

k

T

k
k

sy

gs 

The algorithm is described in:

- N. Andrei, On three-term conjugate gradient algorithms for

unconstrained optimization. Applied Mathematics and Computation,

vol.219, 2013, pp.6316-6327.

(Please see the file AMC_17812.pdf)

- N. Andrei, Nonlinear Conjugate Gradient Methods for

Unconstrained Optimization, vol. 158 Springer Optimization and Its

Applications, Springer, 2020, (Chapter 9, pp.316-323)

March 14, 2012

33. NADCG This program implements an adaptive conjugate gradient algorithm.

The search direction is computed as the sum of the negative gradient

and a vector determined by minimizing the quadratic approximation of

the objective function at the current point. Using a special

approximation of the inverse Hessian of the objective function, which

depends by a positive parameter,a search direction is obtained which

satisfies both the sufficient descent and the conjugacy conditions.

The search direction is computed as:

,max 111
11 k

k

T

k

k

T

k
k

k

T

k

k

T

kkk

T

k
kk y

sy

gs
s

sy

gsgy
gd 

 






 




where



















.12

,,12







k

k

k

k

k

k

k

k

a
s

y
a

a
s

y

Here

.
)(2

22

k

T

k

kk

k
sy

sy
a 

The parameter 1 is the adaptive parameter. The algorithm is not

very much sensitive the the values of .

The algorith is described in the paper:

N. Andrei, A new adaptive conjugate gradient algorithm for large-

 49

scale unconstrained optimization. Paper published into the book:

„Optimization and Applications in Control and Data Science”, edited

by Boris Goldengorin. Springer Optimization and Its Applications,

Vol.115. 2016, pp.1-16.

This paper is written in honour of Prof. Boris T. Polyak celebrating his

80th anniversary.

(Please see the file: nadcg.doc)
June 18, 2015

34. ADCG An adaptive conjugate gradient algorithm for large-scale unconstrained

optimization.

The search direction is computed as

1 1
1 1 1 1

()
,

T T

k k k k k k
k k k k k kT T

k k k k

y t s g s g
d Q g g s y

y s y s

 
   


     

where,
2
/ T

k k k k kt y y s is computed as:

2 2

2
2 1 , if ,

()

0, otherwise,

k k k

T
k k k k

y y s

t s y s
 


  

 



where 1  is a positive constant.

The algorithm is described into the paper:

N. Andrei, An adaptive conjugate gradient algorithm for large-scale

unconstrained optimization, Journal of Computational and Applied

Mathematics, 292 (2016), pp.83-91.
May 20, 2015

35. EIGN-SING In this directory I placed the paper and the Fortran files:

N. Andrei, Eigenvalues versus singular values study in conjugate

gradient algorithms for large-scale unconstrained optimization.

Technical Report, July 14, 2015. (See the file: paper10.doc) The

Fortran packages SVCG.FOR and NADCG.FOR implements the

singular value approach and eigenvalues approach in conjugate

gradient algorithms, respectively. Directory MINPACK contains 5

applications from MINPACK-II collection.

1) The NADCG algorithm implements the eigenvalues clustering in

conjugate gradient algorithms. The search direction is computed as:

1 1 1
1 1 max ,0 .

T T T

k k k k k k k
k k k kT T

k k k k

y g s g s g
d g s y

y s y s

  
 

 
    

 

where



















.12

,,12







k

k

k

k

k

k

k

k

a
s

y
a

a
s

y

Here

.
)(2

22

k

T

k

kk

k
sy

sy
a 

The parameter 1 is the adaptive parameter. The algorithm is not

 50

very much sensitive the the values of .

2) The SVCG algorithm implements the singular values approach

(minimizing the comdition number) in conjugate gradient algorithms.

The search direction is computed as:

1 1
1 1 .

T T

k k k k
k k k kT T

k k k k

y g s g
d g s y

y s y s

 
    

Observe that this is a modification of the Hestenes and Stiefel

conjugate gradient algorithm.

Some comparisons of these algorithms versus CG-DESCENT by Hager

and Zhang, using 800 unconstrained optimization test problems, are as

follows:

Please, see the paper: N. Andrei, Eigenvalues versus singular values

study in conjugate gradient algorithms for large-scale unconstrained

optimization. Optimization Methods and Software, vol. 32, no. 3, 2017,

pp. 534-551.
July 14, 2015

36. ACGSSV An adaptive class of nonlinear conjugate gradient algorithms is

suggested. The search direction in these algorithms is given by

symmetrization of the scaled Perry conjugate gradient direction [A.

Perry, A modified conjugate gradient algorithm. Operations Research,

26 (1978) 1073-1078], which depends by a positive parameter. The

value of this parameter is determined by minimizing the distance

between the symmetrical scaled Perry conjugate gradient search

direction matrix and the self-scaling memoryless BFGS update by Oren

in the Frobenius norm. Two variants of the parameter in the search

direction are presented as those given by: Oren and Luenberger [S.S.

Oren, D. G. Luenberger, Self-scaling variable metric (SSVM)

algorithms. I. Criteria and sufficient conditions for scaling a class of

algorithms. Management Sci., 20 (1973/74) 845-862] and Oren and

Spedicato [S.S. Oren, E. Spedicato, Optimal conditioning of self-

scaling variable metric algorithms. Math. Program., 10 (1976) 70-90].

The corresponding algorithm, ACGSSV, is equipped with a vey well

known acceleration scheme of conjugate gradient algorithms.

The algorithm is described in the paper:

N. Andrei, Accelerated adaptive Perry conjugate gradient algorithms

based on the self-scaling memoryless BFGS update. Journal of

Computational and Applied Mathematics, vol. 325, 2017, pp.149-164.

(Please see the file JCAM-2017 (40).pdf)
January 16, 2017

37. DLE A new value for the parameter in Dai and Liao conjugate gradient

algorithm is presented. This is based on the clustering the eigenvalues

of the matrix which determine the search direction of this algorithm.

 51

This value of the parameter lead us to a variant of the Dai and Liao

algorithm which is more efficient and more robust than the variants of

the same algorithm based on the minimizing the condition number of

the matrix associated to the search direction.

Babaie-Kafaki and Ghanbari [1] suggested two choices for the scaling

parameter:

*

1 2

T
kk k

k

kk

yy s
t

ss
  (M1) and *

2

k

k

k

y
t

s
 (M2)

In this paper I suggest the following value:

*

2
.

T

k k
k

k

y s
t

s


[1] Babaie-Kafaki, S., Ghanbari, R.: The Dai-Liao nonlinear conjugate

gradient method with optimal parameter choices. European Journal of

Operational Research 234, 625-630 (2014)

The algorithm is described in:

N. Andrei, (2018). A Dai-Liao conjugate gradient algorithm with

clustering the eigenvalues. Numerical Algorithms, 77(4), 1273-1282.

(Please see the file: Paper332R1.doc)
January 4, 2017

38. CGLIN Solving linear algebraic systems with positive definite matrices using

the linear conjugate gradient method.

Linear Conjugate Gradient Algorithm

1. Select an initial point 0x and 0  sufficiently small

2. Set 0 0 ,r Ax b  0 0d r  and 0k 

3. If ,kr  then stop. Otherwise continue with step 4

4. Compute:

,
T
k k

k T
k k

r r

d Ad
  1 ,k k k kx x d   1 ,k k k kr r Ad   1 1 ,

T
k k

k T
k k

r r

r r
  

1 1k k k kd r d   

5. Set 1k k  and continue with step 3 ♦

The linear algebraic system ,Ax b where:

2 1

1 2

,

2 1

1 2

A

 
 
 

  
 

 
  

 and

1

0

,

0

1

b

 
 
 

  
 
 
  

is obtained from the finite difference numerical method to discretize

the one-dimensional Poisson equation.

For 1000,n  the linear conjugate gradient algorithm gives a solution

in 500 iterations. Figure 1 shows the evolution of the error kb Ax

along the iterations for obtaining a solution with accuracy less than or

https://en.wikipedia.org/wiki/Finite_difference

 52

equal to 810 .

Fig. 1. Evolution of the error kb Ax

See Chapter 2 of the book: N. Andrei, "Nonlinear Conjugate Gradient

Methods for Unconstrained Optimization", Spriger, 2019.

Example 2.1.

January 2, 2019

39. CG4 Program for solving linear algebraic systems Ax b obtained from the

finite difference numerical method to discretize the two-dimensional

Poisson equation.

The matrix A has 2n blocks B on the main diagonal, where each

block 1 1n nB  . Hence, ,n nA  where 1 2.n n n Considering

10,000,n  the evolution of error kb Ax computed by the linear

conjugate gradient algorithm for five different values of 1n and 2n is

presented in Figure 1.

From Figure 1, for 1 5000n  and 2 2,n  that is when there are only

two blocks on the main diagonal of ,A the linear conjugate gradient

algorithm needs only 31 iterations. Therefore, the convergence is

faster. On the other hand, when 2 100,n  i.e. there are 100 blocks on

the main diagonal of matrix ,A then the algorithm needs 304 iterations.

In other words, the smaller the number of blocks on the main diagonal

of matrix A , the faster the convergence.

https://en.wikipedia.org/wiki/Finite_difference

 53

Fig. 1. Evolution of the error kb Ax of the linear conjugate gradient

algorithm for different numbers (2n) of blocks on the main diagonal

of matrix A .

Please, see the Books:

1. N. Andrei, Nonlinear Conjugate Gradient Methods for

Unconstrained Optimization. Springer, vol. 158 Springer

Optimization and Its Applications, Springer, 2020.

2. N. Andrei, Optimizare fără Restricţii – Metode de Direcţii

Conjugate, MATRIXROM, Bucureşti, 2000, pp. 78-79 şi 109-

112.

(first version) March 15, 1999

(modified version) January 3, 2019

40. ACGSYS

(See: CGSYS)

ACGSYS is the accelerated version of CGSYS. This is a subroutine

dedicated to compute the minimizer of a differentiable function with a

large number of variables.

The search direction of this algorithm is a linear combination of 1kg 

and ,ks where the coefficients in this linear combination are computed

in such a way that both the descent and the conjugacy conditions to be

guaranteed at every iteration 1.k 

Fig. 1. Performance profiles of CGSYS versus HS-DY, DL (1t ), CG-

DESCENT and DESCONa

The accelerated version of CGSYS is described in the paper: N.

Andrei, An accelerated conjugate gradient algorithm with guaranteed

descent and conjugacy conditions for unconstrained optimization.

(cgsyspap.doc). March 6, 2009.

 54

Fig. 2. ACGSYS versus HS, DY, PRP , CG-DESCENT

Also, please, see the book:

N. Andrei, Nonlinear Conjugate Gradient Methods for Unconstrained

Optimization. Springer, vol. 158 Springer Optimization and Its

Applications, Springer, 2020. (Chapter 11)

October 24, 2008

41. CGSYSLBs Combination of the CGSYS algorithm with the limited memory L-

BFGS algorithm by interlacing iterations of the CGSYS with iterations

of the L-BFGS algorithms. In this algorithm, we called CGSYSLBs,

the iterations of CGSYS are performed only if the stepsize is less or

equal to a prespecified threshold. Otherwise, the iterations of L-BFGS

(5m ) are performed. CGSYSLBsa is the accelerated version of

CGSYSLBs.

Comparisons of CGSYSLBsa versus CGSYS and CG-DESCENT

(version 1.4), Figure 1, illustrate that CGSYSLBsa is more robust than

these algorithms.

Fig. 1. CGSYSLBs versus CGSYS and versus CG-DESCENT

The program implements 81 unconstrained optimization test problems.

The name of the minimizing functions is given in FUN80.TXT. The

last problem is PALMER1C (ill-conditioned problem)

Comparisons of CGSYSLBsa versus DESCONa and versus DK+w are

 55

given in Figure 2.

Fig. 2. Conmparisons of CGSYSLBsa versus DESCONa and versus DK+w.

Please, see the book:

- N. Andrei, Nonlinear Conjugate Gradient Methods for

Unconstrained Optimization, vol. 158 Springer Optimization and Its

Applications, Springer, 2020. (Chapter 11)
June 17, 2019

42. CGSYSLBq Combination of the CGSYS algorithm with the limited memory L-

BFGS algorithm by interlacing iterations of the CGSYS with iterations

of the L-BFGS algorithms subject to the closeness of the minimizing

function to a quadratic. Compute the parameter:

1 12()
1 .

T
k k k k

k T
k k

f f g s
t

y s

  
 

If kt is close to zero, then k is regarded as a quadratic function,

otherwise not. In other words, if ,kt c where c is a small positive

constant (810c ), we can conclude that k is close to a quadratic

function. If ,kt c then the CGSYS iterations are performed, otherwise

the L-BFGS (5m ) iterations are considered. In this algorithm, we

called CGSYSLBq, the iterations of CGSYS are performed only if

.kt c Otherwise, the iterations of L-BFGS (5m ) are performed.

CGSYSLBqa is the accelerated version of CGSYSLBq.

Fig. 1. CGSYSLBqa versus CGSYS and versus CG-DESCENT

 56

Fig. 2. CGSYSLBqa versus DESCONa and versus DK+w

Please, see the book:

- N. Andrei, Nonlinear Conjugate Gradient Methods for

Unconstrained Optimization, vol. 158 Springer Optimization and Its

Applications, Springer, 2020, (Chapter 11)

June 17, 2019

43. CGSYSLBo Combination of the CGSYS algorithm with the limited memory L-

BFGS algorithm by interlacing iterations of the CGSYS with iterations

of the L-BFGS algorithms subject to the orthogonality of the current

gradient to the previous search direction. In other words, in our

algorithm we call CGSYSLBo the CGSYS and L-BFGS methods are

combined as follows: if 1 ,T
k kg d c  where c is a small positive

constant (510c ), then the CGSYS iterations are performed,

otherwise the L-BFGS (5m ) iterations are considered.

Fig. 1. Performance profiles of CGSYSLBoa versus CGSYS and versus CG-

DESCENT

Fig. 2. Performance profiles of CGSYSLBoa versus DESCONa and versus

DK+w

Please, see the book:

- N. Andrei, Nonlinear Conjugate Gradient Methods for

Unconstrained Optimization, vol. 158 Springer Optimization and Its

 57

Applications, Springer, 2020, (Chapter 11)

January 18, 2020

44. CG3LS Fortran program for unconstrained optimization using 6 procedures for

computation of the conjugate parameter :k Hager-Zhang, Dai-Kou,

Hestenes-Stiefel, Polak-Ribière-Polyak, Dai-Yuan and minimizing the

measure function  of Byrd and Nocedal, under the 3 line search

procedures: standard Wolfe, approximate Wolfe of Hager and Zhang

and improved Wolfe of Dai and Kou.

The program is that of Hager and Zhang (CG-DESCENT), where the

formula for beta computation is modified as that given by Dai and Kou,

or HS, PRP, DY, FI.

Please see the Book:

N. Andrei, Nonlinear Conjugate Gradient Methods for Unconstrained

Optimization. Springer, vol. 158 Springer Optimization and Its

Applications, Springer, 2020. (Chapter 8)

January 17, 2019

45. CG3LSpre Fortran program for unconstrained optimization using 6 procedures for

computation of the conjugate parameter :k PRECONDITIONED

Hager-Zhang, Dai-Kou, Hestenes-Stiefel, Polak-Ribière-Polyak, Dai-

Yuan and minimizing the measure function  of Byrd and Nocedal,

under the 3 line search procedures: standard Wolfe, approximate Wolfe

of Hager and Zhang and improved Wolfe of Dai and Kou.

Only the conjugate gradient parameter k of Hager and Zhang

algorithm is preconditioned with a diagonal approximation of the

Hessian.

The program is that of Hager and Zhang (CG-DESCENT), where the

formula for beta computation is modified as that given by Dai and Kou,

or HS, PRP, DY, FI.

Please see the Book:

N. Andrei, Nonlinear Conjugate Gradient Methods for Unconstrained

Optimization. Springer, vol. 158 Springer Optimization and Its

Applications, Springer, 2020. (Chapter 1 for diagonal approximation to

the Hessian and Chapter 8)

January 17, 2019

46. CGALLpre 30 conjugate gradient unconstrained optimization algorithms with

standard Wolfe line search.

The following conjugate gradient algorithms are implemented: betatype

= (1) HS, (2) FR, (3) PRP, (4) PRP+, (5) CD, (6) LS, (7) DY, (8)

DL(t=1), (9) DL+, (10) SDC, (11) hDY, (12) hDY0, (13) GN, (14)

HuS, (15) TAS, (16) LS-CD, (17) Birgin-Martinez, (18) Birgin-

Martinez+, (19) scaledPRP, (20) scaledFR, (21) new cg from PRP, (22)

newDY, (23) variant of newDY, (24) another variant of newDY, (25)

 58

Hager-Zhang, (26) Hager-Zhang preconditioned, (27) Dai-Kou, (28)

Dai-Kou preconditioned, (29) PRP preconditioned, (30) Hager-Zhang

SSML-BFGS preconditioned

The algorithms corresponding to betatype = 26, 28, 29 and 30 are

preconditioned conjugate gradient algorithnms, where the

preconditioner is computed as a diagonal approximation to the Hessian.

Please see the Book:

- N. Andrei, Nonlinear Conjugate Gradient Methods for

Unconstrained Optimization, vol. 158 Springer Optimization and Its

Applications, Springer, 2020.

For betatype = 30 the Hager-Zhang algorithmmis preconditioned with

the Self-Scaling Limited Memory C BFGS updation to the Hessian.

The preconditioner is given by the self-scaling memoryless BFGS

update of Perry and Shanno (8.104), and the scaling parameter tau is

computed as in (8.111).

Please see the Book:

- N. Andrei, Nonlinear Conjugate Gradient Methods for

Unconstrained Optimization, vol. 158 Springer Optimization and Its

Applications, Springer, 2020.

(Please, see Chapter 8 for self-scaling memoryless BFGS update of

Perry and Shanno, and Chapter 10 for preconditioning.)

Criticism of preconditioning:

See the Book:

- N. Andrei, Nonlinear Conjugate Gradient Methods for

Unconstrained Optimization, vol. 158 Springer Optimization and Its

Applications, Springer, 2020, (Chapter 10)

The search direction can be computed as:

1) d(i) = -r(i) + beta * d(i), beta=0, i.e. d(i)=-r(i)

In this case we have a quasi-Newton method in which the inverse

approximation to the Hessian is computed as a self-scaled memoryless

BFGS update.

2) d(i) = -r(i) + beta * d(i)

In this case we have a preconditioned conjugate gradient method.

Refering to Chapter 10. Finally, we emphasize that in 2) there must be

a balance concerning the quality of the preconditioner (i.e. the

closeness to the inverse Hessian), namely, if the definition of the

preconditioner contains useful information about the inverse Hessian of

the objective function, it is better to use the search direction d=-Pg ,

since the addition of the last term beta*d may prevent d=-Pg+beta*d

from being an efficient descent direction, unless the line search is

sufficiently accurate.

Compare HZSS.rez where the search direction is computed as in 1)

above, i.e d(i)=-r(i) versus HZSSc.rez where the search direction is

computed as in 2), i.e. d(i) = -r(i) + beta * d(i).

HZSS is better. (May 21, 2019)

 59

Figure 1 shows the performance profiles of HZ+pa (accelerated version

of HZ+p, where the acceleration is as in Remark 5.1) in which the

search direction is computed as

 1 1 1 ,HZ
k k k k kd P g d 
    

where

2

1

1 1
1 ,

T T T
kk k k k k k

k T T T
k kk k k k k k

ys y y s s s
P I

y s y s y s 


  
     
    

with OL
k k  and HZ

k
 is computed as in (10.8) versus the

performances of the accelerated self-scaling memoryless BFGS

(SSML-BFGSa) update in which the search direction is computed as

 1 1 1,k k kd P g   

where 1kP  is given above. See Chapter 10 of the Book.

Fig. 1. Performance profiles of HZ+pa versus SSML-BFGSa

May 21, 2019

47. CG3x8 The program is a modification of the CG-DESCENT of Hager and

Zhang (2005) to include different formulae for parameter beta

computation under the three line search conditions: standard Wolfe,

Approximate Wolfe and Improved Wolfe.

The program is that of Hager and Zhang (CG-DESCENT, version 1.4),

where the formula for beta computation is modified as:

(1) Hager and Zhang (2005)

(2) Minim DETERMINANT (Andrei, Thechnical Report No.2/2019)

(3) Minim TRACE (Andrei, Thechnical Report No.2/2019)

(4) Minim Fi - measure function of Byrd and Nocedal

(5) Hestenes - Stiefel

(6) Dai - Yuan

(7) Polak-Ribiere-Polyak

(8) Minim of combination of DETERMINANT and TRACE

Please see: N. Andrei, Conjugate Gradient Algorithms Closest to Self-

Scaling Memoryless BFGS Method based on clustering the eigenvalues of the

self-scaling memoryless BFGS iteration matrix or on minimizing the Byrd-

Nocedal measure function with Different Wolfe Line Searches for

 60

Unconstrained Optimization.

Technical Report No.2/2019, Academy of Romanian Scientists, April

18, 2019. (TRR2-2019.doc)

Fig. 1. Performance profiles of DESW versus TRSW, of DESW versus FISW

and of TRSW versus FISW

April 18, 2019

48. CUBIC A variant of the conjugate gradient algorithm with subspace

minimization based on the regularization model. The algorithm

combines the minimization of a p -regularized model of the

minimizing function with the subspace minimization.

Fig. 1. Performance profiles of CUBICa versus CG-DESCENT, DK+w,

DESCONa and CONMIN

 61

(CUBICa is the accelerated version of CUBIC.)

See the Book:

- N. Andrei, Nonlinear Conjugate Gradient Methods for

Unconstrained Optimization, vol. 158 Springer Optimization and Its

Applications, Springer, 2020, (Chapter 11, Section 11.4)

49. CGSECM Conjugate gradient algorithm based on the equality of the Newton

direction with the conjugate gradient direction and modified secant

condition. The search direction is computed as:

1 1 ,k k k kd g s   

1 1max ,0 1 ,
T T
k k k k

k T T T
k k k k k k

y g s g

y s s s y s




 
 

   
     

    

1 16() 3() ,T
k k k k kf f g g s     

0,

1



 


 a parameter.

February 12, 2008

50. DESCON14 Performances of DESCON package for solving 14 applications of

unconstrained optimization. The applications are as follows:

1. Weber Function (1) (Andrei, U71)

2. Enzyme reaction (Andrei, U79) (A)

3. Solution of a chemical reactor (A)

4. Robot kinematics problem (A)

5. Solar Spectroscopy (A)

6. Estimation of parameters (A)

7. Propan combustion in air (A)

8. Gear train with minimum inertia (A)

9. Human Heart Dipole. Andrei U84, pp.65

10. Neurophysiology (A)

11. Combustion application (A)

12. Thermistor (A)

13. Optimal design of a Gear Train (A)

14. Circuit design (A)

Directory DESCON14:

 - DESCON14.FOR (Fortran package with all subroutines.)

 - FUNC14.TXT (Name of the applications)

 - R2020T14.DOC (Technical Report.)

The performances of DESCON14 are presented in:

N. Andrei, Numerical experiments with DESCON for solving 14

applications of unconstrained optimization. AOSR – Academy of

Romanian Scientists, Bucharest, Romania, Technical Report

No.14/2020, June 3, 2020. (Romanian Academy Library) (10 pages)

June 3, 2020

51. CUBIC14 Performances of CUBIC package for solving 14 applications of

unconstrained optimization. The applications are as follows:

 62

1. Weber Function (1) (Andrei, U71)

2. Enzyme reaction (Andrei, U79) (A)

3. Solution of a chemical reactor (A)

4. Robot kinematics problem (A)

5. Solar Spectroscopy (A)

6. Estimation of parameters (A)

7. Propan combustion in air (A)

8. Gear train with minimum inertia (A)

9. Human Heart Dipole. Andrei U84, pp.65

10. Neurophysiology (A)

11. Combustion application (A)

12. Thermistor (A)

13. Optimal design of a Gear Train (A)

14. Circuit design (A)

Directory CUBIC14:

 - CUBIC14.FOR (Fortran package with all subroutines.)

 - FUNC14.TXT (Name of the applications)

 - R2020T15.DOC (Technical Report.)

The performances of CUBIC14 are presented in:

N. Andrei, Numerical experiments with CUBIC for solving 14

applications of unconstrained optimization. AOSR – Academy of

Romanian Scientists, Bucharest, Romania, Technical Report

No.15/2020, June 3, 2020. (Romanian Academy Library) (11 pages)

June 3, 2020

52. CG

DESCENT14

Performances of CG-DESCENT package for solving 14 applications of

unconstrained optimization. The applications are as follows:

1. Weber Function (1) (Andrei, U71)

2. Enzyme reaction (Andrei, U79) (A)

3. Solution of a chemical reactor (A)

4. Robot kinematics problem (A)

5. Solar Spectroscopy (A)

6. Estimation of parameters (A)

7. Propan combustion in air (A)

8. Gear train with minimum inertia (A)

9. Human Heart Dipole. Andrei U84, pp.65

10. Neurophysiology (A)

11. Combustion application (A)

12. Thermistor (A)

13. Optimal design of a Gear Train (A)

14. Circuit design (A)

Directory CGDESCENT14:

 - CGDESCENT14.FOR (Fortran package with all subroutines.)

 - FUNC14.TXT (Name of the applications)

 - R2020T16.DOC (Technical Report.)

The performances of CGDESCENT14 are presented in:

N. Andrei, Numerical experiments with CG-DESCENT for solving 14

applications of unconstrained optimization. AOSR – Academy of

 63

Romanian Scientists, Bucharest, Romania, Technical Report

No.16/2020, June 3, 2020. (Romanian Academy Library) (11 pages)

The Technical Report 17/2020: N. Andrei, Comparison of modern

conjugate gradient methods: DESCON, CUBIC, CG-DESCENT (4.1)

for solving 14 small-scale applications of unconstrained optimization,

presents a comparison among the performances of DESCON14,

CUBIC14 and CGDESCENT14 for solving 14 applications of

unconstrained optimization.

Performances of DESCON14

--

 n iter fgcnt time(c) fx* gnorm Name of Application

 --

 2 1878 10001 0 -0.2644531414650E+03 0.8208740831576E+00 1. Weber Function (Andrei, U71)

 4 48 143 0 0.3075056038514E-03 0.6886760990097E-08 2. Enzyme reaction (Andrei, U79) (A)

 6 85 264 0 0.9665994663683E-15 0.4231231612938E-07 3. Solution of a chemical reactor (A)

 8 1843 10006 1 0.5463981044793E-05 0.1781782618260E-02 4. Robot kinematics problem (A)

 4 12 38 0 0.8312307692553E+01 0.8585722387648E-07 5. Solar Spectroscopy (A)

 4 46 150 0 0.3185717881375E-01 0.6936429307668E-08 6. Estimation of parameters (A)

 5 724 2246 0 0.1224151943762E-06 0.8166044868424E-07 7. Propan combustion in air (A)

 2 14 154 0 0.1751192213346E+01 0.7760986494009E-07 8. Gear train with minimum inertia (A)

 8 1916 10002 1 0.1120571259805E-01 0.1686188462847E-03 9. Human Heart Dipole. Andrei U84, pp.65

 6 93 632 1 0.4539057615171E+01 0.4484463269794E-07 10. Neurophysiology (A)

 10 51 142 0 0.6898812079492E-10 0.8219103504792E-07 11. Combustion application (A)

 3 1839 10005 10 0.1726024568705E+03 0.1334938231384E+02 12. Thermistor (A)

 4 1842 10004 0 0.2387780742094E-02 0.8995056760928E-04 13. Optimal design of a Gear Train (A)

 9 739 2166 2 0.1454860731888E-13 0.1554041459749E-06 14. Circuit design (A)

 --

 TOTAL 11130 55953 15.00 centeseconds

 Date: --- Month: 6 Day: 3 Year: 2020

Performances of CUBIC14

 n iter fgcnt time(c) fx gnorm Name of Applications

 --

 2 1288 5001 1 -0.2643790043149E+03 0.6876989703321E+00 1. Weber Function (Andrei, U71)

 4 39 116 0 0.3075056060090E-03 0.1140193575396E-06 2. Enzyme reaction (Andrei, U79) (A)

 6 94 287 0 0.7468342084540E-15 0.4147895225729E-07 3. Solution of a chemical reactor (A)

 8 333 5017 1 0.4829469121831E+00 0.4942442115598E+00 4. Robot kinematics problem (A)

 4 10 31 0 0.8312307695614E+01 0.7104616347572E-06 5. Solar Spectroscopy (A)

 4 30 96 0 0.3187570933023E-01 0.5862905229454E-06 6. Estimation of parameters (A)

 5 555 1670 0 0.4799163454696E-05 0.1371052281519E-05 7. Propan combustion in air (A)

 2 11 138 0 0.1751192330768E+01 0.9461910026439E-06 8. Gear train with minimum inertia (A)

 8 940 5006 1 0.1199116073210E-01 0.8786818146807E-01 9. Human Heart Dipole. Andrei U84, pp.65

 6 24 79 0 0.4539057615171E+01 0.3989872629134E-08 10. Neurophysiology (A)

 10 50 139 0 0.4967405721874E-09 0.3630146049766E-06 11. Combustion application (A)

 3 395 5003 6 0.1721497388951E+03 0.2361553857583E+01 12. Thermistor (A)

 4 7 101 0 0.2322924674570E-04 0.7867065011382E-06 13. Optimal design of a Gear Train (A)

 9 563 1639 3 0.8544333431670E-14 0.2890489586180E-06 14. Circuit design (A)

 --

 TOTAL 4339 24323 12.00 centeseconds

 Date: ---> Month: 6 Day: 3 Year: 2020

Performances of CG-DESCENT14(w)

 n iter fgcnt time(c) fx gnorm Name of Applications

 --

 2 130 526 0 -0.2644531414650E+03 0.4360555021096E+00 1. Weber Function (Andrei, U71)

 4 87 183 0 0.3075057506207E-03 0.9351232549738E-06 2. Enzyme reaction (Andrei, U79) (A)

 6 242 531 0 0.1546034033470E-11 0.8328999653862E-06 3. Solution of a chemical reactor (A)

 8 13 79 0 0.1045002080991E-04 0.2937120722379E-02 4. Robot kinematics problem (A)

 4 34 73 0 0.6872367741557E+01 0.3753421634575E-06 5. Solar Spectroscopy (A)

 4 638 1436 0 0.3194075831746E-01 0.9984546877919E-06 6. Estimation of parameters (A)

 5 9001 18039 2 0.1327993904766E-03 0.3013599273355E-03 7. Propan combustion in air (A)

 2 14 86 0 0.1745268282541E+01 0.6851854457169E-01 8. Gear train with minimum inertia (A)

 8 2 57 0 0.1790818193032E+00 0.3756017838954E-01 9. Human Heart Dipole. Andrei U84, pp.65

 6 39 100 0 0.4539057615171E+01 0.3103946255578E-07 10. Neurophysiology (A)

 10 55 114 0 0.1279714516413E-09 0.1142557208812E-06 11. Combustion application (A)

 3 32 462 0 0.1721680788246E+03 0.2931072079241E+03 12. Thermistor (A)

 4 1 56 0 0.1743310601795E-01 0.5889113990961E-03 13. Optimal design of a Gear Train (A)

 9 7485 15457 12 0.2419744215211E-10 0.8313476443084E-06 14. Circuit design (A)

 --

 TOTAL 17773 37199 14.00 centeseconds

 Date: --- Month: 6 Day: 4 Year: 2020

 Line Search with Wolfe conditions

Performances of DESCON, CUBIC and CG-DESCENT

 iter fgcnt time

DESCON14 11130 55953 15

CUBIC14 4339 24323 12

CG-DESCENT14(w) 17773 37199 14

CG-DESCENT14(aw) 17773 37199 13

(w) – Wolfe line search
(aw) – approximate Wolfe line search

June 4, 2020

<><><><><><><><><><>

BFGS - MODIFIED

 64

1. SBFGS A new adaptive scaled BFGS method for unconstrained optimization

is presented. The third term in the standard BFGS update formula is

scaled in order to reduce the large eigenvalues of the approximation

to the Hessian of the minimizing function. Under the inexact Wolfe

line search conditions, the global convergence of the adaptive scaled

BFGS method is proved in very general conditions without assuming

the convexity of the minimizing function.

The algorithm is described in the paper:

N. Andrei, An adaptive scaled BFGS method for unconstrained

optimization. Numerical Algorithms, DOI: 10.1007/s11075-017-

0321-1

(Please see the file: mbfgs-R2.doc)
March 18, 2017

2. TPSBFGS A double parameter scaled BFGS method for unconstrained

optimization is presented. In this method, the first two terms of the

known BFGS update formula are scaled with a positive parameter

while the third one is scaled with another positive parameter. These

parameters are selected in such a way as to improve the eigenvalues

structure of the BFGS update. The parameter scaling the first two

terms of the BFGS update is determined by clustering the eigenvalues

of the scaled BFGS matrix. On the other hand, the parameter scaling

the third term is determined as a preconditioner to the Hessian of the

minimizing function combined with the minimization of the

conjugacy condition from conjugate gradient methods.

The algorithm is described in the paper:

N. Andrei, A double parameter scaled BFGS method for

unconstrained optimization, Journal of Computational and Applied

Mathematics, vol.332 (2018), pp.26-44

(Please see the file: JCAM-2018(43).pdf)
September 11, 2017

3. DPSS A double parameter self-scaled memoryless BFGS method for

unconstrained optimization is presented. In this method the first two

terms of the self-scaled memoryless BFGS method are scaled with a

positive parameter, while the third one is scaled with another positive

parameter. The scaling parameters are selected in such a way to

improve the eigenvalue structure of the BFGS update. The first

parameter scaling the first two terms is determined to cluster the

eigenvalues of the BFGS matrix. The second parameter scaling the

third term is computed as a preconditioner to the Hessian of the

minimizing function combined with minimization of the conjugacy

condition from the conjugate gradient methods in order to shift the

large eigenvalues of the self-scaled memoryless BFGS matrix to the

left.

 65

(a) (b)

Fig. 1. Performance profiles of DP versus DPOL and versus DPOS.

CPU time metric. 1000.n 

The algorithm is described in the paper:

N. Andrei, A double parameter self-scaled memoryless BFGS

method for unconstrained optimization. Computational and Applied

Mathematics, vol. , 2020.

(Please see the file: COAMR1.doc)
November 12, 2017

4. DSBFGS

(ROMAN-

POLYAK)

A scaled BFGS method with two parameters for unconstrained

optimization is presented. In this method the first two terms of the

known BFGS update formula are scaled with a positive parameter

and the third one is scaled with another positive parameter. The

parameter scaling the first two terms of the BFGS update is

determined by clustering the eigenvalues of the scaled BFGS matrix.

On the other hand, the parameter scaling the third term is determined

as a preconditioner to the Hessian of the minimizing function

combined with the minimization of the conjugacy condition from

conjugate gradient methods. This parameter is determined to reduce

the large eigenvalues, thus obtaining a better distribution of them.

The algorithm is described in the paper:

N. Andrei, A scaled BFGS method with two parameters for

unconstrained optimization.

(Please see the file: Paper-Roman.doc)
May 5, 2017

5. DNRTR A diagonal quasi-Newton updating algorithm. The elements of the

diagonal matrix approximating the Hessian are determined by

minimizing both the size of the change from the previous estimate

and the trace of the update, subject to the weak secant equation.

Figure 1 presents the performances of DNRTR versus steepest descent

(SP) and versus Cauchy with Oren-Luenberger scaling in its

complementary form (COL).

 66

Fig. 1 Performance profiles of DNRTR versus SP and versus COL.

CPU time metric. 100.n 

Please see the paper:

N. Andrei, A diagonal quasi-Newton updating method for

unconstrained optimization. Numerical Algorithms, vol.81(2),

(2019), pp.575-590.

February 26, 2018

6. YONS A new diagonal quasi-Newton updating algorithm for unconstrained

optimization is presented. The elements of the diagonal matrix

approximating the Hessian, are determined as scaled forward finite

differences directional derivatives of the components of the gradient.

Under mild classical assumptions, the convergence of the algorithm

is proved to be linear.

In this method the approximation Hessian 1kB  is a diagonal matrix

computed as:
1

1 ,k k kB Y S
 

where 1(, ,)n
k k kY diag y y and 1(, ,),n

k k kS diag s s ,i
ky 1, ,i n

being the components of the vector ky and ,i
ks 1, ,i n being the

components of vector .ks Therefore, the diagonal elements of the

matrix 1,kB  are computed as: 1 / ,i i i
k k kb y s  1, , .i n In other

words,

1
1

1

() ()
,

i i i i i
i k k k k k k k
k i i i i

k k k k k

y g g g x d g x
b

s x x d










  
  


 1, ,i n

where ,i
kg is the i  th component of the gradient in kx and i

kd is the

i  th component of the search direction.

Therefore, in this approach, the element 1
i
kb  may be considered as an

approximation of the second order derivative of function ,f

corresponding to the i  th diagonal element of the Hessian,

computed in 1kx  by a scaled forward finite differences directional

derivative scheme. Observe that 1/ i
kd is a scaling factor.

1) This directory contains the following Fortran files:

2) BFGS.FOR - Scaled BFGS method with Wolfe line search

 67

3) NTR.FOR -

2

1 1

1
min ()

2
k k kB B tr B  

 subject to:

1 .T T
k k k k ks B s s y 

4) PASDES.FOR – Steepest descent metod.

5) QNDIAG.FOR – Diagonal Quasi-Newton updating. Only the

diagonal elements from the BFGS updating are retained. The off

diagonal elements of the BFGS update are neglected.
2 2 2

1
2

1

() () ()
,

()

i i i
i i k k k
k k n Ti i

k kk ki

b s y
b b

y sb s




  


 1, , .i n

The algorithm was suggeted by Gilbert and Lemarechal; Gill and

Murray. It is discussed by Zhu, Nazareth and Wolkowicz (SIAM

1999)

6) WQND.FOR - C This is obtained from the weak-quasi-Newton

equation. The update proposed in this paper by Dennis and

Wolkowicz: J.E. Dennis, H. Wolkowicz, Sizing and least-change

secant methods, SIAM J. Numerical Analysis 30(5) (1993) 1291-

1314. Only the diagonal elements from the BFGS updating are

retained. The off diagonal elements of the BFGS update are

neglected.

 

2

2 21
1 2

2

1

()
() () ,

()

nT i i
k k k ki i i ii

k k k k
n i i

k ki

s y b s
b b b s

b s







 




 1, , ,i n

7) YONS.FOR - Te approximation Hessian 1kB  is a diagonal matrix

computed as 1
1 .k k kB Y S
  (Please, see above.)

The algorithm is described in the paper:

N. Andrei, A New Diagonal Quasi-Newton Updating Method With

Scaled Forward Finite Differences Directional Derivative for

Unconstrained Optimization. Numerical Functional Analysis and

Optimization, 2019, VOL. 40, NO. 13, 1467–1488.

(Please see the files: NFAO2019.PDF and paperR1.doc)

February 26, 2018

<><><><><><><><><><>

L-BFGS

1. LBFGS14 Limited BFGS method for solving 14 applications of unconstrained

optimization. The applications solved by LBFGS14 are:

1. Weber Function (1) (Andrei, U71)

2. Enzyme reaction (Andrei, U79) (A)

 68

3. Solution of a chemical reactor (A)

4. Robot kinematics problem (A)

5. Solar Spectroscopy (A)

6. Estimation of parameters (A)

7. Propan combustion in air (A)

8. Gear train with minimum inertia (A)

9. Human Heart Dipole. Andrei U84, pp.65

10. Neurophysiology (A)

11. Combustion application (A)

12. Thermistor (A)

13. Optimal design of a Gear Train (A)

14. Circuit design (A)

The contents of the directory LBFGS14 is as follows:

LBFGS.FOR (Fortran package by Liu and Nocedal)

FUNC14.TXT

lbfgs14.out

lbfgs.rez

R2020T18.DOC (Technical Report with performances of LBFGS14.

Performances of L-BFGS

--

 n iter fgcnt time(c) fx gnorm Name of Applications

 --

 2 55 218 0 -0.2644531414650E+03 0.5851360369660E+01 1. Weber Function (Andrei, U71)

 4 41 48 0 0.3075056038494E-03 0.8903176713965E-08 2. Enzyme reaction (Andrei, U79) (A)

 6 15316 22822 4 0.5038172519506E+00 0.1643286688653E-04 3. Solution of a chemical reactor (A)

 8 8 30 1 0.6957468202726E-05 0.3204751579182E-02 4. Robot kinematics problem (A)

 4 23 29 0 0.8312307693160E+01 0.7194096296787E-07 5. Solar Spectroscopy (A)

 4 46 53 0 0.3185717487911E-01 0.2214569790005E-07 6. Estimation of parameters (A)

 5 282 351 0 0.5884317208105E-18 0.6963808917363E-07 7. Propan combustion in air (A)

 2 10 33 1 0.1746908655419E+01 0.4035725583973E-01 8. Gear train with minimum inertia (A)

 8 2 23 0 0.1789025922492E+00 0.7325794325147E-01 9. Human Heart Dipole. Andrei U84,

 6 23 38 0 0.4539057615171E+01 0.2024779517274E-07 10. Neurophysiology (A)

 10 155 179 1 0.3338493557009E-11 0.1532274549876E-06 11. Combustion application (A)

 3 22 51 0 0.1721671200203E+03 0.1496223984167E+02 12. Thermistor (A)

 4 9 10 0 0.1971065573361E-05 0.6630614440024E-07 13. Optimal design of a Gear Train (A)

 9 6037 6838 6 0.2350848678996E-12 0.1601637091248E-06 14. Circuit design (A)

 --

 TOTAL 22029 30723 6.00 centeseconds

 Number of stored pairs (sk,yk) in L-BFGS: M = 5

 Date: --- Month: 6 Day: 6 Year: 2020

June 6, 2020

<><><><><><><><><><>

Other Programs

1. GRADSYS Gradient Flow Algorithm for Unconstrained Optimization.

The algorithm is:

,1 kkk xxx 

where kx is computed as the solution of the following linear

algebraic systems of equations:

 ).()(2

kkkkk xfhxxfhI  

].1,0[ If 1 and ,1kh then the algorithm is quadratically

convergent.

 69

The algorithm is described in:

N. Andrei, Gradient flow algorithm for unconstrained optimization.

Technical Report, March 23, 2004.

(Please see the file diff.pdf)
March 23, 2004

2. NEWGRAD Relaxed Gradient Descent and a New Gradient Descent Methods for

Unconstrained Optimization.

Mainly, the algorithm is the steepest gradient where the step-length is

modified by a multiplicative parameter:

),(1 kkkkk xfxx  

where]1,0[k and k is the step-length computed by

backtracking.

The algorithm and its theory is described in:

N. Andrei, Theory versus empiricism in analysis of optimization

algorithms. Technical Press, Bucharest, 2004. ISBN: 973-31-2233-5.

N. Andrei, Criticism of the unconstrained optimization algorithms

reasoning. Romanian Academy Publishing House, Bucharest, 2009.

ISBN: 978-973-27-1669-4.

Please see the papers:

N. Andrei, Numerical Experiments with Gradient Descent with

Backtracking for Unconstrained Optimization. March 2, 2005. (File:

CGAD.DOC, 10 pages)

N. Andrei, Numerical Experiments with Relaxed Gradient Descent

with Backtracking for Unconstrained Optimization. March 5, 2005.

(File: RELAXED.DOC, 12 pages)

March 17, 2005

<><><><><><><><><><>

Constrained optimization

1. KKT Karush-Kuhn-Tucker methods for solving inequality constraints

optimization problems of the following form:

)(min xf ,

 subject to:

,0)(xg

where ,: RRf n  and .: mn RRg  It is supposed that all functions

of the problem are continuousli differentiable.

Directorul KKT conţine un număr de 8 probleme de optimizare cu

restricţii inegalităţi: NEWTON1.FOR, NEWTON2.FOR,...

NEWTON8.FOR, SIMEQ.FOR, LS.FOR.

 70

Problemele sunt descrise şi rezolvate în lucrarea:

N. Andrei, Metode bazate pe condiţiile Karush-Kuhn-Tucker,

Manuscript, 1995, cu CD. (În biblioteca mea.)

March 3, 1995

2. PREDCOR Interior-Point Predictor-Corrector algorithm for linear constrained

optimization.

Directorul conţine 15 exemple de probleme de optimizare cu restricţii

linare utilizând metoda de punct interior, într-o implementare naivă.

Sistemele de ecuaţii algebrice linare asociate metodei sun rezolvate cu

subruruinele: DLINEQ.FOR (LU decomposition) şi DRESLV.FOR

(Substitutions).

Exemplul LCPC10.FOR rezolvă aplicaţia: Chemical Equilibrium

Problem.
December 24, 1996

3. SPG SIMPLE BOUNDED OPTIMIZATION by Birgin, Martinez and Rydan

 uxlxf ),(min

where)(xf is a continuously differentiable and its gradient is available.

l and u are simple margins on the variables. It is assumed that .ul 

- First version: February 02, 2001 by E.G.Birgin, J.M.Martinez and

 M.Raydan.

- Final revision: April 30, 2001 by E.G.Birgin, J.M.Martinez and

 M.Raydan.

- Modified final version: May 12, 2008 by Neculai Andrei to include the

 safeguarded cubic interpolation.

The algorithm and its performances are presented in:

N. Andrei, Criticism of the Constrained Optimization Algorithms

Reasoning, Editura Academiei Române, Bucureşti, 2015.

ISBN: 978-973-27-2527-6 (pp. 169-177)

The following applications are considered:

APPL1.FOR - Elastic-Plastic Torsion problem

APPL2.FOR - Pressure Distribution in a Journal Bearing

APPL3.FOR - Optimal Design with Composite Materials

APPL4.FOR - Ginzburg-Landau (1-dimensional) problem

APPL5.FOR - Steady State Combustion

The program MSPG.FOR implements the SPG subroutine for solving a

train of 730 problems with simple bounds. The line search subroutine is

modified by Neculai Andrei to include the safeguarded cubic

interpolation.

The following examples are presented:

1) SPGEX1.FOR is for minimizing the Freudenstein & Roth function

with n=1000, ..., 10000.

2) SPGEX2.FOR is for minimizing the Extended Penalty function with

n=1000, ..., 10000.

3) SPGEX3.FOR is for minimizing the Broyden Tridiagonal function

with n=1000, ..., 10000.

 71

May 12, 2008

4. SPENBAR Package for large-scale nonlinear, equality and inequality constrained

optimization.

The optimization problem solved by SPENBAR is as follows:

),(min xF

 subject to

 ,0)(xci ,,,1 mi 

,0)(xek ,,,1 mek 

 ,jjj uxl  ,,,1 nj 

where all the functions are continuously differential.

The program implements a modified penalty-barrier method. The

unconstrained optimization problems is solved by means of truncated

Newton method implemented in subroutine LMQN written by Stephen

Nash.

This directory contains 4 sub-directories (DOC, examples, PROB,

REZMOD) and 4 Fortran files (HS108.FOR, IP.FOR, IP1.FOR and

SPENBAR.FOR).

The algorithm is described in a number of papers and Technical Reports

as:

N. Andrei, (1996) Computational Experience with a Modified Penalty-

Barrier Method for Large-Scale Nonlinear Constrained Optimization.

(FORTRAN subroutines) ICI Working Paper No. AMOL-96-1, February

6, 1996.

N. Andrei, (1996) Computational Experience with SPENBAR a Sparse

Variant of a Modified Penalty-Barrier Method for Large-Scale

Nonlinear, Equality and Inequality Constrained Optimization. ICI

Technical Paper No. AMOL-96-4, March 11, 1996, pp.1-69.

N. Andrei, (2006) Numerical Examples with SPENBAR for Large-Scale

Nonlinear, Equality and Inequality Constrained Optimization with Zero

Columns in Jacobian Matrices. ICI Technical Paper No. AMOL-96-5,

March 29, 1996.

N. Andrei, (2001) Numerical Examples with SPENBAR - Modified

penalty barrier method for large-scale nonlinear programming

problems. Part I. ICI Technical Report, ICI-TR-01/2001, Bucharest,

February 2001. Technical Report placed in Library of Romanian

Academy.

N. Andrei, (2001) Computational experience with SPENBAR. A sparse

modified penalty-barrier method for large-scale nonlinear, equality and

inequality, constrained optimization. Technical Report No.4/2001,

February 19, 2001. (Manuscript. În biblioteca mea.)

N. Andrei, (2015) Criticism of the Constrained Optimization Algorithms

Reasoning, Editura Academiei Române, Bucureşti, 2015.

ISBN: 978-973-27-2527-6 (pp. 517-537)

 72

N. Andrei, (2017) Continuous Nonlinear Optimization for Engineering

Applications in GAMS Technology. Springer Optimization and Its

Applications, Volume 121, Springer Science+Business Media New York

2017, ISBN: 978-3-319-58356-3, e-book ISBN: 978-3-319-58356-3,

ISSN: 1931-6828, DOI: 10.1007/978-3-319-58356-3, Springer New

York Heidelberg Dordrecht London, 508 + XXIV pages.

OPIS.TXT contains the list of problems from SPENBAR collection.
February 19, 2001

5. TOLMINV Package of subroutines that calculate the the least value of a

differentiable function of several variables subject to linear constraints

on the values of the variables written by M.J.D. Powell.

TOLMIN, written by Powell, works with two-dimensional arrays and

solves the problems of the following types:

),(min xF

 subject to:

 ,j

T

j bxa  ,,,1 MEQj 

,j
T

j bxa  ,,,1 mMEQj 

 ,iii uxl  .,,1 ni 

All the subroutines of the program are modified by N. Andrei to work

with vectors, without considering the spsrsity the the matrix

corresponding to linear constraints. This is TOLMINV package.

This Directory contains three sub-directories: TOLMIN14,

TOLMINMA, TOLMINVE.

Subdirectory TOLMIN14 includes three programs for solving

constrained optimization problems as follows:

MAIN01.FOR is the main program for solving the nonlinear

optimization problem presented in Example 14.1 in the book:

N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii,

Editura Academiei, 2015, pp. 629.
 THE COMPUTED SOLUTION POINT IS
 1 0.8750081257267E-07

 2 0.4629495896370E-04

 3 0.9999514660798E+00

 4 0.5001292705362E+00

 5 0.9999908024081E+00

 6 0.4999956364708E+01

 7 0.3000004697421E+01

 8 0.1000000000000E+01

 X(I) X(I)-XL(I) XU(I)-X(I)

 1 8.7500813E-08 8.7500813E-08 1.9999999E+00

 2 4.6294959E-05 5.0000463E+00 9.9995371E-01

 3 9.9995147E-01 9.9995147E-01 1.0000485E+00

 4 5.0012927E-01 1.5001293E+00 1.4998707E+00

 5 9.9999080E-01 9.9999080E-01 3.0000092E+00

 6 4.9999564E+00 5.9999564E+00 5.0000436E+00

 7 3.0000047E+00 3.0000047E+00 2.9999953E+00

 8 1.0000000E+00 2.0000000E+00 0.0000000E+00

 FINAL CONSTRAINT RESIDUALS =

 0.0000E+00 0.0000E+00 1.7764E-15 0.0000E+00

 Function value in optimal point= 0.2999999978913E+01

 Execution Time: 0: 0: 0: 0

 73

MAIN02.FOR is the main program for solving the nonlinear

optimization problem presented in Example 5.3 in the book:

N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii,

Editura Academiei, 2015, pp. 266.
 THE COMPUTED SOLUTION POINT IS
 1 0.4002737835268E+00

 2 0.1305663058260E+00

 3 0.0000000000000E+00

 4 0.0000000000000E+00

 5 0.9033793559852E+00

 6 0.4168581403599E+00

 7 0.0000000000000E+00

 8 0.1509334100456E+01

 9 0.1522805326970E+01

 10 0.5379458016316E+00

 11 0.1013056630583E+01

 12 0.5527662953395E+00

 13 0.0000000000000E+00

 14 0.0000000000000E+00

 15 0.6010093996177E+00

 X(I) X(I)-XL(I) XU(I)-X(I)

 1 4.0027378E-01 4.0027378E-01 1.5997262E+00

 2 1.3056631E-01 1.3056631E-01 1.8694337E+00

 3 0.0000000E+00 0.0000000E+00 2.0000000E+00

 4 0.0000000E+00 0.0000000E+00 2.0000000E+00

 5 9.0337936E-01 9.0337936E-01 1.0966206E+00

 6 4.1685814E-01 4.1685814E-01 1.5831419E+00

 7 0.0000000E+00 0.0000000E+00 2.0000000E+00

 8 1.5093341E+00 1.5093341E+00 4.9066590E-01

 9 1.5228053E+00 1.5228053E+00 4.7719467E-01

 10 5.3794580E-01 5.3794580E-01 1.4620542E+00

 11 1.0130566E+00 1.0130566E+00 9.8694337E-01

 12 5.5276630E-01 5.5276630E-01 1.4472337E+00

 13 0.0000000E+00 0.0000000E+00 2.0000000E+00

 14 0.0000000E+00 0.0000000E+00 2.0000000E+00

 15 6.0100940E-01 6.0100940E-01 1.3989906E+00

 FINAL CONSTRAINT RESIDUALS =

 -1.3878E-16 0.0000E+00 4.4409E-16 3.3307E-16 5.5511E-16 6.6613E-16

 1.1102E-15

 Function value in optimal point= 0.2192129651805E+02

 Execution Time: 0: 0: 0: 0

MAIN03.FOR is the main program for solving the nonlinear

optimization problem presented in Example 14.3 in the book:

N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii,

Editura Academiei, 2015, pp. 266.
 THE COMPUTED SOLUTION POINT IS

 1 0.2812500000000E+01

 2 0.0000000000000E+00

 3 0.7187500000000E+01

 4 0.3750000000000E+01

 5 0.0000000000000E+00

 6 0.0000000000000E+00

 7 0.0000000000000E+00

 8 0.3125000000000E+01

 9 0.0000000000000E+00

 10 0.0000000000000E+00

 11 0.0000000000000E+00

 12 0.5718750000000E+02

 13 0.2562500000000E+02

 X(I) X(I)-XL(I) XU(I)-X(I)

 1 2.8125000E+00 2.8125000E+00 9.7187500E+01

 2 0.0000000E+00 0.0000000E+00 1.0000000E+02

 3 7.1875000E+00 7.1875000E+00 9.2812500E+01

 4 3.7500000E+00 3.7500000E+00 9.6250000E+01

 5 0.0000000E+00 0.0000000E+00 1.0000000E+02

 6 0.0000000E+00 0.0000000E+00 1.0000000E+02

 7 0.0000000E+00 0.0000000E+00 1.0000000E+02

 8 3.1250000E+00 3.1250000E+00 9.6875000E+01

 9 0.0000000E+00 0.0000000E+00 1.0000000E+02

 10 0.0000000E+00 0.0000000E+00 1.0000000E+02

 74

 11 0.0000000E+00 0.0000000E+00 1.0000000E+02

 12 5.7187500E+01 5.7187500E+01 4.2812500E+01

 13 2.5625000E+01 2.5625000E+01 7.4375000E+01

 FINAL CONSTRAINT RESIDUALS =

 -1.7764E-15 0.0000E+00 3.5527E-15 5.3291E-15 1.4211E-14 0.0000E+00

 Function value in optimal point= 0.1568830990135E+07

 Execution Time: 0: 0: 0: 0

November 22, 1995

6. PSO-CO Particle Swarm Optimization (PSO).

In this directory I included a number of Fortran packages for constrained

optimization using the particle swarm optimization method.

For solving the problem },,1,0)(),(min{ mixcxf i  the algorithm

for PSO considers the following strategy.

Using the PSO algorithm for unconstrained optimization minimize the

penalty function:

 () () () (),F x f x h t H x 

where:

 γ(())

1

() θ(())(()) ,i

m
q x

i i

i

H x q x q x




 () max{0, ()},i iq x c x 1, , ,i m

10, dacă () 0.001,

20, dacă 0.001 () 0.1,
θ(())

100, dacă 0.1 () 1,

300, dacă () 1,

i

i

i

i

i

q x

q x
q x

q x

q x




 
 

 
 

1, dacă () 1,

γ(())
2, dacă () 1,

i

i

i

q x
q x

q x


 



 () ,h t t t

Here, t is the number of iteration.

The applications solved by this method are as follows:

ALKI-PSO - Optimization of an alkylation process, Variant 1,

CAM-PSO - Shape optimization of a cam,

DES-PSO - Distribution of electrons on a sphere,

HANG-PSO - Hanging chain,

MSP3-PSO - 3-stage membrane separation,

MSP5-PSO - A 5-stage membrane separation process,

PPSE-PSO - Static Power Scheduling,

PREC-PSO - Optimal Reactor Design,

TRAFO-PSO - Transformer design.

BRAKE-PSO - Design of a disc brake,

EX1-PSO – Example 1,

EX2-PSO – Example 2,

LATHE.PSO - Multi-spindle automatic lathe

SPRING.PSO - Minimizing the weight of a tension/compression spring

WESSEL.PSO - Pressure vessel

 75

Please, see the book: „Critica Raţiunii Algoritmilor de Optimizare cu

Restricţii”, Bucureşti, Editura Academiei Române, 2015, Capitolul 19.

See also: the paper Anale-PSO.doc and the technical report PSO.doc

(October 9, 2014).

Please, see the directory PSO-CO in CONSTRAINED-OPTIM.
May 21, 2014

7. CAON A collection of nonlinear optimization applications in GAMS

language. Se prezintă 25 de modele de optimizare neliniară, exprimate

în limbajul GAMS.

See: N. Andrei, CAON: O colecţie de aplicaţii de optimizare neliniară

în limbajul GAMS. Technical Report No.1/2011, January 31, 2011.

(105 pages with CD).

Please, see the directory CAON in CONSTRAINED_OPTIM. Please,

see the Technical Report: r1a11.doc. The mathematical models in

GAMS are placed in directory CD-GAMS.

January 31, 2011

♦

