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This Technical Report is the second version of the list of the software I have written 

and tested along the years. The software in this version of this paper is an improvement 

of the software I listed in the Technical Report from December 8, 2011, where I 

introduced some new software elaborated along the years. The programs and 

subroutines are organized on directories and subdirectories. In each directory I placed a 

number of programs I have elaborated in my research activity. Some other information 

concerning the algorithms or the results of the software is also included. The list of 

chapters and their contents is as follows: 

 

 

  

Support Programs 
 

1. ENORM Program for computing the Euclidian norm of a vector. 

(This is a variant of function enorm from MINPACK1) 

2. PERFORM Program for Profile Performance Analysis.  

There are three subroutines: 

PERF2N for analysis of two algorithms (ALG1 versus ALG2) subject 

to the number of iterations, of function evaluations and CPU time in 

sense of Dolan and Morè. [See: Dolan, E.D., & Moré, J.J., (2002). 

Benchmarking optimization software with performance profiles. 

Mathematical Programming, 91, 201-213.] 

 

PERFNN for analysis of at least 20 algorithms subject to the number of 

iterations, of function evaluations and CPU time in sense of Dolan and 

Morè. [See: Dolan, E.D., & Moré, J.J., (2002). Benchmarking 

optimization software with performance profiles. Mathematical 

Programming, 91, 201-213.] 

mailto:neculaiandrei1948@gmail.com
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PERLOG for performance analysis of two algorithms according to the 

index   
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where 
Aa  and 

Ba  referes to the number of iterations, or the number of 

functions evaluartions, or the CPU time respectively corresponding to 

the algorithm A or B. 

 

A complete description of these algorithms could be find in:  

N. Andrei, Criticism of the Unconstrained Optimization Algorithms 

Reasoning, Editura Academiei Române, Bucureşti, 2009.  

ISBN: 978-973-27-1669-4 (pp. 89-94) 
December 30, 2004 

3. GRADIENT Approximation of derivatives of a function using forward or central 

finite difference. 

The step length is sqrt of epsilon machine. 
April 1983 

4. JACOBIAN Program for computation of the sparse Jacobian with minimization of 

the number of function evaluations. 

 

The algorithm is described in the paper:  

N. Andrei, RP - a package for efficient calculation of sparse jacobian 

matrix for nonlinear systems of equations using finite differences. 

Technical Report, Bucharest, April 15, 1983.  

(Please see the file: JACOBIAN.DOC) 
April 15, 1983 

5. LS A collection of subroutines for one-dimensional searching used in 

nonlinear optimization. 

The following subroutines belong to this collection: 

     L1   Golden search 

     L2   Fibonacci search 

     L3   Quadratic interpolation of Powell technique 

     L4   Dichotomous search 
April, 1990 

6. LINE- 

SEARCH 

Line search: Backtracking versus Wolfe versus Moré – Thuente in 

context of Steepest Descent Method. 

The purpose of this program is to see 3 line search subroutines 

(backtracking, Wolfe and Strong Wolfe) in some particular Fortran 

implementation.  

 

♦ Subroutine BACK (backtracking) is authored by Andrei. 

♦ Subroutine WOLFE (standard Wolfe conditions) is coauthored by 

Shanno and Phua with some additional modifications by Andrei. 

♦ Subroutine MTLINES (strong Wolfe conditions) is coauthored by 

Moré and Thuente. 

 

A description of these algorithms could be find in:  

N. Andrei, Criticism of the Unconstrained Optimization Algorithms 

Reasoning, Editura Academiei Române, Bucureşti, 2009.  

ISBN: 978-973-27-1669-4 (pp. 122-133) 
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August 30, 2006 

7. AORDER Subroutine for setting the elements of an array in ascending order. The 

elements of the array may be positive or negative. 

This subroutine is accompanied by an main program illustrating the 

calling of the subroutine. 
   Array to be ordered (increasingly) 

       1     0.1000000000000E+02 

       2     0.9000000000000E+01 

       3     0.8000000000000E+01 

       4    -0.6000000000000E+01 

       5     0.6000000000000E+01 

       6     0.5000000000000E+01 

       7     0.4000000000000E+01 

       8     0.3000000000000E+01 

       9     0.2000000000000E+01 

      10     0.1000000000000E+01 

 

    Ordered array 

       1    -0.6000000000000E+01 

       2     0.1000000000000E+01 

       3     0.2000000000000E+01 

       4     0.3000000000000E+01 

       5     0.4000000000000E+01 

       6     0.5000000000000E+01 

       7     0.6000000000000E+01 

       8     0.8000000000000E+01 

       9     0.9000000000000E+01 

      10     0.1000000000000E+02 

August, 1995 

 

<><><><><><><><><><> 

 

  

Numerical Linear Algebra 
 

1. SIMEQ Directory SIMEQ 

Simultaneous linear equations system solving 

SIMEQ  subroutine for solving linear algebraic systems of equations (the 

dense case). The matrix and its inverse are stored in (NxN) arrays. 

SIMEQL subroutine for solving linear algebrais systems of equations 

(the dense case). In this case the matrix and its inverse are stored in one-

dimensional arrays on rows in natural order, i.e. [row1,  row2,  ...  

rowKC]. 

Both subroutines implements the Gauss method of ellimination with 

column pivoting to determine the solution vector and the inverse of the 

matrix. 

Calling sequence: 

 

 CALL SIMEQ (A,RHS,KC,AINV,X,IERR) 

 CALL SIMEQL(A,RHS,KC,AINV,X,IERR) 

 where: 

 A = The array of the system's matrix. 

 RHS = The right-hand-side of the system. 

 KC = The order of the system (The number of variables). 

 AINV = The array of the inverse of the matrix. 

 X = The solution vector of the system. 

 IERR = Return code with the following values: 

    0  if the matrix is singular, 
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    1  if the matrix is non-singular. 

 
January 21, 1995 

2. BT Directory BT 

Program for Block Triangularization of a large-scale sparse matrix. 

The following subroutines are invokated: RP02A, RP02B, RP02D, 

RP02C, RP02E. 

RP02A subroutine, for a given large-scale sparse matrix A, row packed, 

if it is possible; permute its rows and columns to the lower-block-

triangular form. The matrix is permuted to the form PAQ, according to P 

and Q permutation matrices, so that the non-zero elements in the off-

diagonal blocks preceed those in the diagonal blocks, which are in order. 

If the user introduce his matrix by columns, then RP02A subroutine will 

produce the upper-block-triangular form and the corresponding  

permutation matrices. 

RP02B subroutine, for a given pattern of non-zeros of a  sparse matrix, 

finds a row permutation that makes the matrix have a maximum number 

of non-zero elements on its diagonal, using a depth first search with look 

ahead technique. 

RP02C This subroutine, for a given pattern of non-zeros of a sparse   

matrix, finds a symmetric permutation that makes the matrix lower block 

triangular, using the Tarjan's depth first search  algorithm. To obtain the 

best results, the user must first permute the structure of the matrix so that 

it has a zero-free diagonal. This can be done using RP02B subroutine. 

November 2, 1992 

3. RF Directory RF 

Program for solving large-scale linear algebraic systems  

                                        A*X=B   or   AT*X=B  

taking into account the sparsity of the A matrix. (AT is the  transpose 

of the matrix A) 

 

This is a package of subroutines dedicated to compute the Product Form 

of Inverse (PFI) with a preassigned pivot procedure, to solve 

corresponding large-scale systems of linear equations, exploiting sparsity 

in all cases. 

The calling sequence is as follows: 

        MAIN ---- RF02A 

                          RF02C      ---- MRM03A 

                          MFTRAN ---- RM02A 

                          MBTRAN ---- RM02A 

where: 

 RF02A   determine a permutation of rows and columns of the matrix to  

         the "bump and spike" structure. 

 RF02C   compute the Product Form of Inverse of the matrix permuted to  

         this form "bump and spike" 

 MRM03A  compress the arrays a and indl in order to create more room  

         for PFI generation. 

 MFTRAN  is for forward transformation of the RHS term of the system  

         to compute the solution of A*X = B. 

                       X = A**(-1)*B = QP*(Tn*......(T1*B)). 

 MBTRAN  is for backward transformation of the RHS term of the 

         system to compute the solution of AT*X = B. 
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                       X = A**(-T)*B = B*(((QP)*Tn)*......T1). 

 RM02A   is for insitu permutation of a vector according to a permutation  

         vector. 

 

The theory of Product Form of Inverse (PFI) factorization is described in: 

N. Andrei, Criticism of the linear programming algorithms reasoning. 

Romanian Academy Publishing House, Bucharest, 2011.  

ISBN: 978-973-27-2076-9 (pages: 1239-273) 
December 4, 1995 

4. LU Directory LU 

Package for Solving Large-Scale Linear Algebraic Systems with LU  

Factorization and Markowitz Procedure for Pivots Selection 

 

The calling sequence is as follows: 

       LU ----- RF01A 

                        --- RM01A,   

                        --- RM04A. 

             ----- RS01A 

 where: 

 LU   Main program for solving linear algebraic systems of equations  

         Ax=b or ATx=b using LU factorization of the matrix with  

         Markowitz's pivot selection strategy. 

 

 RF01A   Subroutine for LU factorization of the matrix A. 

 RS01A   Subroutine for solving large-scale systems of linear equations  

        computing: A**(-1)*b  or A**(-T)*b, for a given vector b, using the  

        LU factorization of the matrix A (given by RF01A subroutine),  

        exploiting the sparsity in all cases. 

 RM01A   Subroutine for sorting the non-zeros of a sparse matrix from  

        arbitrary order to column order, but unordered  within each column. 

 RM04A   Subroutine for compressing the column / row array of U 

         factor (from the LU factorization of a sparse matrix) in order to  

         eliminate the spaces between columns / rows. 

♦ The file LU.DOC contains a number of 15 examples of linear algebraic 

systems solved by LU package. 

 

The theory of LU factorization is described in: 

N. Andrei, Criticism of the linear programming algorithms reasoning. 

Romanian Academy Publishing House, Bucharest, 2011.  

ISBN: 978-973-27-2076-9 (pages: 287-316) 

May 3, 1995 

 

<><><><><><><><><><> 

 

  

Zero of nonlinear functions 

 
1. ZERO1 In sub-directory ZERO, directory: SOFT-ANDREI-TOTAL:  

A simple algorithm for computing zero of a nonlinear function of a 

variable in a given interval [a,b]. 
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The Fortran program and 5 examples are presented in file zero1.doc 

(see directory: LUCRARI-MANUSTRISE-ANDREI (total). 

 

For function: 2( ) 4,f x x   one zero in interval [0,3] is: 
    a= 0.0000000000000E+00     fa=-0.4000000000000E+01 
   b= 0.3000000000000E+01     fb= 0.5000000000000E+01 

  Solution:  0.2000000000015E+01    Function value:  0.5820766091347E-10 

  Number of iterations;      36 

 
March 28, 1975 

2. ZERO2 Fortran program in subdirectory ZERO of the directory SOFT-

ANDREI-TOTAL.  

A simple algorithm for computing all the zeros of a nonlinear function 

of a variable in a given interval [a,b]. b>a. The program include 14 

examples of nonlinear functions for which the zeros (roots) are 

presented. 

 

For example, the function: 4 2( ) 5 4f x x x    in interval [ 3, 3],  has 

four zeros: 
  Zero # 1 

  ZERO: -0.2000000000001E+01    Function value:  0.6977529665164E-11 

  Number of iterations:               52 

  Number of function evaluations:     53 

 

  Zero # 2 

  ZERO: -0.1000000000003E+01    Function value: -0.1745270594711E-10 

  Number of iterations:               50 

  Number of function evaluations:     51 

 

  Zero # 3 

  ZERO:  0.9999999999994E+00    Function value:  0.3477662602336E-11 

  Number of iterations:               66 

  Number of function evaluations:     67 

 

  Zero # 4 

  ZERO:  0.1999999999997E+01    Function value: -0.3488764832582E-10 

  Number of iterations:               50 

  Number of function evaluations:     51 

 

  ======================================= 

  TOTAL # OF iterations:             218 

  TOTAL # of function evaluations:   222 

 

The graphical representation of this function is given in Figure 1. Observe it 

has exactly four zeros (roots). 

 

Fig. 1. Function 
4 2( ) 5 4f x x x    

 April 16, 1975 

 

 

<><><><><><><><><><> 
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Solving Nonlinear Algebraic Systems F(x) = 0   
 

1. NEWTON Newton method without line search.  

The method is described in: 

N. Andrei, Criticism of the Unconstrained Optimization Algorithms 

Reasoning, Academiei Publishing House, Bucharest, 2009, Chapter 6, 

(pages: 243-255). 

  

The Newton system is solved by means of the LA05** package by J.K. 

Read with minor modifications by N. Andrei. 

 

In directory NEWTON there are the following nonlinear algebraic 

systems: 

1) CANAL – Flow in a chanel problem, 

2) CAVITATE – Flow in a driven cavity problem, 

3) CIRCUIT – Circuit design problem, 

4) E1 – Calculul temperaturii stationare într-un reactor. 

5) E2 – Calculul fractiei de conversie a unei substante într-un reactor 

             Chimic, 

6) PROPAN - Propan combustion in aer  -  Reduced Formulation, 

7) REACTOR - Stationar solution of a chemical reactor, 

8) ROBOT - Robot kinematics problem, 

9) SOLID - Solid Fuel Ignition. 

 

June 1, 2006 

2. 

 
GRFLOW Gradient Flow Algorithm for solving nonlinear algebraic systems 

,0)( xF  where )].(,),([)( 1 xfxfxF m  

The algorithm is as follows: 

,1 kkk dxx   

where kd  is computed as solution ofthe following system of linear 

algebraic equations: 
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If )(xfi  are convex and positive for all ;,,1 mi   ;))(( nxFrank   

1  and ,kh  then the algorithm is quadratically convergent to a 

local solution of the system. 

 

FLOW.FOR is the main program for the Gradient Flow Algorithm  for 

solving F(x) = 0. Some variants of this Fortran program can be found in 

FLOWC.FOR and FLOWZ.FOR. 

 

In directory ACAD there are the following problems (please see 

MINPACK-2 collection): 

GFLOWS1 – Circuit design problem, 
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GFLOWS2 – Propan combustion problem, 

GFLOWS3 – Stationar solution of a chemical reactor, 

GFLOWS4 – Robot kinematics problem, 

GFLOWS5 – Solid fuel ignition problem, 

GFLOWS6 – Flow in a driven cavity problem, 

GFLOWS7 – Flow in a chanel problem, 

GFLOWS8 – Human heart dipole problem. 

 

The mathematical description of these problems, as well as their solution 

can be studied in:  

N. Andrei, Criticism of the Unconstrained Optimization Algorithms 

Reasoning, Academiei Publishing House, Bucharest, 2009, Chapter 6, 

(pages: 243-255). 

The theoretical aspects of the gradient flow method are presented in: 

N. Andrei, Criticism of the Unconstrained Optimization Algorithms 

Reasoning, Academiei Publishing House, Bucharest, 2009, Chapter 15.  

 

The performances of the gradient flow method are shown in chapter 15 of 

this monography, (pages: 675-679). 

 

Please, see the paper: Gradient Flow Algorithm for Systems of 

Nonlinear Equations, (ZEROF.PDF) (ZEROS.RTF). 

  
April 4, 2004 

3. LEV-

MARQ 

Levenberg-Marquardt Algorithm for solving nonlinear algebraic systems 

.0)( xF  

This directory contains the following problems (please see MINPACK-2 

collection): 

LMS1 – Circuit design problem, 

LMS2 – Propan combustion problem, 

LM3 – Stationar solution of a chemical reactor, 

LMS4 – Robot kinematics problem, 

LMS5 – Solid fuel ignition problem, 

LMS6 – Flow in a driven cavity problem, 

LMS7 – Flow in a chanel problem, 

 

A description of this algorithm together with the applications are 

presented in:  N. Andrei, Criticism of the Unconstrained Optimization 

Algorithms Reasoning, Academiei Publishing House, Bucharest, 2009, 

Chapter 14.3 (pages: 636-655) 
November 12, 2004 

January 10, 2007 (modified) 

 

 

<><><><><><><><><><> 

 

 

  

Linear programming 
 



 9 

1. AFFINE- 

SCALING 

Main program Affine Scaling with Rows Partitioning for solving 

Linear Programming Problems: 

Min xcT
 subject to bAx  , .0x  

 

The program implements an algorithm described into the book: 

N. Andrei, Programarea Matematică - Metode de punct interior, 

Editura Tehnică, 1999, chapter 5, section 5.4. (pages: 125-157) 

 

The program uses two dimensional arrays and doesn't takes the 

advantage of sparsity of the matrix A. 
May 21, 1998 

2. SPLIT Splitting the dense columns of a Linear Programming Problem. 

 

Please see: Chapter 15 of the book: 

N. Andrei, "Criticism of the Linear Programming Algorithms 

Reasoning". Romanian Academy Publishing - Bucharest, Romania. 

2010. (pages: 605-612) 
June 9,    2010 

3. BCR Balance Rows Reduction in linear programming. 

The idea of this program is to eliminate the balance constraints, i.e. the 

constraints with zero RHS term.  

The package has two main components. The first one eliminate the 

balance constraints and solve the reduced problem. The second one 

recover the solution from the solution of the reduced problem. 

 

Please see: Chapter 16, Section 2, pp. 591-605 of the book: 

N. Andrei, Criticism of the Linear Programming Algorithms Reasoning. 

Romanian Academy Publishing – Bucharest, 2011. (pages: 591-612) 
January 21, 1993 

4. ISLO Interactive System for maintaing Linear Programming Problems. 

This is an interactive package for solving linear programming problems 

using PFI of the basis having the possibility to establish the 

optrimization conditions at the very beginning of the process. 
January 12, 1995 

5. ASLO Advanced System for Linear Optimization. 

The LU factorization of the basis (subroutines LA05AD, LA05BD, 

LA05CD, LA05ED and MC20AD) is used to implement the primal 

simplex method. 

The input of the problem is in MPS format. 
December 16, 1992 

6. ASLONEW Advanced System for Linear Optimization – New version. 

 

7. CALP A collection of Linear Programming Applications in ALLO Language. 

Se prezintă 10 prototupuri de modele de programare linară în limbajul 

ALLO, direct utilizate în context industrial. 

 

See: N. Andrei, O colecţie de aplicaţii de programare liniară în 

limbajul ALLO. Technical Report No.4/2007, September 3, 2007. (88 

pagini cu CD) (see files: FRONT-RT3-2007.DOC & RT3-2007.DOC in 

directory CALP) 

 

Please, see the directory CALP in LINEAR-PROGRAMMING. Please, 
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see the Technical Report RT3-2007.doc. The mathematical models in 

ALLO language are placed in the directory MODELS.  

 

September 3, 2007 

 

 

<><><><><><><><><><> 

 

 

  

SAMO Technology 
Advanced System for Linear Optimization 

 

1. ALLO Directory ALLO_LANGUAGE 

ALLO is a mathematical programming language having the ability 

to write linear programming models.  

It is fully algebraic, being notable for its syntax which is very simple but 

comprehensive, with a small number of reserved keywords. The compiler 

associated to ALLO language translate the model into the equivalent 

MPS form, directly admited by any professional linear optimizer. 

 

The directory ALLO_LANGUAGE contains the following 

subdirectories: 

♦ ALLO-source:  

- Subdirectory ALLO contains three executable programs: ALLOPAS1 

.EXE and ALLOPAS2.EXE for compiling an ALLO textsource  and 

DSOLVER.EXE for solving the generated linear programming problem. 

- Subdirectories PAS1 and PAS2 contains Fortran and C programs which 

implement the ALLO compiler. The list of subroutines is described in  

LIST-OF-SUBROUTINES.DOC file. 

- Subdirectory MODELE contains 11 prototypes of linear programming 

models in ALLO language. 

-ALLO language is also described in ALLO.RTF file (17 pages, 

September 10, 2004) 

♦ APPLIC: includes 25 prototypes of linear programming models in 

ALLO language. 

♦ DOC: contains some files describing the ALLO language. 

- ALLO language is explained in LANGALLO.RTF file (english 

version, 16 pages, September 10, 2004) 

- The documents ALLO1.DOC and ALLO2.DOC present a collection 

of linear programming models including: allocation models, assembling 

models, desassembling, desassembling-assembling, transportation 

models, diet models, production modelswith optimal selection of 

technologies, systems with stocks, combined models of production with 

stocks, discrete production models. 

♦ EXE: contains an old version of ALLO compiler (executables), SAMO 

executable, DSOLVER for solving a linear programming problem and 

HOPD which is HOPDM package by Gondzio. 

 

The language ALLO is described in a number of papers as: 
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- N. Andrei, Gh. Borcan, ALLO: Algebraic Language for Linear 

Optimization. Technical Report, LSSO-2-95, Research Institute 

for Informatics, Bucharest, September 1995. 

- N. Andrei, Gh. Borcan, ALLO – Limbaj algebric pentru 

optimizare liniară. Revista Română de Informatică şi 

Automatică, vol.8, nr. 3, 1998, pp.55-67. 

- N. Andrei, Pachete de Programe, Modele şi Probleme de Test 

pentru Programarea Matematică, Editura MATRIXROM, 

Bucureşti, 2001.  

- N. Andrei, Critica Raţiunii Algoritmilor de Programare Liniară, 

Editura Academiei Române, Bucureşti, 2011. (pages: 815-830) 

 
Martie 8, 2007 

2. SAMO Directory INSTAL_SAMO 

Advanced informatic technology for linear programming modeling 

and optimization. 

SAMO – is an advanced informatic technology for linear programming 

modeling and optimization at an industrial level. SAMO permits 

conceptualization, elaboration, maintainance, modification and solving 

large-scale linear programming models. The system SAMO is based of 

the language ALLO which is a dialect of the natural language used by the 

user to conceptualize, to build up, to modify linear programming models 

in algebraic format, as well as on the ALLO compiler which translate the 

algebraic format of the model in MPS format.  

SAMO uses a professional optimizer able to solve large-scale linear 

programming problems.  

SAMO allows generation and solving of linear programming prototypes.  

SAMO is described in: 

TR18.DOC file: SAMO -  tehnologie informatică avansată pentru 

modelare şi optimizare. (Advanced informatioc technology for modeling 

and optimization.) Description of SAMO. Illustration of an ecran capture 

of this technology. (Martie 8, 2007) 

SAMO.MSI is windows installer package. To install SAMO, the serial 

number is: CB48T H668K C9W64 

 

A description of SAMO, as well as some prototypes of industrial models 

in ALLO language, working under SAMO technology are presented in: 

N. Andrei, Critica Raţiunii Algoritmilor de Programare Liniară, Editura 

Academiei Române, Bucureşti, 2011. (pages: 642-752) 

N. Andrei, Pachete de Programe, Modele şi Probleme de Test pentru 

Programarea Matematică, Editura MATRIXROM, Bucureşti, 2001. 

(Lucrarea conţine 13 prototipuri de modele de programare liniară 

exprimate în limbajul ALLO.) 

 
Martie 8, 2007 

New Version: June 8, 2011 

 

 

<><><><><><><><><><> 
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Unconstrained optimization 
 

 

Direct Search Methods 
 

1. UNO Directory UNO  

UNCONSTRAINT OPTIMIZATION METHODS 

using 

DIRECT SEARCHING TECHNIQUES 

 The following techniques are implemented: 

     - Hook-Jeeves - form searching,  (HOOKJ.FOR 

     - Rosenbrook - rotation of coordinates, (ROSE.FOR) 

     - Powell - conjugate directions,  (POWEL.FOR) 

     - Nelder-Mead - Simplex,  (NELMED.FOR) 

     - Parallel with Axes Searching.  (CPA.FOR) 

These methods are implemented with different onedimensional 

optimization methods like: 

     L1 - golden section,  

     L2 – Fibonacci search,   

     L3 - Quadratic fitting of Powell,  

     L4 - Simple lambda =1.0. 

 

The theory behind all these direct search methods is presented in: 

N. Andrei, Criticism of the Unconstrained Optimization Algorithms 

Reasoning, Academy Publishing House, Bucharest, 2009, Chapter 

16. 
April 1991 

New version: August 8, 2007 

2. FIBO Directory FIBONACCI 

O subrutină de calcul a minimului unei funcţii neliniare de o 

variabilă, pe un interval dat, bazată pe metoda de căutare directă 

Fibonacci. 
 

The Fibonacci search method is presented in: fibonacci.doc file. 
Februarie 4, 1980 

3. MAXFUN Directory MAXFUN 

O subrutină de calcul a maximului unei funcţii neliniare de o 

variabilă, bazată pe metoda de interpolare pătratică Powell. 
 

The maxfun search method is described in: maxfun.doc file.  
Septembrie 23, 1980 

4. PSO-UO Directory PSO-UO 

Particle Swarm Optimization for unconstrained optimization 
In this directory I included three Fortran programs for minimizing the 

Rosenbrock function (extended and generalized) and the Wood 

function using the particle swarm optimization method. 
May 21, 2014 

5. DEEPS Directory DEEPS-TOTAL 

This directory contains a number of 13 sub-directories as follows: 

DEEPS1 
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A simple deep random search method for unconstrained 

optimization. Preliminary computational results 
This sub-directory includes:  

a) Thechnical Report No. 1/2020: R2020T1.DOC describing the method,  

b) The Fortran package DEEPS.FOR which implements the algorithm and  

c) The file FUNCNAME.TXT with the name of the minimizing functions.   

DEEPS implements an algorithm based on direct search without using 

derivatives. The numerical experiments include 115 unconstrained 

optimization problems.  

 

See: N. Andrei, A simple deep random search method for unconstrained 

optimization. Preliminary computational results. Technical Report No. 

1/2020, February 29, 2020, Bucharest. 

 

DEEPS2 

Comparison of DEEPS algorithm using a simple deep random 

search method versus Steepest Descent for solving an 

unconstrained optimization problem with a narrow positive cone. 
This sub-directory includes the Technical Report No. 2/2020: 

R2020T2.DOC describing the method. 

 

DEEPS3 

Influence of local bounds “lobndc” and “upbndc” defining the 

size of the local domains on performances of the DEEPS 

algorithm.  
This sub-directory includes: 

a) Technical Report No.3/2020: R2020T3.DOC describing the influence of 

bounds 

b) The Fortran package DEEPS2.FOR which implements the algorithm and  

c) The file FUNC115.TXT with the name of the minimizing functions.   
 

DEEPS4 

Performances of DEEPS algorithm for solving large-scale 

unconstrained optimization problems.  
The sub-directory includes: 

a) Technical Report No.4/2020: R2020T4.DOC describing the performances 

of DEEPS for solving large-scale problems 

b) The Fortran package DEEPS4.FOR which implements the algorithm and  

c) The file FUNC115.TXT with the name of the minimizing functions. 

 

The package DEEPS4.FOR can solve large-scale minimization problems up 

to 500 variables. For example for solving the problem DIXMAANA 

(CUTE) with 500 variables, DEEPS4 gives a local optimal solution in 1685 

iterations, 94162 evaluations of the minimizing function and 27.32 seconds. 

 

DEEPS5 

Performances of DEEPS for solving 16 real applications of 

unconstrained optimization.  
This sub-directory contains: 

a) Technical Report No.5/2020: R2020T5.DOC, 

b) The Fortran package DEEPS5.FOR which implements the algorithm and  

c) The file FUNC16.TXT with the name of the minimizing functions 

included in this numerical experiments. 

 

DEEPS6 
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A new simple deep random search method for unconstrained 

optimization 

This subdirectory contains: 

a) Technical Report No.6/2020: R2020T6.DOC 
b) The Fortran package DEEPS6.FOR which implements the algorithm and  

c) The file FUNCNAME.TXT with the name of the minimizing functions 

included in this numerical experiments. 

 

DEEPS7 

Solution of Human Heart Dipole unconstrained optimization 

problem by means of DEESP6 and Nelder-Mead methods 

This subdirectory contains: 

a) Technical Report No.7/2020: R2020T7.DOC 
b) The Fortran package DEEPS7.FOR which implements the algorithm and  

c) The file FUNCNAME.TXT with the name of the minimizing functions 

included in this numerical experiments. 

 

DEEPS8 

A simple deep random search method for unconstrained 

optimization 
This subdirectory contains: 

a) Technical Report No.8/2020: R2020T8.DOC 

b) The Fortran packages DEEPS2.FOR (for distance among the trial points), 

DEEPS4.FOR (for large-scale optimization), DEEPS5.FOR (with 16 

applications) which implements the algorithm and  

c) The file FUNC116.TXT and FUNC16.TXT with the name of the 

minimizing functions included in these numerical experiments. 

 

DEEPS9 

A two level random search method for unconstrained 

optimization 
This subdirectory contains: 

a) Subdirectory APRIL: 

   - PAS (steepest descent method) 

   - REZ (rezults for solving 16 applications) 

   - DEEP8L.FOR (for solving large-scale problems – Final) 

   - DEEPS8A.FOR (for solving 16 applications – Final) 

   - DEEPS8Z.FOR (For computing the maximum distance – Final) 

   - FUNC16.TXT (with name of the applications - Final) 

   - FUNC115.TXT (with name of the 115 problems - Final) 

b) Subdirectory NELMEAD (Nelder – Mead method) with: 

      - FUNCNEL.TXT (with name of the functions) 

      - NELMEAD.FOR (Fortran code for Nelder-Mead method in  

         implementation of R, Oneill and modified by John Burkardt)   

c) Technical Report No. 9/2020: R2020T9 (April 19, 2020) 

 

DEEP8L.FOR is taylored for solving large-scale unconstarined optimization 

problems up to 500 variables. The numerical experiments include solving 

the problems: VARDIM, EG3, DIXMAANA, Broyden Tridiagonal, 

Broyden Pentadiagonal and DESSCHNF. 

 

DEEPS8A.FOR is designed for solving 16 applications of unconstrained 

optimization: Weber(1), Weber(2), Weber(3), Enzyme reaction, Solution of 

a chemical reactor, Robot kinematics problem, Solar Spectroscopy, 

Estimation of parameters, Propan combustion in air, Gear train with 
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minimum inertia, Human Heart Dipole, Neurophysiology, Combustion 

application, Circuit design, Termistor and Optimal design of a Gear Train. 

The performances of DEEPS8A is presented in Table 5 below. 

 
Table 5. Performances of DEEPS for solving 16 unconstrained optimization applications 

Nr. n  N  M  
iter nfunc cpu *( )f x  0( )f x  

1. 2 2 5 118 1473 0.01 -264.453135 -37.473137 

2. 2 3 5 67 1318 0.0 9.56074405 78.594324 

3. 2 5 10 167 9160 0.0 8.74984910 78.602864 

4. 4 30 50 28 42903 0.02 0.308765E-03 0.531317E-02 

5. 6 50 100 1375 6989983 2.76 0.747292E-04 0.196173E+08 

6. 8 5 10 43 2459 0.0 0.182801E-07 5.334258 

7. 4 5 10 4 233 0.0 8.3163822 9.958700 

8. 4 100 500 54 2705727 1.73 0.3185759-01 2.905300 

9. 5 9900 100 10 10013014 4.83 0.2467602E-04 0.331226E+08 

10. 2 5 3 15 342 0.0 1.7441520 2563.3250 

11. 8 50 300 2404 36265585 26.67 0. 996608E-04 0.190569 

12. 6 1000 6 1044 7999853 3.87 0.854501E-04 23.917600 

13. 10 3 10 25 856 0.0 0.406198E-08 121.998899 

14. 9 50 50 3731 9654682 23.62 0.103618E-03 2964.578187 

15. 3 100 500 15 752179 4.73 175.565438 0.233591E+10 

16. 4 10 50 6 3090 0.0 0.3886716E-13 0.737081E-03 

Total 9106 74442856 68.24  

 
NELMEAD.FOR is designed to solve the above 16 applications by Nelder-

Mead method in implementation of R. Oneill and modified by John Burkard 

and Neculai Andrei. Table 16 below shows the performances of Nelder-

Mead method. 
Table 6. Performances of Nelder-Mead for solving 16 applications 

(FORTRAN77 version by R. ONeill [73], modifications by John Burkardt) 

Nr. n iter nfunc cpu *( )f x  0( )f x  

1. 2 42611 141379 0.03 -264.45314 -37.473137 

2. 2 5749 17111 0.01 9.560739 78.594324 

3. 2 485 1515 0 8.749843 78.602864 

4. 4 50589 257709 0.10 0.307599E-03 0.531317E-02 

5. 6 4853773 40285964 9.37 0.472465E-05 0.196173E+08 

6. 8 18824 131208 0.05 0.682946E-08 5.334258 

7. 4 3553 19323 0.05 6.872370 9.958700 

8. 4 1420090 7962328 3.61 0.318572E-01 2.905300 

9. 5 218408 1304415 0.34 0.738972E-05 0.331226E+08 

10. 2 50 151 0 1.744152 2563.3250 

11. 8 12179330 116416638 39.66 0.109955E-03 0.190569 

12. 6 749358 5880897 1.29 0.166672E-06 23.917600 

13. 10 180224 1478094 0.53 0.606737E-07 121.998899 

14. 9 995980 9939092 18.61 0.853510E-03 2964.578187 

15. 3 3063875 10945869 70.68 175.091316 0.233591E+10 

16. 4 8026086 36117397 5.58 0.751550E-12 0.737081E-03 

Total 31808985 230899090 149.94   

The Technical Report R2020T9.DOC contains an Appendix with the 

mathematical expression of the applications considered in these numerical 

experiments. 

 

DEEPS10 

A two level random search method for solving the Elastic Plastic 

Torsion from MINPACK2 
This directory contains: 

A1EPT.FOR – Fortran program for solving the Elastic Plastic Torsion 

application from MINPACK2 with 2500 variables 

R2020T10.DOC – Technical Report with results of optimization by DEEPS. 

 

Figures 1 and 2 show the solution of this application with 2500 variables 
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Fig. 1. Solution of Elastic Plastic Torsion application. nx=50, ny=50. Surface 

 
 

Fig. 2. Solution of Elastic Plastic Torsion application. nx=50, ny=50. Contour. 

 

DEEPS11 

Performances of DEEPS for solving 120 Unconstrained 

Optimization Problems 
This directory contains: 

- DEEPSPR.FOR 

- DEEPS.OUT 

- DEEPS.REZ 

- FUNC120.TXT 

- R2020T11.DOC  

For solving 120 problems (16 applications and 104 test problems) with the 

number of variables in the range [2-40] the following results was obtained 

by DEEPSPR. 

 
Table 1. Performances of DEEPS 

------------------------------------------------------------------------------------------------------ 

2        118            1473        0  -0.2644531350428E+03    1. Weber Function (1) (Andrei, U71) 

2         67            1318        0   0.9560744054913E+01    2. Weber Function (2) (Kelly, pp. 119) 

2        167            9160        0   0.8749849108484E+01    3. Weber Function (3) (Kelly, pp. 119) 

4         28           42903        2   0.3087657632221E-03    4. Enzyme reaction  (Andrei, U79) (A) 

6       1375         6989983      270   0.7472925581554E-04    5. Solution of a chemical reactor (A) 

8         43            2459        1   0.1828017526180E-07    6. Robot kinematics problem (A) 

4          4             233        0   0.8316382216967E+01    7. Solar Spectroscopy (A) 

4         54         2705727      127   0.3185724691657E-01    8. Estimation of parameters (A) 
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5         10        10013013      369   0.2467602087429E-04    9. Propan combustion in air (A) 

2         15             342        0   0.1744152005590E+01    10. Gear train with minimum inertia (A) 

8       2404        36265585     2527   0.9966084682095E-04    11. Human Heart Dipole. Andrei U84,  

6       1044         7999853      380   0.8545018926146E-04    12. Neurophysiology (A) 

10         25             856        0   0.4061987800161E-08    13. Combustion application (A) 

9       3731         9654682     3297   0.1036184837525E-03    14. Circuit design (A) 

3         15          752179      844   0.1742216236340E+03    15. Thermistor (A) 

4          6            3090        0   0.3886716443010E-13    16. Optimal design of a Gear Train (A) 

2         50            5803        0   0.9835611823309E-10    17. Rosenbrock - Valley of Banana 

2        101          101022        2   0.4898425367948E+02    18. Freudenstein-Roth 

10        123         6261804      362   0.8062621526502E-07    19. White & Holst Function 

4         11            5558        1   0.3423435068941E-08    20. Miele & Cantrell Function 

2         20           40234        1   0.8214653544885E-07    21. Himmelblau (F-P, pp. 326) 

2         10           20123        0  -0.1031628453449E+01    22. Three-hump camelback (1) (F-P, pp.  

2         13            1448        0   0.9837324056667E-10    23. Three-hump camelback (2) (F-P, pp.  

4         71          365146        9   0.3554618463965E-07    24. Wood Function (Andrei U13, pp.42) 

2         66           35282        0   0.1100000000002E+02    25. Sum of different power (x1=45,  

2         34          171947        3  -0.1008600148064E+02    26. Shekel function (F-P, pp. 111) 

8         33         1664504      188   0.5587091822711E-08    27. DENSCHNA function 

2         13          112880        1   0.2472169120657E-12    28. DENSCHNB function 

4        124         6211517      374   0.6407636682735E-08    29. DENSCHNC function 

2          5          252020        7   0.3706190909725E-10    30. Griewank function 

2         19            9776        0   0.2392264124841E-10    31. Brent function 

2          4          201408        3   0.9875204934203E-11    32. Booth function 

2          3          151310        2   0.6418934775920E-12    33. Matyas function 

3         21          105187        1   0.2144472045122E-07    34. Colville function (Andrei, U25) 

2          6         3002326      166  -0.9999999999711E+00    35. Easom function 

8        280           19003        1   0.2866445718079E-04    36. Beale function (Andrei, U16) 

4          5         2502036       65   0.8730870071490E-09    37. Powell function (Andrei, U62) 

2          8         4010395       81  -0.1913222954963E+01    38. McCormick function 

2          4         2001074       27   0.3510557725703E-08    39. Himmelblau function (-11,-7) 

2          6          304420        3   0.2409465011726E-09    40. Leon function 

2          4          101964        1   0.1356415499635E-11    41. Price4 function 

2          6          151312        2  -0.3791237203937E-02    42. Zettl function 

8         63         3210964      141   0.4490426129186E-08    43. Sphere function 

8         21         1069087       46   0.5508803806450E-08    44. Elipsoid function 

2          4          414840        7   0.5922563192900E+01    45. Himmelblau (Problem 29/428) 

3          3          302066       14   0.2293552829184E-09    46. Himmelblau (Problem 30/428) 

2          4            8204        1   0.3013714813619E-09    47. Himmelblau (Problem 33/430) 

2          6         3012421       56  -0.3523860737488E+00    48. Zirilli function 

2          3           15519        1  -0.7833233140723E+02    49. Styblinski function 

2          3           15482        0  -0.1999999999992E+01    50. Trid function 

2         28         1404941       46   0.4913822073228E-08    51. Scaled Quadratic function 

3          6          122003        5   0.6981231133934E-08    52. Schittkowski 241, pp.  65 

6         46          933332      104   0.3535955270103E-07    53. Schittkowski 271, pp.  95 

2          2            4070        0   0.7731990565293E+00    54. Schittkowski 308, pp. 131 

5          4            4139        1   0.2541928088954E-08    55. Brown's almost linear system 

4          6           60194        4   0.9175380652822E-09    56. Kelley function. Andrei U72 

4         18          180402       13   0.7034029261395E-08    57. A nonlinear system. Andrei U73 

2          2           10363        1  -0.1819999999998E+02    58. Zangwill function. Andrei U14 

3          2           10392        0  -0.3923048452734E+00    59. Circular function. Andrei U19 

2         20          102710       11   0.3424486241119E-06    60. Polexp function. Andrei U21 

2          1            5200        1  -0.5000000000000E+00    61. Dulce function. Andrei U20 

4          3          154211       53   0.1291674224865E-13    62. Cragg & Levy. Andrei U41, pp.49 

5         84            6828        1   0.1285216666786E-06    63. Broyden. Andrei U45, pp.50 

8        501         2562184      392   0.9392975075304E+00    64. Broyden (n=10). Andrei U45, pp.50 

10       501         2571775      379   0.8789736953485E+00    65. Broyden (n=20). Andrei U45, pp.50 

5         33          170845        8   0.9648130225310E-12    66. Full rank (n=5). Andrei U47, pp.51 

8         16           80264        8   0.2290198352507E-05    67. Full rank (n=10). Andrei U47, pp.51 

4         34          170467        7   0.5306897356432E-05    68. Full rank (n=20). Andrei U47, pp.51 

5          8           41333       10   0.2246918386265E-08    69. Trigonometric (n=5). Andrei U48,  

9         12          601813      273   0.1026902990869E-07    70. Trigonometric (n=10). Andrei U48,  

10        10         1001508      514   0.1097167273012E-07    71. Trigonometric (n=20). Andrei U48,  

5          9           46626        8   0.7161813414106E-08    72. Brown function. Andrei U75, pp.59 

4         20          203504      243   0.8582220162694E+05    73. Brown & Dennis, Andrei U32, pp.46 

2          2           51661        2  -0.2345811576100E+01    74. Hosaki function 

5         48            5559        1   0.1920078161404E-08    75. Cosmin function 

10     50001        25603049     2209   0.1828116187903E+02    76. BDQRTIC (CUTE) 

10     10001         5121416      385   0.9090909868030E-01    77. DIXON3DQ (CUTE) 

4         56          282842        9   0.2495604369176E+01    78. ENGVAL1 (CUTE) 

5         75           76091        3   0.1522038725998E+01    79. Extended Penalty Function 

10       140            4549        1   0.2421900361697E-06    80. Broyden pentadiagonal 

2          6           69034        4   0.9000000000179E+00    81. Teo function 

2          5           25068        0   0.7415391589066E-02    82. Coca function 

2         29           15001        0  -0.1249999999982E+01    83. Nec function. Andrei, U30, pp.46 

4          1            5214        1   0.3420673059839E-18    84. QuadraticPowerExp. Andrei, U51,  

8         10           51586        2   0.9558267583740E-11    85. NONDQUAR (CUTE) 

40       191          297249       89   0.1515302199717E-05    86. ARWHEAD (CUTE) 

4       5227        31209850      988   0.9904978234274E-04    87. CUBE (CUTE) 

5         87        43635706     1832   0.6318587675248E-05    88. NONSCOMP (CUTE) 

10       148           50672        4   0.1456219360103E-05    89. DENSCHNF (CUTE) 

12       151           78087        6   0.1261454444921E-06    90. BIGGSB1 (CUTE) 

10        12           62424        4   0.1023966649364E-07    91. Borsec6 

2         21         1926879       13   0.3686757105536E+02    92. Three terms all quadratics 

3         18         1650274       24   0.1102124984312E-04    93. Mishra9 

2         17         1559944       13   0.2785637644975E-08    94. Wayburn1 

2         11          570063        5   0.1044643130973E-08    95. Wayburn2 

10       178          920355       70   0.6666667449697E+00    96. Dixon & Price 

15       165          855048       88   0.7426386427905E-06    97. Qing 

2         12          618990        7  -0.3873724182168E+04    98. Quadratic 2 variables 

2         20          100338        2  -0.6850076846409E+02    99. Rump 

4         60          311669       23   0.3995735589349E+00    100. Extended Cliff (CUTE) 

10       121          627317       44   0.9898969553451E+00    101. NONDIA (CUTE) 

4         16          817016       54  -0.3499997429359E+01    102. EG2 (CUTE) 

8        110          570563       47   0.1217995131007E-06    103. LIARWHD (CUTE) 

4         16           80331       12   0.1212871287929E+02    104. Full Hessian (m=50) 

2         39         1954856      143   0.2807057782276E-10    105. A nonlinear algebraic system 

4         14           72067        2  -0.3739004994563E+02    106. ENGVAL8 (CUTE) 

10         9           22568       11   0.1000000011710E+01    107. DIXMAANA (CUTE) 

10         7           36106       18   0.1000000011413E+01    108. DIXMAANB (CUTE) 

5          6           30831        7   0.1000000002733E+01    109. DIXMAANC (CUTE) 

5        113          582712       22   0.8897747881327E-07    110. DIAG-AUP1 

10        52            1710        0  -0.9499999882112E+01    111. EG3 (COS) 

10        62           63026        5   0.1885210564357E-07    112. VARDIM (CUTE) 

4        412         1068904       33  -0.9999606442786E+00    113. A narrow positive cone 

10        14           16328        3  -0.2718123003131E+01    114. Ackley 

10     20001        51044836     4250  -0.1942809040946E+02    115. Modified Wolfe 

2        460         1176773        1  -0.3530815425299E+01    116. Peak function 

3         79          800719       19   0.2492301853743E+02    117. Function U18 (Andrei, pp. 43) 

2          1            1025        0  -0.1400147716590E-05    118. Function U23 (Andrei, pp. 44) 

5          7           70128        3   0.3763764398013E-08    119. Sum Squares 

10        63           64020        6   0.5383942407341E-08    120. VARDIM MODIFIED (**8) 

----------------------------------------------------------------------------------------------------- 
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          Total number of iterations                   =              99913 

          Total number of function evaluations =      295010496 

          Total Elapsed time (centeseconds)      =              21930 
 

 

DEEPS12 

Comparison Between the Performances of DEEPS and Nelder-

Mead for solving 120 Unconstrained Optimization Problems 
This directory contains: 

- DEEPSPR.FOR  (DEEPS algorithm) 

- DEEPS.OUT 

- DEEPS.REZ 

- func120.txt 

- f.bmp 

- NMPF.FOR (Nelder-Mead algorithm) 

- NELMIN.OUT 

- NELMIN.REZ 

- PERF2N.FOR 

- R2020T12.DOC (Technical Report) 

 

For solving 120 problems (16 applications and 104 test problems) with the 

number of variables in the range [2-40] the following results was obtained 

by Nelder-Mead. 

 
Table 2. Performances of NELMEAD 

----------------------------------------------------------------------------------------------------- 

n       iter           nfunc      cpu                 f(x*)          Name 

----------------------------------------------------------------------------------------------------- 

2      42611          141379        5  -0.2644531412951E+03    1. Weber Function (1) (Andrei, U71) 

2       5749           17111        1   0.9560739834844E+01    2. Weber Function (2) (Kelly, pp. 119) 

2        485            1515        0   0.8749843722120E+01    3. Weber Function (3) (Kelly, pp. 119) 

4      50589          257709       26   0.3075992528786E-03    4. Enzyme reaction  (Andrei, U79) (A) 

6    4853773        40285964     1549   0.4724650698678E-05    5. Solution of a chemical reactor (A) 

8      18824          131208        3   0.6829467973914E-08    6. Robot kinematics problem (A) 

4       3553           19323        4   0.6872370208734E+01    7. Solar Spectroscopy (A) 

4    1420090         7962328      281   0.3185723794137E-01    8. Estimation of parameters (A) 

5     218408         1304415       24   0.7389721566503E-05    9. Propan combustion in air (A) 

2         50             151        0   0.1744152013241E+01    10. Gear train with minimum inertia (A) 

8   12179330       116416638     3181   0.1098385128966E-06    11. Human Heart Dipole. Andrei U84,  

6     749358         5880897      135   0.1666727283741E-06    12. Neurophysiology (A) 

10    180224         1478094       55   0.6067373743983E-07    13. Combustion application (A) 

9     995980         9939092     1867   0.8535102372545E-03    14. Circuit design (A) 

3    3063875        10945869     7870   0.1750913166362E+03    15. Thermistor (A) 

4    8026086        36117397      408   0.7515500076120E-19    16. Optimal design of a Gear Train (A) 

2     127791          414317        3   0.2734165291417E-08    17. Rosenbrock - Valley of Banana 

2       7772           21242        0   0.4898425367977E+02    18. Freudenstein-Roth 

10   4695026        36081186      899   0.2997209356058E-09    19. White & Holst Function 

4   28366709       134400344    16145   0.2728619079879E-22    20. Miele & Cantrell Function 

2        549            1801        0   0.2410661272377E-09    21. Himmelblau (F-P, pp. 326) 

2       4138           12917        0  -0.1031628453487E+01    22. Three-hump camelback (1) (F-P, pp. 

2      12681           40251        0   0.1791830653421E+01    23. Three-hump camelback (2) (F-P, pp.  

4    9355302        47490787      544   0.9110670262491E-09    24. Wood Function (Andrei U13, pp.42) 

2     110941          357658        3   0.1100000000000E+02    25. Sum of different power (x1=45,  

2      13395           38020        0  -0.5065439735221E+01    26. Shekel function (F-P, pp. 111) 

8   32893597       239932420    27981   0.1913163675383E-15    27. DENSCHNA function 

2     147386          476192        5   0.1325420598527E-13    28. DENSCHNB function 

4    1417159         6039693      489   0.3150644529618E-12    29. DENSCHNC function 

2     711418         2298258       65   0.3219646771413E-14    30. Griewank function 

2      52622          184115        5   0.1293393700200E-14    31. Brent function 

2      52304          201225        2   0.4104965908510E-13    32. Booth function 

2     717578         2004520       24   0.2799993833942E-14    33. Matyas function 

3    8195333        31914397      401   0.8289711921786E-07    34. Colville function (Andrei, U25) 

2    1649974         5224920      233  -0.8110381996167E-04    35. Easom function 

8   19783086       132373529     6021   0.6615259847323E-09    36. Beale function (Andrei, U16) 

4    1559835         6876985       87   0.1285824459516E-08    37. Powell function (Andrei, U62) 

2       4266           12315        0  -0.1913222954978E+01    38. McCormick function 

2     237967          809851        6   0.4908320623628E-14    39. Himmelblau function (-11,-7) 

2      63610          212134        2   0.1174796918677E-05    40. Leon function 

2    1802097         6173224       53   0.1068218485126E-07    41. Price4 function 

2      78275          246644        2  -0.3791237220468E-02    42. Zettl function 

8  133777215       999990013    25833   0.1025689019328E+00    43. Sphere function 

8   26546059       200996384     5589   0.3701062404756E-13    44. Elipsoid function 

2         95             193        0   0.5924864255508E+01    45. Himmelblau (Problem 29/428) 

3       1439            4699        0   0.7544044265105E-06    46. Himmelblau (Problem 30/428) 

2   17452184        52356544     3420   0.1596984695221-312    47. Himmelblau (Problem 33/430) 

2      18886           63700        1  -0.1526394417735E+00    48. Zirilli function 

2        285             769        0  -0.7833233140632E+02    49. Styblinski function 

2     755782         2507508       50  -0.2000000000000E+01    50. Trid function 

2  110285272       441135983     2857   0.1892243360928E-12    51. Scaled Quadratic function 

3       7510           29043        1   0.1143027552724E-03    52. Schittkowski 241, pp.  65 

6        966            4340        0   0.2273917223761E-08    53. Schittkowski 271, pp.  95 

2       1029            3374        0   0.7731990567225E+00    54. Schittkowski 308, pp. 131 

5      34744          190100        3   0.2297883703351E-06    55. Brown's almost linear system 

4   81407052       368163139     6071   0.1422943777975E-13    56. Kelley function. Andrei U72 

4     831618         3641092       48   0.1050959372381E-11    57. A nonlinear system. Andrei U73 

2       8908           24481        0  -0.1820000000000E+02    58. Zangwill function. Andrei U14 

3       3969           14757        0  -0.3923048452658E+00    59. Circular function. Andrei U19 

2  333330006       999990001    51593   0.3252892765785E-15    60. Polexp function. Andrei U21 

2   18157983        63360019     1366  -0.5000000000000E+00    61. Dulce function. Andrei U20 
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4   95011309       435691620    52987   0.7500494352983E-17    62. Cragg & Levy. Andrei U41, pp.49 

5     732002         4006517       74   0.3752106106972E-14    63. Broyden. Andrei U45, pp.50 

8    5888828        44813788     1125   0.2027502384709E-13    64. Broyden (n=10). Andrei U45, pp.50 

10   5354896        45896404     2071   0.1657738109364E-13    65. Broyden (n=20). Andrei U45, pp.50 

5   32105835       172990716     5657   0.5600659081408E-15    66. Full rank (n=5). Andrei U47, pp.51 

8   48480940       345462434    24336   0.1455367377274E-12    67. Full rank (n=10). Andrei U47, pp.51 

4   10669233        51885942     1207   0.3021412301497E-13    68. Full rank (n=20). Andrei U47, pp.51 

5   26934031       142029901    33429   0.2760740072636E-14    69. Trigonometric (n=5). Andrei U48, p 

8   45798374       344886928   135910   0.1356472192863E-03    70. Trigonometric (n=10). Andrei U48,  

10   4250369        37671143    19528   0.2795056123570E-04    71. Trigonometric (n=20). Andrei U48,  

5  203955743       999990002   170652   0.1945484835526E-03    72. Brown function. Andrei U75, pp.59 

4        250             448        1   0.8582220220393E+05    73. Brown & Dennis, Andrei U32, pp.46 

2       7205           21445        0  -0.1127794026972E+01    74. Hosaki function 

5      38414          191802        2   0.2120535922759E-11    75. Cosmin function 

10    201534         1833324       58   0.1828116175371E+02    76. BDQRTIC (CUTE) 

10   3233930        28345714      652   0.9090909101913E-01    77. DIXON3DQ (CUTE) 

4   67202284       307509056     6519   0.2495604366214E+01    78. ENGVAL1 (CUTE) 

5      18287          107384        1   0.1522244423034E+01    79. Extended Penalty Function 

10    516284         4324701      157   0.2616410786262E-11    80. Broyden pentadiagonal 

2     114222          324189       13   0.9000000000000E+00    81. Teo function 

2      15239           44506        0   0.3603393492868E-11    82. Coca function 

2     220243          770819        6  -0.1250000000000E+01    83. Nec function. Andrei, U30, pp.46 

4  249997502       999990008    38652   0.6498415264253E-22    84. QuadraticPowerExp. Andrei, U51,  

8  157576603       999990001    32857   0.1061987603079E+00    85. NONDQUAR (CUTE) 

10 129703558       999990012    38047   0.2568702260532E+00    86. ARWHEAD (CUTE) 

4    1221660         5840002       98   0.1170242033020E-03    87. CUBE (CUTE) 

5  164045317       883130211    16416   0.9253097139544E-09    88. NONSCOMP (CUTE) 

10   1255946        11901044      483   0.2432712919620E-11    89. DENSCHNF (CUTE) 

12  45543080       371730317    15144   0.2014644810372E-11    90. BIGGSB1 (CUTE) 

10 133332459       999990011    49722   0.1683728521419E+02    91. Borsec6 

2       2424            7088        0   0.1273426289635E+03    92. Three terms all quadratics (-10,-7 

3        148             300        0   0.5510270894397E-03    93. Mishra9 

2   18567784        57590805      657   0.6454558509586E-14    94. Wayburn1 

2   50268833       142015420     1619   0.7079093388257E-15    95. Wayburn2 

10 136976950       999990005    37149   0.1005563480381E+04    96. Dixon & Price 

15   3688046        45451698     1895   0.2261032544726E-09    97. Qing 

2       1797            5885        0  -0.3873724182186E+04    98. Quadratic 2 variables 

2        253             826        0  -0.1640345171681E+02    99. Rump 

4  212439967       854777872    52900   0.3995732273681E+00    100. Extended Cliff (CUTE) 

10    642708         4988085      164   0.5455027073350E-12    101. NONDIA (CUTE) 

4    3424718        16773818      876  -0.3447779105873E+01    102. EG2 (CUTE) 

8   59110575       410824970    13094   0.1517431852535E-11    103. LIARWHD (CUTE) 

4      12770           57246       18   0.1212871287129E+02    104. Full Hessian (m=50) 

2    1875451         5018254      334   0.1833800208498E-15    105. A nonlinear algebraic system (App.  

4     104963          474395        7  -0.3739004995170E+02    106. ENGVAL8 (CUTE) 

10  79384557       699911844   312619   0.1000000000000E+01    107. DIXMAANA (CUTE) 

10 115678296       999990003   476546   0.1001251911045E+01    108. DIXMAANB (CUTE) 

5     519054         2611878      424   0.1000000000000E+01    109. DIXMAANC (CUTE) 

5     207132         1046318       18   0.3533704907427E-12    110. DIAG-AUP1 

10    685883         5148183      471  -0.8184677637534E+01    111. EG3 (COS) 

10  35829692       279603425    10377   0.4467510264809E-10    112. VARDIM (CUTE) 

4    7261027        38333938      595  -0.9999999949881E+00    113. A narrow positive cone 

10    281032         2414390      398   0.3841368041779E+01    114. Ackley 

10   7664639        69463156     3609  -0.1165685424949E+02    115. Modified Wolfe 

2    1609811         5320855      741  -0.4105766136014E-05    116. Peak function 

3     117079          492835       11   0.2492301853327E+02    117. Function U18 (Andrei, pp. 43) 

2   13116974        39350868     1855   0.3541982800515-316    118. Function U23 (Andrei, pp. 44) 

5     168469          738431       12   0.6048706368964E-13    119. Sum Squares 

10  17305874       131238244     6037   0.3070835264168E-10    120. VARDIM MODIFIED (**8) 

----------------------------------------------------------------------------------------------------- 

 

    Total CPU time (centeseconds)  =     1733441  (4.5 hours) 

 

Figure 1 shows the Dolan and Moré’s performance profiles of these 

algorithms 

 
Fig. 1. Performance profiles of DEEPS and NELMED for solving 120 problems 

 

DEEPS13 

A two level random search method for unconstrained 

optimization. 
This directory contains: 

DEEPSPR.for (Fortran package) 

FUNC120.TXT 

NMPF.FOR (Fortran package of Nelder-Mead) 
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NELMIN.out 

NELMIN.rez 

NELMIN.tot 

PERF2N.for (Fortran package for comparing algorithms) 

R2020T13.DOC (The paper: A two level random search method for 

unconstrained optimization. 54 pages) 
Figure 5 presents the performance profiles of these algorithms. 

 

Fig. 5. Performance profiles of DEEPS and NELMED for solving 16  

applications of unconstrained optimization 

 

DEEPS14 

Numerical experiments with DESCON for solving 14 applications 

of unconstrained optimization 
This directory contains: 

descon14.for 

descon14.out  

descon14.rez  

func14.txt  

R2020T14/doc (The paper: Numerical experiments with DESCON for 

solving 14 applications of unconstrained optimization. 10 pages) 

 
Performances of DESCON 

-------------------------------------------------------------------------------------------------------------------- 

       n    iter   fgcnt time(c)          fx*                 gnorm                  Name of Application 

 -------------------------------------------------------------------------------------------------------------------- 

       2    1878   10001       0  -0.2644531414650E+03   0.8208740831576E+00   1. Weber Function (Andrei, U71)               

       4      48     143       0   0.3075056038514E-03   0.6886760990097E-08   2. Enzyme reaction  (Andrei, U79) (A)         

       6      85     264       0   0.9665994663683E-15   0.4231231612938E-07   3. Solution of a chemical reactor (A)         

       8    1843   10006       2   0.5463981044793E-05   0.1781782618260E-02   4. Robot kinematics problem (A)               

       4      12      38       0   0.8312307692553E+01   0.8585722387648E-07   5. Solar Spectroscopy (A)                     

       4      46     150       0   0.3185717881375E-01   0.6936429307668E-08   6. Estimation of parameters (A)               

       5     724    2246       0   0.1224151943762E-06   0.8166044868424E-07   7. Propan combustion in air (A)               

       2      14     154       0   0.1751192213346E+01   0.7760986494009E-07   8. Gear train with minimum inertia (A)        

       8    1916   10002       1   0.1120571259805E-01   0.1686188462847E-03   9. Human Heart Dipole. Andrei U84, pp.65      

       6      93     632       0   0.4539057615171E+01   0.4484463269794E-07   10. Neurophysiology (A)                       

      10      51     142       0   0.6898812079492E-10   0.8219103504792E-07   11. Combustion application (A)                

       3    1839   10005       9   0.1726024568705E+03   0.1334938231384E+02   12. Thermistor (A)                            

       4    1842   10004       0   0.2387780742094E-02   0.8995056760928E-04   13. Optimal design of a Gear Train (A)        

       9     739    2166       2   0.1454860731888E-13   0.1554041459749E-06   14. Circuit design (A)                        

 -------------------------------------------------------------------------------------------------------------------- 

   TOTAL   11130   55953     14.00 centeseconds     

    

   Date: ---  Month: 6  Day: 3  Year: 2020 

 

 

DEEPS15 
Numerical experiments with CUBIC for solving 14 applications of 

unconstrained optimization 

This directory contains: 

cubic14.for  

cubic14.out  

cubic14.rez  

func14.txt  

R2020T15.doc (The paper: Numerical experiments with CUBIC for solving 

14 applications of unconstrained optimization. 11 pages) 
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Performances of CUBIC 

 ----------------------------------------------------------------------------------------------------------------------        

       n    iter   fgcnt   time(c)          fx                gnorm              Name of Applications 

 ---------------------------------------------------------------------------------------------------------------------- 

       2    1288    5001       1  -0.2643790043149E+03   0.6876989703321E+00   1. Weber Function (Andrei, U71)               

       4      39     116       0   0.3075056060090E-03   0.1140193575396E-06   2. Enzyme reaction  (Andrei, U79) (A)         

       6      94     287       0   0.7468342084540E-15   0.4147895225729E-07   3. Solution of a chemical reactor (A)         

       8     333    5017       1   0.4829469121831E+00   0.4942442115598E+00   4. Robot kinematics problem (A)               

       4      10      31       0   0.8312307695614E+01   0.7104616347572E-06   5. Solar Spectroscopy (A)                     

       4      30      96       0   0.3187570933023E-01   0.5862905229454E-06   6. Estimation of parameters (A)               

       5     555    1670       0   0.4799163454696E-05   0.1371052281519E-05   7. Propan combustion in air (A)               

       2      11     138       0   0.1751192330768E+01   0.9461910026439E-06   8. Gear train with minimum inertia (A)        

       8     940    5006       1   0.1199116073210E-01   0.8786818146807E-01   9. Human Heart Dipole. Andrei U84, pp.65      

       6      24      79       0   0.4539057615171E+01   0.3989872629134E-08   10. Neurophysiology (A)                       

      10      50     139       0   0.4967405721874E-09   0.3630146049766E-06   11. Combustion application (A)                

       3     395    5003       6   0.1721497388951E+03   0.2361553857583E+01   12. Thermistor (A)                            

       4       7     101       0   0.2322924674570E-04   0.7867065011382E-06   13. Optimal design of a Gear Train (A)        

       9     563    1639       3   0.8544333431670E-14   0.2890489586180E-06   14. Circuit design (A)                        

 ---------------------------------------------------------------------------------------------------------------------- 

   TOTAL    4339   24323     12.00 centeseconds 

 

   Date: --->  Month: 6  Day: 3  Year: 2020 

 

 

DEEPS16 
Numerical experiments with CG-DESCENT for solving 14 applications 

of unconstrained optimization 

This directory contains: 

cgdescent14.for 

descent14.out  

descent14.rez  

func14.txt  

R2020T16.doc (The paper: Numerical experiments with CG-DESCENT for 

solving 14 applications of unconstrained optimization. 10 pages) 

 
Performances of CG-DESCENT 

 ---------------------------------------------------------------------------------------------------------------------- 

       n    iter   fgcnt   time(c)          fx                gnorm              Name of Applications 

 ---------------------------------------------------------------------------------------------------------------------- 

       2     130     526       0  -0.2644531414650E+03   0.4360555021096E+00   1. Weber Function (Andrei, U71)               

       4      87     183       0   0.3075057506207E-03   0.9351232549738E-06   2. Enzyme reaction  (Andrei, U79) (A)         

       6     242     531       0   0.1546034033470E-11   0.8328999653862E-06   3. Solution of a chemical reactor (A)         

       8      13      79       0   0.1045002080991E-04   0.2937120722379E-02   4. Robot kinematics problem (A)               

       4      34      73       0   0.6872367741557E+01   0.3753421634575E-06   5. Solar Spectroscopy (A)                     

       4     638    1436       0   0.3194075831746E-01   0.9984546877919E-06   6. Estimation of parameters (A)               

       5    9001   18039       1   0.1327993904766E-03   0.3013599273355E-03   7. Propan combustion in air (A)               

       2      14      86       0   0.1745268282541E+01   0.6851854457169E-01   8. Gear train with minimum inertia (A)        

       8       2      57       0   0.1790818193032E+00   0.3756017838954E-01   9. Human Heart Dipole. Andrei U84, pp.65      

       6      39     100       0   0.4539057615171E+01   0.3103946255578E-07   10. Neurophysiology (A)                       

      10      55     114       0   0.1279714516413E-09   0.1142557208812E-06   11. Combustion application (A)                

       3      32     462       1   0.1721680788246E+03   0.2931072079241E+03   12. Thermistor (A)                            

       4       1      56       0   0.1743310601795E-01   0.5889113990961E-03   13. Optimal design of a Gear Train (A)        

       9    7485   15457      11   0.2419744215211E-10   0.8313476443084E-06   14. Circuit design (A)                        

 ---------------------------------------------------------------------------------------------------------------------- 

   TOTAL   17773   37199     13.00 centeseconds 

 

    Date: ---  Month: 6  Day: 4  Year: 2020 

 

 Line Search with Appproximate Wolfe conditions 

 

DEEPS17 
Comparison of modern conjugate gradient methods: DESCON, 

CUBIC, CG-DESCENT (4.1) for solving 14 small-scale applications of 

unconstrained optimization 

This directory contains: 

CGDESCENT 

CUBIC 

DESCON 

R2020T17.doc (The paper: Comparison of modern conjugate gradient 

methods: DESCON, CUBIC, CG-DESCENT (4.1) for solving 14 small-

scale applications of unconstrained optimization. 8pages) 

 

DEEPS18 
Numerical experiments with L-BFGS for solving 14 applications of 

unconstrained optimization 

This directory contains: 

func14.txt  

lbfgs14.for  

lbfgs14.out  

lbfgs14.rez  

R2020T18.doc (The paper:  Numerical experiments with L-BFGS for 

solving 14 applications of unconstrained optimization. 10pages) 

Table 5 contains the performances ofDESCON, CUBIC, CG-DESCENT 
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and L-BFGS for solving 14 applications of unconstarined optimization. 

 
Table 5 

Performances of DESCON, CUBIC, CG-DESCENT and L-BFGS 

 iter fgcnt time 

DESCON 11130 55953 15 

CUBIC 4339 24323 12 

CG-DESCENT(w) 17773 37199 14 

CG-DESCENT(aw) 17773 37199 13 

L-BFGS 22029 30723 6 

 

DEEPS19 
Properties of the DEEPS algorithm for solving unconstrained 

optimization problems 

This directory contains: 

deepsPR.for  

func120.txt  

R2020T19.doc (The paper: Properties of the DEEPS algorithm for solving 

unconstrained optimization problems. 6 pages) 

 

DEEPS20 

Performances of DEEPS for solving some difficult unconstrained 

optimization problems 
This directory contains: 

deepsPR.for  

func120.txt  

R2020T20.doc (The paper: Performances of DEEPS for solving some 

difficult unconstrained optimization problems. 7 pages) 

 
    April 20 – May 17, 2020 

 

 

<><><><><><><><><><> 
 

 

 

Conjugate Gradient Methods 
 

1. CGALL 

CGLOOP 

Package implementing 23 Conjugate  Gradient  Algorithms. The 

package implements 80 unconstrained test function examples. 

The following CG algorithms have been implemented: 

1) Hestenes – Stiefel, 

2) Fletcher – Reeves, 

3) Polak-Ribiere-Polyak, 

4) Polak-Ribiere-Polyak plus, 

5) CD - Conjugate Descent (Fletcher), 

6) Liu – Storey, 

7) Dai – Yuan, 

8) Dai - Liao, 

9) Dai - Liao plus, 

10) Andrei (SDC), (Please see the paper: N. Andrei, A Dai-Yuan conjugate 

gradient algorithm with sufficient descent and conjugacy conditions for unconstrained 

optimization. Applied Mathematics Letters, 21, (2008), pp.165-171.) 

11) hybrid Dai – Yuan, 
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12) hybrid Dai - Yuan zero, 

13) Gilbert – Nocedal, 

14) Hu and Storey, 

15) Touat-Ahmed and Storey, 

16) Hybrid LS – CD, 

17) Birgin - Martinez (scaled Perry), 

18) Birgin - Martinez plus (scaled Perry),  

19) scaled Polak-Ribiere-Polyak, 

20) scaled Fletcher-Reeves, 

21) New cg from PRP: beta=(ytg+ -yty stg+/gtg)/yts  

      (Please, see (8.3.130) in the BOOK.  Please, see (5.5.40) in the CG-BOOK.), 

22) New cg from DY: beta = ytg+/yts-ytg+*stg/(yts**2)   
      (Please, see (8.3.102) in the BOOK.  Please, see (5.5.12) in the CG-BOOK.), 

23) New cg from DY:   beta=max(0,ytg/yts)*(1-stg/yts),  

24) New cg: Please see the paper: W07P26.pdf 
 

Please see the books: 

1) (BOOK) N. Andrei, Critica Raţiunii Algoritmilor de Optimizare fără  

     Restricţii. Editura Academiei Române, Bucureşti, 2009. 

2) (CG-BOOK) N. Andrei, Metode Avansate de Ggradient Conjugat 

     pentru  Optimizare fără Restricţii. Editura Academiei Oamenilor de  

     Ştiinţă, Bucureşti, 2009. 

 

The Fortran program CGLOOP.FOR implements the above 20 

conjugate gradient algorithms using the loop unrolling of depth 5. 

 

Subdirectory APPLIC contains 7 applications from MINPACK-2. 

Please see OPISAPL.DOC file. 

 
February 8, 2007 

2. CG-

ACCELERAT 
This package implements a number of 24 conjugate gradient algorithms 

accelerated by means of a procedure presented in: 

N. Andrei, Acceleration of conjugate gradient algorithms for 

unconstrained optimization. Applied Mathematics and Computation, 

vol. 213, Issue 2, 2009, pp. 361-369.  

DOI information:  10.1016/j.amc.2009.03.020 

 

The package implements 80 unconstrained test function examples. 

The following conjugate gradient algorithms have been implemented: 

1) Hestenes – Stiefel, 

2) Fletcher – Reeves, 

3) Polak-Ribiere-Polyak, 

4) Polak-Ribiere-Polyak plus  , 

5) CD - Conjugate Descent (Fletcher), 

6) Liu – Storey, 

7) Dai – Yuan, 

8) Dai – Liao, 

9) Dai - Liao plus, 

10) Andrei (ACGSD/2) 
(Please see the paper:                                                          

Andrei, N., A Dai-Yuan conjugate gradient algorithm with sufficient descent and 

conjugacy conditions for unconstrained optimization. 

Applied Mathematics Letters, vol 21, 2008, pp. 165-171. 
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Please, see the book:  

Advanced Conjugate Gradient Methods for Unconstrained Optimization. 

Chapter 5, section 5, Remark 5.5.1.   

Academy of Romanian Scientists Publishing House, Bucharest, 2009.), 

11) hybrid Dai – Yuan, 

12) hybrid Dai - Yuan zero, 

13) Gilbert – Nocedal, 

14) Hu and Storey,  

15) Touat-Ahmed and Storey, 

16) Hybrid LS – CD,  

17) Birgin - Martinez (scaled Perry), 

18) Birgin - Martinez plus (scaled Perry), 

19) scaled Polak-Ribiere-Polyak 
(Please see the paper: 

Andrei, N., Scaled memoryless BFGS preconditioned conjugate gradient algorithm 

for unconstrained optimization. 

Optimization Methods and Software, vol.22, No.4, 2007, pp.561-571.), 

20) scaled Fletcher-Reeves 
(Please see the paper: 

Andrei, N., Scaled memoryless BFGS preconditioned conjugate gradient algorithm 

for unconstrained optimization. 
Optimization Methods and Software, vol.22, No.4, 2007, pp.561-571.), 

21) New cg from PRP 
Please, see the book:  

Advanced Conjugate Gradient Methods for Unconstrained Optimization. 

Chapter 5, section 5, Remark 5.5.2.   

Academy of Romanian Scientists Publishing House, Bucharest, 2009.), 

22) New cg from DY  (ACGSD)   
(Please see the paper: 

Andrei, N., Another nonlinear conjugate gradient algorithm for unconstrained 

optimization. 

Optimization Methods and Software, vol.24, No.1, 2009, pp.89-104.), 

23) New CG from DY  (ACGSDz) 
(Please see the paper: 

N. Andrei, Another nonlinear conjugate gradient algorithm for unconstrained 

optimization. 
Optimization Methods and Software, vol.24, No.1, February 2009, pp. 89-104.), 

24) New cg from PRP and DYc Please see the paper: 
(N. Andrei, New Conjugate Gradient Algorithms for Unconstrained Optimization 

Encyclopedia of Optimization, Second Edition, 2009. 

C.A. Floudas and P.M. Pardalos (Eds.), Volume N, pp. 2560-2571, Springer.) 

 

The subdirectory APPLICATIONS contains 5 applications from 

MINPACK-II collection, as follows: 

APPL1.FOR - elastic-plastic torsion problem, 

APPL2.FOR - pressure distribution in a journal bearing problem, 

APPL3.FOR - optimal design with composite materials problem, 

APPL5.FOR - steady state combustion problem, 

APPL7.FOR - Minimal Surface Area Problem. 

 

All these applications have been solved using all 25 conjugate gradient 

algorithms. The results are enlisted in *.doc files. 
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Fig. 1. Solution of the application A1 - Elastic-Plastic Torsion. 

200, 200nx ny   

 
Fig. 2. Solution of the application A2 - Pressure Distribution in a Journal 

Bearing. 200, 200nx ny   

 

 
Fig. 3. Solution of the application A3 - Optimal Design with Composite 

Materials. 200, 200nx ny    
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Fig. 4. Solution of the application A4 - Steady-State Combustion.  

200, 200nx ny   

 

 
Fig. 5. Solution of the application A5 - Minimal Surfaces with Enneper 

boundary conditions. 200, 200nx ny   

 

 
Fig. 6. Evolution of ( )g k  given by HS algorithm for minimizing Extended 

Hiebert function. 
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The norm of gradient ( )g k  is: 

0.8335591087430E+05 

 0.1770302860649E+05 

 0.1290104898224E+03 

 0.2202119533104E+04 

 0.1128337396401E+03 

 0.2510029662606E+04 

 0.3112527173225E+04 

 0.4760512089568E+03 

 0.6871298669484E+02 

 0.1197855311342E+05 

 0.1207581561453E+05 

 0.3458177452260E+02 

 0.1034945886632E+03 

 0.5609625857035E+03 

 0.1078967162139E+04 

 0.6620819548126E+03 

 0.1787862322948E+02 

 0.4539204111787E+03 

 0.1067589106626E+04 

 0.3678916480927E+03 

 0.6861727730327E+01 

 0.3594559195106E+03 

 0.4227395335853E+03 

 0.1523510891905E+02 

 0.1749839153294E+01 

 0.1539429121421E+03 

 0.9512788103020E+02 

 0.3761432997981E+02 

 0.1934700602985E+00 

 0.5261841571038E+01 

 0.6658363856712E-01 

 0.2459542556525E-02 

 0.9613587612598E-06 

Observe that out 33 iterations only for the last two the norm of gradient is 

below 
210

 and 
610

 respectively. 

March 30, 2009 

3. CCOMB 

NDOMB 

The package includes two hybrid conjugate gradient algorithms as a 

convex combination of PRP and DY.   
 

CCOMB is a Fortran package implementing a New Hybrid Conjugate 

Gradient Algorithm as a Convex Combination of PRP and DY 

conjugate gradient algorithms for unconstrained optimization in which 

the parameter theta is selected from the conjugacy condition. 

The search direction in CCOMB algorithm is as follows: 

,11 k
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kkk sgd    

,)1( DY
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k
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k
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k
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.
))((

)())((
22

11

2

11

kkk

T

kk

T

k

kk

T

kk

T

kk

T

kCCOMB

k
ggsygy

ggysygy






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  

 

NDOMB is a Fortran package implementing a New Hybrid Conjugate 

Gradient Algorithm as a Convex Combination of PRP and DY 
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conjugate gradient algorithms for unconstrained optimization in which 

the parameter theta is selected from the Newton direction. 

The search direction in NDOMB algorithm is as follows: 

,11 k

NDOMB

kkk sgd    
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k
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sygyggsgy








  

 

In both algorithms if ,0k  then set ,0k  if ,1k  set .1k  

 

The CCOMB and NDOMB algorithms are detailed in the papers: 

N. Andrei, "Hybrid conjugate gradient algorithm  for unconstrained 

optimization". Journal of Optimization Theory and Applications, 

vol.41, (2009), pp.249-264. 

N. Andrei, "New hybrid conjugate gradient algorithms for 

unconstrained optimization". C.A. Floudas and P.M. Pardalos, (Eds.) 

Encyclopedia of Optimization, second edition, 2009, Springer, pages: 

2560-2571. 

N. Andrei, "Performance profiles of conjugate gradient algorithms for 

unconstrained optimization". C.A. Floudas and P.M. Pardalos, (Eds.) 

Encyclopedia of Optimization, second edition, 2009, Springer, pages: 

2938-2953. 

 
June 24, 2009 

4. CGSYS CGSYS is a package dedicated to compute the minimizer of  a 

differentiable function with a large number of variables.   

The search direction of this algorithm is a linear combination  of 

1 kg  and ,ks  where the coefficients in this linear  combination are 

computed in such a way that both the descent and the conjugacy 

conditions to be guaranteed at every iteration. 

The search direction is computed as: 

1 1k k k k kd g s     , 

2 2

1 1( ) ( )T T

k k k k k

k

k

y s g t s g u
   




, 

2 2

1 1 1 1( ) ( )T T

k k k k k k

k

k

y g g t s g g u
     




, 

2

1 1 1( )( ) ( ).T T T

k k k k k k k ky g s g g y s      

The parameters t  and u  are set 7 /8t   and 0.01u  . 

 

The algorithm is described in: 

N. Andrei, An accelerated conjugate gradient algorithm with 

guaranteed descent and conjugacy conditions for unconstrained 

optimization. Technical Report, March 6, 2009. 

(Please see the paper: cgsyspap.doc) 
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The subdirectory APPLIC contains 7 applications from MINPACK-II 

collection. 

 
October 24, 2008 

5. CGSECM Conjugate gradient algorithm based on the equality of the Newton 

direction with the conjugate gradient direction and modified secant 

condition. 

The algorithm depends on the scalar parameter .  

The search direction is as follows: 

,11 kkkk sgd    

If ,0  then: 
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If ,0  then: 

,10,max 1

2

1
































 

k

T

k

k

T

k

kk

T

k

k

T

k
k

sy

gs

ssy

gy
 

.)(3)(6 11 k
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kkkk sggff    

 
February 12, 2008 

6. CGHSDY 

(HSDY9, 

HSDYNG, 
HSDYPLUS) 

A hybrid conjugate gradient algorithm with convex combination of HS 

and DY and Newton direction. 

 

There are three variants of hybrid conjugate gradient algorithms: 

1) HSDY9 algorithm: 

The search direction is computed as follows: 

,11 kkkk sgd    

,
1
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k
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gs   

If ,1k  then ,

2

1

k

T

k
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k
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g   (DY) 

If ,0k  then .1

k

T

k

k

T

k
k

sy

gy   (HS) 

2) HSDYNG algorithm 

In this algorithm the parameter k  is computed in 6 different ways: 

a) Hybrid CG with Newton and secant equation:   

,
1

1




k

T

k

k

T

k
k

gg

gs
  

b) Hybrid CG with Newton and spectral gradient:    
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c) Hybrid CG with Newton a modification of the above formula:  
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d) Hybrid CG with Newton and Zhang et all approximation of sHs: 
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e) Hybrid CG with Newton and Zhang et all approximation of Hs and 

    sHs: 
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f) Hybrid CG with Newton and Zhang et all approximation of Hs and 

   sHs: 
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With this value of k  the value of k  is computed as: 

DY

kk

HS

kkk   )1( , 

If ,1k  then set  ,DY

kk    

If ,0k  then set .HS

kk    

 

3) HSDYPLUS algorithm 

In this algorithm the parameters k  and k are computed as follows: 
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The theoretical developments of HYBRID algorithm are described into 

the papers:  

N. Andrei, Another hybrid conjugate gradient algorithm for 
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Unconstrained Optimization, Numerical Algorithms, vol.47, no.2, 

February 2008, pp.143-156. 

N. Andrei. Accelerated hybrid conjugate gradient algorithm with 

modified secant condition for unconstrained optimization. Numerical 

Algorithms, vol. 54 (2010), pp.23-46. 
April 2, 2007 

7. CONGRAD 

(AML5382, 

PCONMIN, 

MCONMIN) 

Package for unconstrained minimization using the conjugate gradient 

algorithm of Shanno with Beale's restart procedure. 

Prof. Shanno sent me a copy of the package on October 17, 1983. I 

modified it in some respects, including the possibility to work on a 

train of numerical experiments. 

 

The algorithm is described in: 

Shanno, D.F., (1978) Conjugate gradient methods with exact searches. 

Mathematics of Operations Research, vol.3, no.3, August 1978, 

pp.244-256. 

 

The subdirectory MINPACK includes 7 applications from MINPACK-

II collection. 

 

The package aml5382.for implements the conjugate gradient algorithm 

BFGS preconditioned, in variant given by Shanno, with a train of 80 

unconstarined optimization test functions. This is a variant of the 

Shanno’s package which I modified in some respects. The line search 

procedure is incorporated into the package. Another variant of this 

package is given by PCONMIN. 

 

The package MCONGRAD, wich includes the subroutine CONGRAD 

uses the numerical derivatives facilities. The subroutine NUMGRAD is 

designed for numerical derivatives computation.   

 
November 26, 2001 

8. CONMINEX Another variant of the package for unconstrained minimization using 

the conjugate gradient algorithm by Shanno and Phua with Beale's 

restart procedure.  

Mainly, this package is the same as CONGRAD. 
March: 27, 2007 

9. CONMIN Another variant of the package implementing the conjugate gradient by 

Shanno and Phua. 

 

Subroutine CONMIN is described in the papers:  

1) Shanno, D.F., Conjugate gradient methods with inexact searches.  

    Mathematics of Operations Research, vol. 3, No. 3, August 1978,  

    pp. 244256. 

2) Shanno, D.F., On the convergence of a new conjugate gradient 

    algorithm. 

    SIAM J. Numer. Anal., vol.15, No.6, December 1978,  

    pp.1247-1257. 

3) Shanno, D.F., Phua, K.H., Algorithm 500. Minimization of 

    unconstrained multivariate functions. 

    ACM TOMS, vol.2, No.1, March 1976, pp.87-94. 

4) Andrei, N., Criticism of the unconstrained optimization  
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    algorithms reasoning. 

    Academy Publishing House, Bucharest 2009. 

    ISBN 978-973-27-1669-4 

    (Chapter 8, pp.317-448.) 

 

Remark: 
Professor Shanno sent me the Fortran subrutine CONMIN in October 17, 

1983. I modified it in some respects. 

October 15, 2004 

10. DLDC DLDC is a subroutine dedicated to compute the minimizer of a 

differentiable function with a large number of variables.  

Mainly, this is a modification of the Dai-Liao conjugate gradient 

algorithm with guaranteed descent and conjugacy conditions. 

The search direction is computed as: 
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The parameters k  and kt  are computed as solution of the following 

linear algebraic system: 
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                     ),()( 11   k
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                     ).)(()( 11
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kkk
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The scalar parameters w  and v  are introduced in such a way that the 

algorithm to satisfies the sufficient descent condition and the conjugacy 

condition respectively. These parameters are assigned to the values: 

),1( 1 k

T

k gsw  .1.0v  

 

The algorithm is described in: 

N. Andrei, (2009) An accelerated modified Dai-Liao conjugate 

gradient algorithm with guaranteed descent and conjugacy conditions 

for unconstrained optimization. Technical Report, July 16, 2009.  

(Please see the Technical Report: n41a09.doc) 

 

N. Andrei, Another accelerated conjugate gradient algorithm with 

guaranteed descent and conjugacy conditions for large-scale 

unconstrained optimization. Technical Report, January 29, 2010. 

(Please see the paper in DLDCNEW.DOC file) 

 

The directory MINPACK includes 5 applications from MINPACK-II 

collection. 
May 8, 2009 

11. DLDN DLDN is a subroutine dedicated to compute the minimizer of a 

differentiable function with a large number of variables.  

Mainly, this is a variant of a modification of the Dai-Liao conjugate 

gradient algorithm with guaranteed descent and conjugacy conditions. 

The search direction is computed as: 
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The parameters k  and kt  are computed as solution of the following 

linear algebraic system: 

                          ,)()( 11 kk

T

kkk

T

kk agstgy    

,)()( 2

1

2

1 kk

T

kkkk

T

kk bgstgsy    

where 

                     ),()( 11   k

T

kk

T

kk gygsva  

).)(()( 11

2

1   k

T

kk

T

kkk

T

kk gsgygyswb  

The scalar parameters w  and v  are introduced in such a way that the 

algorithm to satisfies the sufficient descent condition and the conjugacy 

condition respectively. These parameters are assigned to the values: 

,8/7w  .1.0v  

The algorithm is not too much sensitive to the values of these 

parameters. 

 
January 29, 2010 

12. DESCON DESCON is a subroutine dedicated to compute the minimizer of a 

differentiable function with a large number of variables.  

The search direction is computed as: 

1 1 ,k k k k kd g s      
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0v   and 0w   are known scalar parameters. 

  

The algorithm is described in: 

- N. Andrei, An accelerated conjugate gradient algorithm with 

guaranteed descent and conjugacy conditions for large-scale 

unconstrained optimization. 

ICI Technical Report, November 29, 2010. 

Please see the Technical Report: R5A11.DOC file. 

- N. Andrei, Another conjugate gradient algorithm with guaranteed 



 34 

descent and conjugacy conditions for large-scale unconstrained 

optimization. Journal of Optimization Theory and Applications, vol. 

159, Number 1, 2013, pp159-182. 

Please, see the paper: JOTA-2013.pdf (paper published in JOTA) 

- N. Andrei, Nonlinear Conjugate Gradient Methods for 

Unconstrained Optimization, vol. 158 Springer Optimization and Its 

Applications, Springer, 2020, (Chapter 7, pp.227-245) 

 

A comprehensive numerical comparasions between DESCON and 

some other conjugate gradient algorithms are presented into the paper 

N. Andrei, A numerical study on efficiency and robustness of some 

conjugate gradient algorithms for large-scale unconstrained 

optimization. Technical Report, June 6, 2013. 
(Please see the paper: ANpaper.doc.) 

 

  
Fig. 1. Performance profile of DESCONa versus HS and versus PRP 

 

  
Fig. 2. Performance profile of DESCONa versus DL ( 1t  ) and versus  

CG-DESCENT 

 

The subdirectory MINPACK2 contains 5 applications from the 

MINPACK-2 Collection. 
November 22 2010 

13. HS This package implements the Hestenes and Stiefel (HS) conjugate 

gradient algorithm using loop unrollong of depth 5. 

The search direction is computed as: 
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January 10, 2013 

14. hDY The package implements the hybrid Day and Yuan conjugate gradient 

algorithm using loop unrolling of depth 5. 

The search direction is computed as: 
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where 05263157.0c  and k  is the step length computed by the 

Wolfe line search conditions. 

 
March 29, 2013 

15. HYBRID, 

HYBRIDM, 
AHYBRIDM 

 

A hybrid conjugate gradient algorithm with Convex combination of HS 

and DY and Newton direction with secant condition. 

This subdirectory contains three packages: HYBRID, HYBRIDM, 

AHYBRIDM. 

 

In HYBRID it is assumed that the pair ),( kk ys  satisfies the secant 

condition.  

The search direction is as follows: 
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The theoretical developments of HYBRID algorithm are described into 

the paper: 

N. Andrei, (2008) Another hybrid conjugate gradient algorithm for 

Unconstrained Optimization, Numerical Algorithms, vol.47, no.2, 

February 2008, pp.143-156.  

 

HYBRIDM is an extension of the HYBRID package authored by N. 

Andrei. In HYBRIDM it is assumed that the pair ),( kk ys  satisfies the 

modified secant condition given by Zhang, Deng and Chen into the 

paper: J.Z. Zhang, N.Y. Deng and L.H. Chen, "New quasi-Newton 

equation and related methods for unconstrained optimization", JOTA, 

102 (1999), p. 147-167. 

 

AHYBRIDM is an acceleration of the HYBRIDM package. 

 

The directory APPLIC contains 7 applications from MINPACK-II 
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collection. 

 

AHYBR1.FOR - Elastic-Plastic Torsion Problem, 

AHYBR2.FOR - Pressure Distribution in a Journal Bearing Problem, 

AHYBR3.FOR - Optimal Design with Composite Materials Problem, 

AHYBR4.FOR - Inhomogeneous Superconductors. Ginzburg-Landau  

                            (1-dimensional) problem, 

AHYBR5.FOR - Steady State Combustion Problem, 

AHYBR6.FOR - Jones Clusters (Molecular Conformation)  Problem, 

AHYBR7.for - Minimal Surface Area Problem. 

 
April 8, 2008 

16. ACGA A nonlinear conjugate gradient algorithm which is a modification of 

the Dai and Yuan [A nonlinear conjugate gradient method with a 

strong global convergence property, SIAM J. Optim. 10 (1999), pp. 

177–182] conjugate gradient algorithm satisfying a parameterized 

sufficient descent condition with a parameter k  is proposed. The 

parameter k  is computed by means of the conjugacy condition, thus 

an algorithm which is a positive multiplicative modification of the 

Hestenes and Stiefel [Methods of conjugate gradients for solving linear 

systems, J. Res. Nat. Bur. Standards Sec. B 48 (1952), pp. 409–436] 

algorithm is obtained. The algorithm can be viewed as an adaptive 

version of the Dai and Liao [New conjugacy conditions and related 

nonlinear conjugate gradient methods, Appl. Math. Optim. 43 (2001), 

pp. 87–101] conjugate gradient algorithm. 

The search direction is computed as: 
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The algorithm is described in the paper: 
N. Andrei, Another nonlinear conjugate gradient algorithm for unconstrained 

optimization. Optimization Methods & Software, Vol. 24, No. 1, February 

2009, 89–104. 

July 31, 2008 

17. CGSECM Conjugate gradient algorithm based on the equality of the Newton 

direction with the conjugate gradient direction and modified secant 

condition. The search direction is computed as: 
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 a parameter. 

February 12, 2008 

18. HYBRID7 Accelerated conjugate gradient algorithm based on the equality of the 
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Newton direction with the conjugate gradient direction and 7 BFGS 

approximations of the Hessian used in modified secant condition. 

 

The algorithm is described in:                                

Andrei, N., Another hybrid conjugate gradient algorithm for 

unconstrained optimization. Numerical Algorithms, vol. 47, (2008), 

pp.143-156. 

Andrei, N., Accelerated hybrid conjugate gradient algorithm with 

modified secant condition for unconstrained optimization. Numerical 

Algorithms (2010) vol.54, pp.23-46.  

(Please see the Technical Report: n14a09.pdf) 

 

Methods for BFGS updating: 

1) Secant condition. The pair ),( kk ys satisfies the secant condition  

( 1) ( ) ( )B k s k y k   

Please see HYBRID algorithm described in: 

Andrei, N., Another hybrid conjugate gradient algorithm for 

unconstrained optimization, Numerical Algorithms, vol. 47, (2008), 

pp.143-156. 

 

2) The pair ),( kk ys  satisfies the modified secant condition  
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3) The pair ),( kk ys  satisfies the modified secant condition 

                                        .~
1 kkk ysB    
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where c  is a positive constant, suggested by Li and Fukushima [2001].   

 

4) The pair ),( kk ys  satisfies the modified secant condition 
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suggested by Yuan and Wei [2010]. 

 

5) 1kB  is approximated by Yuan's formula [1991]. 
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and kt  belongs to the interval ]100,01.0[ . 

 

6) kk

T

k sBs 1  is from the interpolation condition by Yuan. 
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7) kk

T

k sBs 1 is from the Hermite interpolation condition. If the function 

f  is cubic along the line between 1kx  and kx then by considering the 

Hermite interpolation we get: 
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October 6, 2010 

New version September 23, 2013 

19. PRP Polak-Ribière-Polyak conjugate gradient algorithm. 

The search direction is computed like: 
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January 15, 2013 

20. PRP-DC Three-term Conjugate Gradient Algorithms in three variants: 

 

               1) PRP Modified Method (Andrei) (PRPDC) 

               2) Zhang, Zhou and Li (ZZL) 

               3) Zhang, Xiao and Wei (ZXW) 

 

The search direction in version PRPDC: 
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The search direction in version ZZL: 
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The search direction in version ZXW: 
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The algorithm PRP modified (PRP-DC) is described in the paper: 

N. Andrei, A modified Polak–Ribie`re–Polyak conjugate gradient 

algorithm for unconstrained optimization. 

Optimization, Vol. 60, No. 12, December 2011, 1457–1471. 

(Please se the paper: optimiz11.pdf) 
August 25, 2009 

21. ACGA Another Nonlinear Conjugate Gradient Algorithm for Unconstrained 

Optimization. 

The search direction in ACGA is computed as: 
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Please see the paper: 

Andrei, N., (2009), Another Nonlinear Conjugate Gradient Algorithm  

for Unconstrained Optimization, Optimization Methods and Software, 

vol.24, No.1, February 2009, pp. 89-104. 
July 31, 2008 

22. ACGHES Accelerated conjugate gradient algorithm based on the equality of the 

Newton direction with the conjugate gradient direction and using the 

Hessian / vector product. 

The search direction in this algorithm is computed as: 
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where the Hessian / vector product is computed using the finite 

difference: 

,
)()(

)( 11
1

2



 



 kkk

kk

xfsxf
sxf  

,
)1(2 1

k

km

s

nx 



  

m  is epsilon machine. 

 

The algorithm is described in:  

Andrei., N., (2009) Accelerated conjugate gradient algorithm with 

finite difference Hessian/vector product approximation for 

unconstrained optimization. Journal of Computational and Applied 

Mathematics, vol. 230, 2009, pp. 570-582. 

Please see the paper jcam2009.pdf. 

 

The directory MINPACK contains 7 applications from MINPACK-II 

collection: 

ACGHES1.FOR - elastic-plastic torsion, 

ACGHES2.FOR – pressure distribution in a journal bearing problem, 

ACGBES3.FOR - optimal design with composite materials problem, 

ACGHES4.FOR - Inhomogeneous Superconductors. Ginzburg- 

                              Landau (1-dimensional) problem, 

ACGHES5.FOR - steady state combustion problem, 

ACGHES6.FOR - Jones Clusters (Molecular Conformation)  

                              Problem, 

ACGHES7.FOR - minimal surface area problem. 

 
February 12, 2008 

23. ACGHESM Accelerated conjugate gradient algorithm based on the equality of the 

Newton direction with the conjugate gradient direction and using the 

Hessian / Vector product. 

The Hessian / vector product is computed by finite difference using 5 
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different increments. The package is testing the numerical 

performances of this conjugate gradient algorithm subject to the values 

of increments for Hessian / vector product approximations. 

The search direction in this algorithm is computed as: 
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where the Hessian / vector product is computed using the finite 

difference: 
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where  m  is epsilon machine and   is estimated by the following 

methods: 

 

1) Schlick-Fogelson (TNPACK) (SF) 
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2) Schlick-Fogelson (variant) (SFV) 
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3) Nash (Truncated-Newton) (NASH) 
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4) Dembo-Steihaug  (DS) 
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5) O'Leary  (LEARY) 
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The algorithm is described in:  

N. Andrei, Accelerated conjugate gradient algorithm with finite 

difference Hessian/vector product approximation for unconstrained 

optimization. Journal of Computational and Applied Mathematics, 230 

(2009) 570-582. 

 
February 23, 2010 

24. ACGSEC 

 

This algorithm uses a hybrid approach by considering a convex 

combination of Hestenes and Stiefel (HS) and Dai and Yuan (DY) 

conjugate gradient algorithms. 

  

ACGSEC is an accelerated conjugate gradient algorithm based on the 

equality of the Newton direction with the conjugate gradient direction 

and secant condition. 

The search direction is computed as: 
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The algorithm is described in:  

Andrei, N., (2010) Accelerated hybrid conjugate gradient algorithm 

with modified secant condition for unconstrained optimization. 

Numerical Algorithms (2010) vol.54, pp.23-46.  

 

(Please see the Technical Report n14a09.doc: „Accelerated hybrid 

conjugate gradient algorithm with modified secant condition for 

unconstrained optimization”, February 23, 2009.) 

February 22, 2008 

25. ACGMSEC This algorithm uses a hybrid approach by considering a convex 

combination of Hestenes and Stiefel (HS) and Dai and Yuan (DY) 

conjugate gradient algorithms. 

 

ACGMSEC is an accelerated conjugate gradient algorithm based on 

the equality of the Newton direction with the conjugate gradient 

direction and modified secant condition. 

The search direction is computed as: 
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  is a parameter. If 0  we get the ACGSEC algorithm. 

 

The algorithm is described in:  

Andrei, N., (2010) Accelerated hybrid conjugate gradient algorithm 

with modified secant condition for unconstrained optimization. 

Numerical Algorithms (2010) vol.54, pp.23-46.  

 

(Please see the Technical Report n14a09.doc: „Accelerated hybrid 

conjugate gradient algorithm with modified secant condition for 

unconstrained optimization”, February 23, 2009.) 

 

The directory MINPACK2 contains 7 applications from MINPACK-II 

collection. 
February 11, 2008 

26. SCALCG 

ASCALCG 

Scaled Conjugate Gradient Algorithm BFGS Preconditioned                   

with Powell restart. The package implements 80 unconstrained test 

function examples. 

The search direction in this algorithm is computed as: 
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At step r  when 
2

11 2.0   rr

T

r ggg  the algorithm is restarted using 

the above search direction. Otherwise, for any 1 rk  the search 

direction 1kd  is computed using a double upddate scheme as: 
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with wich the search direction is computed as follows: 
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The algorithm is presented in: 

- Andrei, N., (2007) A scaled BFGS preconditioned conjugate gradient 

algorithm for unconstrained optimization. Applied Mathematics 

Letters, 20 (2007), p.645-650. 

- Andrei, N., (2006) Scaled memoryless BFGS preconditioned 

conjugate gradient algorithm for unconstrained optimization. 

Optimization Methods and Software, vol.22, Number 4, August 2007, 

pp.561-571.      

- Andrei, N., (2007) Scaled conjugate gradient algorithms for 

unconstrained optimization.  

Computational Optimization and Applications, vol.38, Number 3, 

December 2007, pp.401-416. 

- Andrei, N., Nonlinear Conjugate Gradient Methods for 

Unconstrained Optimization, vol. 158 Springer Optimization and Its 

Applications, Springer, 2020, (Chapter 8, pp.261-277) 

 

In the SCALCG subroutine there is the logical argument parameter 

accelerat. If accelerat is false, then SCALCG algorithm is used. 

Otherwise, if accelerat is true, then the ASCALCG algorithm is 

considered.  

 

*** 

 

ASCALCG is Accelerated Scaled Conjugate Gradient Algorithm 

BFGS Preconditioned with Powell restart. 

ASCALCG is an acceleration of the SCALCG algorithm.  

ASCALCG is used when the logical parameter accelerat in SCALCG 

subroutine is set to true. 
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The algorithm is presented in: 

Andrei, N., (2010) Accelerated scaled memoryless BFGS 

preconditioned conjugate gradient algorithm for unconstrained 

optimization. European Journal of Operational Research, Vol. 204, 

2010, pp.410-420. 

The package implements 80 unconstrained test function examples. 

 

In SCALCG subdirectory there are three files with numerical 

comparisons, as follows: comp-1.doc contains comparison of 

SCALCG versus ASCALCG, comp-2.doc include comparison of 

ASCALCG versus DESCON, comp-3.doc gives comparisons of 

ASCALCG versus CG-DESCENT. 
June  15,   2005 

Implementation of the acceleration scheme, March 5, 2008 

27. THREECG A three-term conjugate gradient algorithm which satisfies both the 

descent condition and the conjugacy condition.  

The direction is computed as: 
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Fig. 1. THREECG versus CG_DESCENT. 

 
Table 1. Performance of THREECG versus CG_DESCENT 

 for solving 5 applications from MINPACK-2 collection. 

1,000,000 variables. cpu seconds. 

 THREECG CG_DESCENT 

#iter #fg cpu  #iter #fg cpu  

A1 1111 2253 306.04 1145 2291 436.05 

A2 2837 5702 979.27 3368 6737 1571.53 

A3 4507 9104 1904.79 4841 9684 2904.12 

A4 1413 2864 1128.70 1806 3613 2093.79 
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A5 1333 2689 546.20 1226 2453 713.89 

TOTAL 11201 22612 4865.00 12386 24778 7719.38 

 

The algorithm is described in: 

N. Andrei, A simple three-term conjugate gradient algorithm for 

unconstrained optimization. Journal of Computational and Applied 

Mathematics, vol. 241, 2013, pp. 19-29. 

(Please see the file: threecg-r2.doc) 
September 28, 2012 

28. TTS An accelerated subspace minimization three-term conjugate gradient 

algorithm for unconstrained optimization. 

This is a three-term conjugate gradient algorithm for which the search 

direction is computed as: 
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Fig. 1. TTS versus HS, DL (t=1), DY and PRP. 

 

The algorithm is described in: 

N. Andrei, An accelerated subspace minimization three-term 

conjugate gradient algorithm for unconstrained optimization. 

Numerical Algorithms, vol.65, (2014), pp.859-874. 
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April, 5, 2013 

29. TTSNC This is a variant of an accelerated subspace minimization three-term 

conjugate gradient algorithm for unconstrained optimization in which 

the three-term search direction is equal to the Newton direction. 

The search direction is computed as: 
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TTSNC is very close to TTS. The three-term conjugate gradient 

algorithm TTS is obtained as the minimization of the quadratic 

approximation model of function f  in a subspace spanned by 

kk sg ,1  and .ky  In this algorithm the searching direction is 

computed as above, where the parameters ka  and kb  are determined 

as: 
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Observe the difference between these two formulae for ka and 

kb computation. It is the explicit presence of the term 1k

T

k gs into the 

formulae for ka and kb computation in TTS. 

 

The algorithm is presented in: 

N. Andrei, Another three-term conjugate gradient algorithm for 

unconstrained optimization. Technical Report, September 11, 2013 

(Please see the file ttsnc.doc) 
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September 11, 2013 

30. THRCG2 THRCG2 implements an accelerated conjugate gradient algorithm with 

three terms, that at each iteration both the descent and the conjugacy 

conditions are guaranteed.  

The search direction is computes as: 
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The algorithm is described in: 

N. Andrei, A variant of three-term conjugate gradient algorithm for 

unconstrained optimization. Technical Report, August 9, 2013 

(Please see the file thrcg2.doc) 

 
Fig. 1. THRCG2 versus CG-DESCENT 

 

August 9, 2013 
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31. TTDES TTDES implements a three-term conjugate gradient algorithm obtained 

by minimizing the one-parameter quadratic model of the objective 

function in which the symmetrical approximation of the Hessian matrix 

satisfies the general quasi-Newton equation: ,1

1 kkk ysB 

   with 

0 . 

The search direction is computed as: 
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approach its minimum. 

The algorithm is described in: 

- N. Andrei, A new three-term conjugate gradient algorithm for 

unconstrained optimization. Numerical Algorithms, vol.68, (2015), 

pp.305-321. 

- N. Andrei, Nonlinear Conjugate Gradient Methods for 

Unconstrained Optimization, vol. 158 Springer Optimization and Its 

Applications, Springer, 2020, (Chapter 9, pp.334-345) 

 

(Please see the file: paper-ttdes.doc) 

 
October 24, 2013 

32. TTCG TTCG implements an accelerated conjugate gradient algorithm with 

three terms, that at each iteration both the descent and the conjugacy 

conditions are guaranteed.  

The search direction is computes as: 
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The algorithm is described in: 

- N. Andrei, On three-term conjugate gradient algorithms for 

unconstrained optimization. Applied Mathematics and Computation, 

vol.219, 2013, pp.6316-6327. 

(Please see the file AMC_17812.pdf) 

- N. Andrei, Nonlinear Conjugate Gradient Methods for 

Unconstrained Optimization, vol. 158 Springer Optimization and Its 

Applications, Springer, 2020, (Chapter 9, pp.316-323) 

 

 
March 14, 2012 

33. NADCG This program implements an adaptive conjugate gradient algorithm. 

The search direction is computed as the sum of the negative gradient 

and a vector determined by minimizing the quadratic approximation of 

the objective function at the current point. Using a special 

approximation of the inverse Hessian of the objective function, which 

depends by a positive parameter,a search direction is obtained which 

satisfies both the sufficient descent and the conjugacy conditions. 

The search direction is computed as: 
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The parameter 1  is the adaptive parameter. The algorithm is not 

very much sensitive the the values of .  

 

The algorith is described in the paper: 

N. Andrei, A new adaptive conjugate gradient algorithm for large-
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scale unconstrained optimization. Paper published into the book: 

„Optimization and Applications in Control and Data Science”, edited 

by Boris Goldengorin. Springer Optimization and Its Applications, 

Vol.115. 2016, pp.1-16. 

This paper is written in honour of Prof. Boris T. Polyak celebrating his 

80th anniversary. 

(Please see the file: nadcg.doc) 
June 18, 2015 

34. ADCG An adaptive conjugate gradient algorithm for large-scale unconstrained 

optimization. 

The search direction is computed as  

1 1
1 1 1 1
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where 1   is a positive constant. 

 

The algorithm is described into the paper: 

N. Andrei, An adaptive conjugate gradient algorithm for large-scale 

unconstrained optimization, Journal of Computational and Applied 

Mathematics, 292 (2016), pp.83-91. 
May 20, 2015 

35. EIGN-SING In this directory I placed the paper and the Fortran files: 

N. Andrei, Eigenvalues versus singular values study in conjugate 

gradient algorithms for large-scale unconstrained optimization. 

Technical Report, July 14, 2015. (See the file: paper10.doc) The 

Fortran packages SVCG.FOR and NADCG.FOR implements the 

singular value approach and eigenvalues approach in conjugate 

gradient algorithms, respectively. Directory MINPACK contains 5 

applications from MINPACK-II collection. 

1) The NADCG algorithm implements the eigenvalues clustering in 

conjugate gradient algorithms. The search direction is computed as: 
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The parameter 1  is the adaptive parameter. The algorithm is not 
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very much sensitive the the values of .  

2) The SVCG algorithm implements the singular values approach 

(minimizing the comdition number) in conjugate gradient algorithms. 

The search direction is computed as: 

1 1
1 1 .

T T

k k k k
k k k kT T

k k k k

y g s g
d g s y

y s y s

 
      

Observe that this is a modification of the Hestenes and Stiefel 

conjugate gradient algorithm. 

Some comparisons of these algorithms versus CG-DESCENT by Hager 

and Zhang, using 800 unconstrained optimization test problems, are as 

follows: 

  
 

Please, see the paper: N. Andrei, Eigenvalues versus singular values 

study in conjugate gradient algorithms for large-scale unconstrained 

optimization. Optimization Methods and Software, vol. 32, no. 3, 2017, 

pp. 534-551. 
July 14, 2015 

36. ACGSSV An adaptive class of nonlinear conjugate gradient algorithms is 

suggested. The search direction in these algorithms is given by 

symmetrization of the scaled Perry conjugate gradient direction [A. 

Perry, A modified conjugate gradient algorithm. Operations Research, 

26 (1978) 1073-1078], which depends by a positive parameter. The 

value of this parameter is determined by minimizing the distance 

between the symmetrical scaled Perry conjugate gradient search 

direction matrix and the self-scaling memoryless BFGS update by Oren 

in the Frobenius norm. Two variants of the parameter in the search 

direction are presented as those given by: Oren and Luenberger [S.S. 

Oren, D. G. Luenberger, Self-scaling variable metric (SSVM) 

algorithms. I. Criteria and sufficient conditions for scaling a class of 

algorithms. Management Sci., 20 (1973/74) 845-862] and Oren and 

Spedicato [S.S. Oren, E. Spedicato, Optimal conditioning of self-

scaling variable metric algorithms. Math. Program., 10 (1976) 70-90]. 

The corresponding algorithm, ACGSSV, is equipped with a vey well 

known acceleration scheme of conjugate gradient algorithms. 

 

The algorithm is described in the paper: 

N. Andrei, Accelerated adaptive Perry conjugate gradient algorithms 

based on the self-scaling memoryless BFGS update. Journal of 

Computational and Applied Mathematics, vol. 325, 2017, pp.149-164. 

(Please see the file JCAM-2017 (40).pdf) 
January 16, 2017 

37. DLE A new value for the parameter in Dai and Liao conjugate gradient 

algorithm is presented. This is based on the clustering the eigenvalues 

of the matrix which determine the search direction of this algorithm. 
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This value of the parameter lead us to a variant of the Dai and Liao 

algorithm which is more efficient and more robust than the variants of 

the same algorithm based on the minimizing the condition number of 

the matrix associated to the search direction. 

Babaie-Kafaki and Ghanbari [1] suggested two choices for the scaling 

parameter: 

*
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In this paper I suggest the following value: 
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[1] Babaie-Kafaki, S., Ghanbari, R.: The Dai-Liao nonlinear conjugate 

gradient method with optimal parameter choices. European Journal of 

Operational Research 234, 625-630 (2014) 

 

The algorithm is described in: 

N. Andrei, (2018). A Dai-Liao conjugate gradient algorithm with 

clustering the eigenvalues. Numerical Algorithms, 77(4), 1273-1282. 

(Please see the file: Paper332R1.doc) 
January 4, 2017 

38. CGLIN Solving linear algebraic systems with positive definite matrices using 

the linear conjugate gradient method. 

Linear Conjugate Gradient Algorithm 

1. Select an initial point 0x  and 0   sufficiently small 

2. Set 0 0 ,r Ax b   0 0d r   and 0k   

3. If ,kr   then stop. Otherwise continue with step 4 

4. Compute:  

,
T
k k

k T
k k

r r

d Ad
  1 ,k k k kx x d    1 ,k k k kr r Ad   1 1 ,

T
k k

k T
k k

r r

r r
    

1 1k k k kd r d     

5. Set 1k k   and continue with step 3                                        ♦ 

 

The linear algebraic system ,Ax b  where: 
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is obtained from the finite difference numerical method to discretize 

the one-dimensional Poisson equation. 

For 1000,n   the linear conjugate gradient algorithm gives a solution 

in 500 iterations. Figure 1 shows the evolution of the error kb Ax  

along the iterations for obtaining a solution with accuracy less than or 

https://en.wikipedia.org/wiki/Finite_difference
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equal to 810 .  

 

 
Fig. 1. Evolution of the error kb Ax  

 

See Chapter 2 of the book: N. Andrei, "Nonlinear Conjugate Gradient 

Methods for Unconstrained Optimization", Spriger, 2019.  

Example 2.1. 

January 2, 2019 

39. CG4 Program for solving linear algebraic systems Ax b  obtained from the 

finite difference numerical method to discretize the two-dimensional 

Poisson equation. 

The matrix A  has 2n  blocks B  on the main diagonal, where each 

block 1 1n nB  . Hence, ,n nA   where 1 2.n n n  Considering 

10,000,n   the evolution of error kb Ax  computed by the linear 

conjugate gradient algorithm for five different values of 1n  and 2n  is 

presented in Figure 1.  

From Figure 1, for 1 5000n   and 2 2,n   that is when there are only 

two blocks on the main diagonal of ,A  the linear conjugate gradient 

algorithm needs only 31 iterations. Therefore, the convergence is 

faster. On the other hand, when 2 100,n   i.e. there are 100 blocks on 

the main diagonal of matrix ,A  then the algorithm needs 304 iterations. 

In other words, the smaller the number of blocks on the main diagonal 

of matrix A , the faster the convergence. 

 

 

https://en.wikipedia.org/wiki/Finite_difference
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Fig. 1. Evolution of the error kb Ax  of the linear conjugate gradient 

algorithm for different numbers ( 2n ) of blocks on the main diagonal  

of matrix A . 

 

Please, see the Books: 

1. N. Andrei, Nonlinear Conjugate Gradient Methods for 

Unconstrained Optimization. Springer, vol. 158 Springer 

Optimization and Its Applications, Springer, 2020. 

2. N. Andrei, Optimizare fără Restricţii – Metode de Direcţii 

Conjugate, MATRIXROM, Bucureşti, 2000, pp. 78-79 şi 109-

112. 

(first version) March 15, 1999  

(modified version) January 3, 2019 

40. ACGSYS 

(See: CGSYS) 

 

ACGSYS is the accelerated version of CGSYS. This is a subroutine 

dedicated to compute the minimizer of a differentiable function with a 

large number of variables.    

The search direction of this algorithm is a linear combination of 1kg   

and ,ks  where the coefficients in this linear combination are computed 

in such a way that both the descent and the conjugacy conditions to be 

guaranteed at every iteration 1.k   

 

  

  
Fig. 1. Performance profiles of CGSYS versus HS-DY, DL ( 1t  ), CG-

DESCENT and DESCONa 

 

The accelerated version of CGSYS is described in the paper: N. 

Andrei, An accelerated conjugate gradient algorithm with guaranteed 

descent and conjugacy conditions for unconstrained optimization. 

(cgsyspap.doc). March 6, 2009. 
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Fig. 2. ACGSYS versus HS, DY, PRP , CG-DESCENT 

 

Also, please, see the book: 

N. Andrei, Nonlinear Conjugate Gradient Methods for Unconstrained 

Optimization. Springer, vol. 158 Springer Optimization and Its 

Applications, Springer, 2020. (Chapter 11) 

 

October 24, 2008 

41. CGSYSLBs Combination of the CGSYS algorithm with the limited memory L-

BFGS algorithm by interlacing iterations of the CGSYS with iterations 

of the L-BFGS algorithms. In this algorithm, we called CGSYSLBs, 

the iterations of CGSYS are performed only if the stepsize is less or 

equal to a prespecified threshold. Otherwise, the iterations of L-BFGS 

( 5m  ) are performed. CGSYSLBsa is the accelerated version of 

CGSYSLBs.  

Comparisons of CGSYSLBsa versus CGSYS and CG-DESCENT 

(version 1.4), Figure 1, illustrate that CGSYSLBsa is more robust than 

these algorithms. 

 

 

  
Fig. 1. CGSYSLBs versus CGSYS and versus CG-DESCENT 

 

The program implements 81 unconstrained optimization test problems. 

The name of the minimizing functions is given in FUN80.TXT. The 

last problem is PALMER1C (ill-conditioned problem) 

Comparisons of CGSYSLBsa versus DESCONa and versus DK+w are 
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given in Figure 2. 

 

  
Fig. 2. Conmparisons of CGSYSLBsa versus DESCONa and versus DK+w. 

 

Please, see the book: 

- N. Andrei, Nonlinear Conjugate Gradient Methods for 

Unconstrained Optimization, vol. 158 Springer Optimization and Its 

Applications, Springer, 2020. (Chapter 11) 
June 17, 2019 

42. CGSYSLBq Combination of the CGSYS algorithm with the limited memory L-

BFGS algorithm by interlacing iterations of the CGSYS with iterations 

of the L-BFGS algorithms subject to the closeness of the minimizing 

function to a quadratic. Compute the parameter: 

1 12( )
1 .

T
k k k k

k T
k k

f f g s
t

y s

  
   

If kt  is close to zero, then k  is regarded as a quadratic function, 

otherwise not. In other words, if ,kt c  where c  is a small positive 

constant ( 810c  ), we can conclude that k  is close to a quadratic 

function. If ,kt c  then the CGSYS iterations are performed, otherwise 

the L-BFGS ( 5m  ) iterations are considered. In this algorithm, we 

called CGSYSLBq, the iterations of CGSYS are performed only if 

.kt c  Otherwise, the iterations of L-BFGS ( 5m  ) are performed. 

CGSYSLBqa is the accelerated version of CGSYSLBq.  

 

  
Fig. 1. CGSYSLBqa versus CGSYS and versus CG-DESCENT 
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Fig. 2. CGSYSLBqa versus DESCONa and versus DK+w 

 

Please, see the book: 

- N. Andrei, Nonlinear Conjugate Gradient Methods for 

Unconstrained Optimization, vol. 158 Springer Optimization and Its 

Applications, Springer, 2020, (Chapter 11) 

 

June 17, 2019 

43. CGSYSLBo Combination of the CGSYS algorithm with the limited memory L-

BFGS algorithm by interlacing iterations of the CGSYS with iterations 

of the L-BFGS algorithms subject to the orthogonality of the current 

gradient to the previous search direction. In other words, in our 

algorithm we call CGSYSLBo the CGSYS and L-BFGS methods are 

combined as follows: if 1 ,T
k kg d c   where c  is a small positive 

constant ( 510c  ), then the CGSYS iterations are performed, 

otherwise the L-BFGS ( 5m  ) iterations are considered. 

 

  
Fig. 1. Performance profiles of CGSYSLBoa versus CGSYS and versus CG-

DESCENT 

 

  
Fig. 2. Performance profiles of CGSYSLBoa versus DESCONa and versus 

DK+w 

 

Please, see the book: 

- N. Andrei, Nonlinear Conjugate Gradient Methods for 

Unconstrained Optimization, vol. 158 Springer Optimization and Its 
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Applications, Springer, 2020, (Chapter 11) 

 

January 18, 2020 

44. CG3LS Fortran program for unconstrained optimization using 6 procedures for 

computation of the conjugate parameter :k Hager-Zhang, Dai-Kou, 

Hestenes-Stiefel, Polak-Ribière-Polyak, Dai-Yuan and minimizing the 

measure function   of Byrd and Nocedal, under the 3 line search 

procedures: standard Wolfe, approximate Wolfe of Hager and Zhang 

and improved Wolfe of Dai and Kou. 

 

The program is that of Hager and Zhang (CG-DESCENT), where the 

formula for beta computation is modified as that given by Dai and Kou, 

or HS, PRP, DY, FI. 

 

Please see the Book: 

N. Andrei, Nonlinear Conjugate Gradient Methods for Unconstrained 

Optimization. Springer, vol. 158 Springer Optimization and Its 

Applications, Springer, 2020. (Chapter 8) 

 

January 17, 2019 

45. CG3LSpre Fortran program for unconstrained optimization using 6 procedures for 

computation of the conjugate parameter :k PRECONDITIONED 

Hager-Zhang, Dai-Kou, Hestenes-Stiefel, Polak-Ribière-Polyak, Dai-

Yuan and minimizing the measure function   of Byrd and Nocedal, 

under the 3 line search procedures: standard Wolfe, approximate Wolfe 

of Hager and Zhang and improved Wolfe of Dai and Kou. 

 

Only the conjugate gradient parameter k  of Hager and Zhang 

algorithm is preconditioned with a diagonal approximation of the 

Hessian.  

 

The program is that of Hager and Zhang (CG-DESCENT), where the 

formula for beta computation is modified as that given by Dai and Kou, 

or HS, PRP, DY, FI. 

 

Please see the Book: 

N. Andrei, Nonlinear Conjugate Gradient Methods for Unconstrained 

Optimization. Springer, vol. 158 Springer Optimization and Its 

Applications, Springer, 2020. (Chapter 1 for diagonal approximation to 

the Hessian and Chapter 8) 

 

January 17, 2019 

46. CGALLpre 30 conjugate gradient unconstrained optimization algorithms with 

standard Wolfe line search. 

The following conjugate gradient algorithms are implemented: betatype 

= (1) HS, (2) FR, (3) PRP, (4) PRP+, (5) CD, (6) LS, (7) DY, (8) 

DL(t=1), (9) DL+, (10) SDC, (11) hDY, (12) hDY0, (13) GN, (14) 

HuS, (15) TAS, (16) LS-CD, (17) Birgin-Martinez, (18) Birgin-

Martinez+, (19) scaledPRP, (20) scaledFR, (21) new cg from PRP, (22) 

newDY, (23) variant of newDY, (24) another variant of newDY, (25) 
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Hager-Zhang, (26) Hager-Zhang preconditioned, (27) Dai-Kou, (28) 

Dai-Kou preconditioned, (29) PRP preconditioned, (30) Hager-Zhang 

SSML-BFGS preconditioned 

 

The algorithms corresponding to betatype = 26, 28, 29 and 30 are 

preconditioned conjugate gradient algorithnms, where the 

preconditioner is computed as a diagonal approximation to the Hessian. 

Please see the Book: 

- N. Andrei, Nonlinear Conjugate Gradient Methods for 

Unconstrained Optimization, vol. 158 Springer Optimization and Its 

Applications, Springer, 2020. 

 

For betatype = 30 the Hager-Zhang algorithmmis preconditioned with 

the Self-Scaling Limited Memory C BFGS updation to the Hessian. 

The preconditioner is given by the self-scaling memoryless BFGS 

update of Perry and Shanno (8.104), and the scaling parameter tau is 

computed as in (8.111).  

 

Please see the Book: 

- N. Andrei, Nonlinear Conjugate Gradient Methods for 

Unconstrained Optimization, vol. 158 Springer Optimization and Its 

Applications, Springer, 2020. 

(Please, see Chapter 8 for self-scaling memoryless BFGS update of 

Perry and Shanno, and Chapter 10 for preconditioning.) 

 

Criticism of preconditioning: 

See the Book:  

- N. Andrei, Nonlinear Conjugate Gradient Methods for 

Unconstrained Optimization, vol. 158 Springer Optimization and Its 

Applications, Springer, 2020, (Chapter 10) 

 

The search direction can be computed as: 

1) d(i)  =   -r(i) + beta * d(i),  beta=0, i.e. d(i)=-r(i) 

In this case we have a quasi-Newton method in which the inverse 

approximation to the Hessian is computed as a self-scaled memoryless 

BFGS update. 

 

2) d(i)  =   -r(i) + beta * d(i) 

In this case we have a preconditioned conjugate gradient method. 

Refering to Chapter 10. Finally, we emphasize that in 2) there must be 

a balance concerning the quality of the preconditioner (i.e. the 

closeness to the inverse Hessian), namely, if the definition of the 

preconditioner contains useful information about the inverse Hessian of 

the objective function, it is better to use the search direction d=-Pg , 

since the addition of the last term beta*d may prevent d=-Pg+beta*d 

from being an efficient descent direction, unless the line search is 

sufficiently accurate. 

 

Compare HZSS.rez where the search direction is computed as in 1) 

above, i.e d(i)=-r(i) versus HZSSc.rez where the search direction is 

computed as in 2), i.e. d(i)  =   -r(i) + beta * d(i). 

HZSS is better. (May 21, 2019) 
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Figure 1 shows the performance profiles of HZ+pa (accelerated version 

of HZ+p, where the acceleration is as in Remark 5.1) in which the 

search direction is computed as   

                                  1 1 1 ,HZ
k k k k kd P g d 
                                     

where 
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with OL
k k   and HZ

k
  is computed as in (10.8) versus the 

performances of the accelerated self-scaling memoryless BFGS 

(SSML-BFGSa) update in which the search direction is computed as  

 

                                           1 1 1,k k kd P g                                         

 

where 1kP   is given above. See Chapter 10 of the Book. 

 
Fig. 1. Performance profiles of  HZ+pa versus SSML-BFGSa 

 

May 21, 2019 

47. CG3x8 The program is a modification of the CG-DESCENT of Hager and 

Zhang (2005) to include different formulae for parameter beta 

computation under the three line search conditions: standard Wolfe, 

Approximate Wolfe and Improved Wolfe. 

The program is that of Hager and Zhang (CG-DESCENT, version 1.4), 

where the formula for beta computation is modified as: 

(1) Hager and Zhang (2005) 

(2) Minim DETERMINANT (Andrei, Thechnical Report No.2/2019) 

(3) Minim TRACE (Andrei, Thechnical Report No.2/2019) 

(4) Minim Fi - measure function of Byrd and Nocedal 

(5) Hestenes - Stiefel 

(6) Dai - Yuan 

(7) Polak-Ribiere-Polyak 

(8) Minim of combination of DETERMINANT and TRACE 

 

Please see: N. Andrei, Conjugate Gradient Algorithms Closest to Self-

Scaling Memoryless BFGS Method based on clustering the eigenvalues of the 

self-scaling memoryless BFGS iteration matrix or on minimizing the Byrd-

Nocedal measure function with Different Wolfe Line Searches for 
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Unconstrained Optimization. 

Technical Report No.2/2019, Academy of Romanian Scientists, April 

18, 2019. (TRR2-2019.doc) 

 

 

 
Fig. 1. Performance profiles of DESW versus TRSW, of DESW versus FISW 

and of TRSW versus FISW 

 

April 18, 2019 

48. CUBIC A variant of the conjugate gradient algorithm with subspace 

minimization based on the regularization model. The algorithm 

combines the minimization of a p -regularized model of the 

minimizing function with the subspace minimization. 

 

  

  
Fig. 1. Performance profiles of CUBICa versus CG-DESCENT, DK+w, 

DESCONa and CONMIN  
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(CUBICa is the accelerated version of CUBIC.) 

 

See the Book:  

- N. Andrei, Nonlinear Conjugate Gradient Methods for 

Unconstrained Optimization, vol. 158 Springer Optimization and Its 

Applications, Springer, 2020, (Chapter 11, Section 11.4) 

 

49. CGSECM Conjugate gradient algorithm based on the equality of the Newton 

direction with the conjugate gradient direction and modified secant 

condition. The search direction is computed as: 

 

1 1 ,k k k kd g s     

1 1max ,0 1 ,
T T
k k k k

k T T T
k k k k k k

y g s g

y s s s y s




 
 

   
     

    
 

1 16( ) 3( ) ,T
k k k k kf f g g s       

0,

1



 


 a parameter. 

February 12, 2008 

50. DESCON14 Performances of DESCON package for solving 14 applications of 

unconstrained optimization. The applications are as follows: 

1. Weber Function (1) (Andrei, U71) 

2. Enzyme reaction  (Andrei, U79) (A) 

3. Solution of a chemical reactor (A) 

4. Robot kinematics problem (A) 

5. Solar Spectroscopy (A) 

6. Estimation of parameters (A) 

7. Propan combustion in air (A) 

8. Gear train with minimum inertia (A) 

9. Human Heart Dipole. Andrei U84, pp.65 

10. Neurophysiology (A) 

11. Combustion application (A) 

12. Thermistor (A) 

13. Optimal design of a Gear Train (A)  

14. Circuit design (A) 

 

Directory DESCON14: 

 - DESCON14.FOR (Fortran package with all subroutines.) 

 - FUNC14.TXT (Name of the applications) 

 - R2020T14.DOC (Technical Report.) 

 

The performances of DESCON14 are presented in: 

N. Andrei, Numerical experiments with DESCON for solving 14 

applications of unconstrained optimization. AOSR – Academy of 

Romanian Scientists, Bucharest, Romania, Technical Report 

No.14/2020, June 3, 2020. (Romanian Academy Library) (10 pages) 

 

June 3, 2020 

51. CUBIC14 Performances of CUBIC package for solving 14 applications of 

unconstrained optimization. The applications are as follows: 
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1. Weber Function (1) (Andrei, U71) 

2. Enzyme reaction  (Andrei, U79) (A) 

3. Solution of a chemical reactor (A) 

4. Robot kinematics problem (A) 

5. Solar Spectroscopy (A) 

6. Estimation of parameters (A) 

7. Propan combustion in air (A) 

8. Gear train with minimum inertia (A) 

9. Human Heart Dipole. Andrei U84, pp.65 

10. Neurophysiology (A) 

11. Combustion application (A) 

12. Thermistor (A) 

13. Optimal design of a Gear Train (A)  

14. Circuit design (A) 

 

Directory CUBIC14: 

 - CUBIC14.FOR (Fortran package with all subroutines.) 

 - FUNC14.TXT (Name of the applications) 

 - R2020T15.DOC (Technical Report.) 

 

The performances of CUBIC14 are presented in: 

N. Andrei, Numerical experiments with CUBIC for solving 14 

applications of unconstrained optimization. AOSR – Academy of 

Romanian Scientists, Bucharest, Romania, Technical Report 

No.15/2020, June 3, 2020. (Romanian Academy Library) (11 pages) 

 

June 3, 2020 

52. CG 

DESCENT14 

Performances of CG-DESCENT package for solving 14 applications of 

unconstrained optimization. The applications are as follows: 

1. Weber Function (1) (Andrei, U71) 

2. Enzyme reaction  (Andrei, U79) (A) 

3. Solution of a chemical reactor (A) 

4. Robot kinematics problem (A) 

5. Solar Spectroscopy (A) 

6. Estimation of parameters (A) 

7. Propan combustion in air (A) 

8. Gear train with minimum inertia (A) 

9. Human Heart Dipole. Andrei U84, pp.65 

10. Neurophysiology (A) 

11. Combustion application (A) 

12. Thermistor (A) 

13. Optimal design of a Gear Train (A)  

14. Circuit design (A) 

 

Directory CGDESCENT14: 

 - CGDESCENT14.FOR (Fortran package with all subroutines.) 

 - FUNC14.TXT (Name of the applications) 

 - R2020T16.DOC (Technical Report.) 

 

The performances of CGDESCENT14 are presented in: 

N. Andrei, Numerical experiments with CG-DESCENT for solving 14 

applications of unconstrained optimization. AOSR – Academy of 
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Romanian Scientists, Bucharest, Romania, Technical Report 

No.16/2020, June 3, 2020. (Romanian Academy Library) (11 pages) 

 

The Technical Report 17/2020: N. Andrei, Comparison of modern 

conjugate gradient methods: DESCON, CUBIC, CG-DESCENT (4.1) 

for solving 14 small-scale applications of unconstrained optimization,  

presents a comparison among the performances of DESCON14, 

CUBIC14 and CGDESCENT14 for solving 14 applications of 

unconstrained optimization. 

 
Performances of DESCON14 

-------------------------------------------------------------------------------------------------------------------- 

       n    iter   fgcnt time(c)          fx*                 gnorm                  Name of Application 

 -------------------------------------------------------------------------------------------------------------------- 

       2    1878   10001       0  -0.2644531414650E+03   0.8208740831576E+00   1. Weber Function (Andrei, U71)               

       4      48     143       0   0.3075056038514E-03   0.6886760990097E-08   2. Enzyme reaction  (Andrei, U79) (A)         

       6      85     264       0   0.9665994663683E-15   0.4231231612938E-07   3. Solution of a chemical reactor (A)         

       8    1843   10006       1   0.5463981044793E-05   0.1781782618260E-02   4. Robot kinematics problem (A)               

       4      12      38       0   0.8312307692553E+01   0.8585722387648E-07   5. Solar Spectroscopy (A)                     

       4      46     150       0   0.3185717881375E-01   0.6936429307668E-08   6. Estimation of parameters (A)               

       5     724    2246       0   0.1224151943762E-06   0.8166044868424E-07   7. Propan combustion in air (A)               

       2      14     154       0   0.1751192213346E+01   0.7760986494009E-07   8. Gear train with minimum inertia (A)        

       8    1916   10002       1   0.1120571259805E-01   0.1686188462847E-03   9. Human Heart Dipole. Andrei U84, pp.65      

       6      93     632       1   0.4539057615171E+01   0.4484463269794E-07   10. Neurophysiology (A)                       

      10      51     142       0   0.6898812079492E-10   0.8219103504792E-07   11. Combustion application (A)                

       3    1839   10005      10   0.1726024568705E+03   0.1334938231384E+02   12. Thermistor (A)                            

       4    1842   10004       0   0.2387780742094E-02   0.8995056760928E-04   13. Optimal design of a Gear Train (A)        

       9     739    2166       2   0.1454860731888E-13   0.1554041459749E-06   14. Circuit design (A)                        

 -------------------------------------------------------------------------------------------------------------------- 

   TOTAL   11130   55953     15.00 centeseconds 

 

    Date: ---  Month: 6  Day: 3  Year: 2020    

 
Performances of CUBIC14 

       n    iter   fgcnt   time(c)          fx                gnorm              Name of Applications 

 ---------------------------------------------------------------------------------------------------------------------- 

       2    1288    5001       1  -0.2643790043149E+03   0.6876989703321E+00   1. Weber Function (Andrei, U71)               

       4      39     116       0   0.3075056060090E-03   0.1140193575396E-06   2. Enzyme reaction  (Andrei, U79) (A)         

       6      94     287       0   0.7468342084540E-15   0.4147895225729E-07   3. Solution of a chemical reactor (A)         

       8     333    5017       1   0.4829469121831E+00   0.4942442115598E+00   4. Robot kinematics problem (A)               

       4      10      31       0   0.8312307695614E+01   0.7104616347572E-06   5. Solar Spectroscopy (A)                     

       4      30      96       0   0.3187570933023E-01   0.5862905229454E-06   6. Estimation of parameters (A)               

       5     555    1670       0   0.4799163454696E-05   0.1371052281519E-05   7. Propan combustion in air (A)               

       2      11     138       0   0.1751192330768E+01   0.9461910026439E-06   8. Gear train with minimum inertia (A)        

       8     940    5006       1   0.1199116073210E-01   0.8786818146807E-01   9. Human Heart Dipole. Andrei U84, pp.65      

       6      24      79       0   0.4539057615171E+01   0.3989872629134E-08   10. Neurophysiology (A)                       

      10      50     139       0   0.4967405721874E-09   0.3630146049766E-06   11. Combustion application (A)                

       3     395    5003       6   0.1721497388951E+03   0.2361553857583E+01   12. Thermistor (A)                            

       4       7     101       0   0.2322924674570E-04   0.7867065011382E-06   13. Optimal design of a Gear Train (A)        

       9     563    1639       3   0.8544333431670E-14   0.2890489586180E-06   14. Circuit design (A)                        

 ---------------------------------------------------------------------------------------------------------------------- 

   TOTAL    4339   24323     12.00 centeseconds 

 

   Date: --->  Month: 6  Day: 3  Year: 2020 

 
Performances of CG-DESCENT14(w) 

       n    iter   fgcnt   time(c)          fx                gnorm              Name of Applications 

 ---------------------------------------------------------------------------------------------------------------------- 

       2     130     526       0  -0.2644531414650E+03   0.4360555021096E+00   1. Weber Function (Andrei, U71)               

       4      87     183       0   0.3075057506207E-03   0.9351232549738E-06   2. Enzyme reaction  (Andrei, U79) (A)         

       6     242     531       0   0.1546034033470E-11   0.8328999653862E-06   3. Solution of a chemical reactor (A)         

       8      13      79       0   0.1045002080991E-04   0.2937120722379E-02   4. Robot kinematics problem (A)               

       4      34      73       0   0.6872367741557E+01   0.3753421634575E-06   5. Solar Spectroscopy (A)                     

       4     638    1436       0   0.3194075831746E-01   0.9984546877919E-06   6. Estimation of parameters (A)               

       5    9001   18039       2   0.1327993904766E-03   0.3013599273355E-03   7. Propan combustion in air (A)               

       2      14      86       0   0.1745268282541E+01   0.6851854457169E-01   8. Gear train with minimum inertia (A)        

       8       2      57       0   0.1790818193032E+00   0.3756017838954E-01   9. Human Heart Dipole. Andrei U84, pp.65      

       6      39     100       0   0.4539057615171E+01   0.3103946255578E-07   10. Neurophysiology (A)                       

      10      55     114       0   0.1279714516413E-09   0.1142557208812E-06   11. Combustion application (A)                

       3      32     462       0   0.1721680788246E+03   0.2931072079241E+03   12. Thermistor (A)                            

       4       1      56       0   0.1743310601795E-01   0.5889113990961E-03   13. Optimal design of a Gear Train (A)        

       9    7485   15457      12   0.2419744215211E-10   0.8313476443084E-06   14. Circuit design (A)                        

 ---------------------------------------------------------------------------------------------------------------------- 

   TOTAL   17773   37199     14.00 centeseconds 

 

    Date: ---  Month: 6  Day: 4  Year: 2020 

 

 Line Search with Wolfe conditions 

 
Performances of DESCON, CUBIC and CG-DESCENT 

 iter fgcnt time 

DESCON14 11130 55953 15 

CUBIC14 4339 24323 12 

CG-DESCENT14(w) 17773 37199 14 

CG-DESCENT14(aw) 17773 37199 13 

(w) – Wolfe line search 
(aw) – approximate Wolfe line search 

June 4, 2020 
 

 

<><><><><><><><><><> 
 

 

 

BFGS - MODIFIED 
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1. SBFGS A new adaptive scaled BFGS method for unconstrained optimization 

is presented. The third term in the standard BFGS update formula is 

scaled in order to reduce the large eigenvalues of the approximation 

to the Hessian of the minimizing function. Under the inexact Wolfe 

line search conditions, the global convergence of the adaptive scaled 

BFGS method is proved in very general conditions without assuming 

the convexity of the minimizing function. 

 

The algorithm is described in the paper: 

N. Andrei, An adaptive scaled BFGS method for unconstrained 

optimization. Numerical Algorithms, DOI: 10.1007/s11075-017-

0321-1 

 

(Please see the file: mbfgs-R2.doc) 
March 18, 2017 

2. TPSBFGS A double parameter scaled BFGS method for unconstrained 

optimization is presented. In this method, the first two terms of the 

known BFGS update formula are scaled with a positive parameter 

while the third one is scaled with another positive parameter. These 

parameters are selected in such a way as to improve the eigenvalues 

structure of the BFGS update. The parameter scaling the first two 

terms of the BFGS update is determined by clustering the eigenvalues 

of the scaled BFGS matrix. On the other hand, the parameter scaling 

the third term is determined as a preconditioner to the Hessian of the 

minimizing function combined with the minimization of the 

conjugacy condition from conjugate gradient methods. 

 

The algorithm is described in the paper:  

N. Andrei, A double parameter scaled BFGS method for 

unconstrained optimization, Journal of Computational and Applied 

Mathematics, vol.332 (2018), pp.26-44 

 

(Please see the file: JCAM-2018(43).pdf) 
September 11, 2017 

3. DPSS A double parameter self-scaled memoryless BFGS method for 

unconstrained optimization is presented. In this method the first two 

terms of the self-scaled memoryless BFGS method are scaled with a 

positive parameter, while the third one is scaled with another positive 

parameter. The scaling parameters are selected in such a way to 

improve the eigenvalue structure of the BFGS update. The first 

parameter scaling the first two terms is determined to cluster the 

eigenvalues of the BFGS matrix. The second parameter scaling the 

third term is computed as a preconditioner to the Hessian of the 

minimizing function combined with minimization of the conjugacy 

condition from the conjugate gradient methods in order to shift the 

large eigenvalues of the self-scaled memoryless BFGS matrix to the 

left. 
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(a) (b) 

 
Fig. 1. Performance profiles of DP versus DPOL and versus DPOS.  

CPU time metric. 1000.n   

 

The algorithm is described in the paper:  

N. Andrei, A double parameter self-scaled memoryless BFGS 

method for unconstrained optimization. Computational and Applied 

Mathematics, vol. , 2020. 

(Please see the file: COAMR1.doc)  
November 12, 2017 

4. DSBFGS  

(ROMAN-

POLYAK) 

A scaled BFGS method with two parameters for unconstrained 

optimization is presented.  In this method the first two terms of the 

known BFGS update formula are scaled with a positive parameter 

and the third one is scaled with another positive parameter. The 

parameter scaling the first two terms of the BFGS update is 

determined by clustering the eigenvalues of the scaled BFGS matrix. 

On the other hand, the parameter scaling the third term is determined 

as a preconditioner to the Hessian of the minimizing function 

combined with the minimization of the conjugacy condition from 

conjugate gradient methods. This parameter is determined to reduce 

the large eigenvalues, thus obtaining a better distribution of them. 

 

The algorithm is described in the paper:  

N. Andrei, A scaled BFGS method with two parameters for 

unconstrained optimization. 

(Please see the file: Paper-Roman.doc) 
May 5, 2017 

5. DNRTR A diagonal quasi-Newton updating algorithm. The elements of the 

diagonal matrix approximating the Hessian are determined by 

minimizing both the size of the change from the previous estimate 

and the trace of the update, subject to the weak secant equation. 

Figure 1 presents the performances of DNRTR versus steepest descent 

(SP) and versus Cauchy with Oren-Luenberger scaling in its 

complementary form (COL). 
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Fig. 1 Performance profiles of DNRTR versus SP and versus COL. 

CPU time metric. 100.n   

 

Please see the paper: 

N. Andrei, A diagonal quasi-Newton updating method for 

unconstrained optimization. Numerical Algorithms, vol.81(2), 

(2019), pp.575-590. 

 
February 26, 2018 

6. YONS A new diagonal quasi-Newton updating algorithm for unconstrained 

optimization is presented. The elements of the diagonal matrix 

approximating the Hessian, are determined as scaled forward finite 

differences directional derivatives of the components of the gradient. 

Under mild classical assumptions, the convergence of the algorithm 

is proved to be linear. 

In this method the approximation Hessian 1kB   is a diagonal matrix 

computed as: 
1

1 ,k k kB Y S
   

where 1( , , )n
k k kY diag y y  and 1( , , ),n

k k kS diag s s  ,i
ky  1, ,i n  

being the components of the vector ky  and ,i
ks  1, ,i n  being the 

components of vector .ks  Therefore, the diagonal elements of the 

matrix 1,kB   are computed as: 1 / ,i i i
k k kb y s   1, , .i n  In other 

words, 

1
1

1

( ) ( )
,

i i i i i
i k k k k k k k
k i i i i

k k k k k

y g g g x d g x
b

s x x d










  
  


     1, ,i n  

 

where ,i
kg  is the i  th component of the gradient in kx  and i

kd  is the 

i  th component of the search direction. 

Therefore, in this approach, the element 1
i
kb   may be considered as an 

approximation of the second order derivative of function ,f  

corresponding to the i  th diagonal element of the Hessian, 

computed in 1kx   by a scaled forward finite differences directional 

derivative scheme. Observe that 1/ i
kd  is a scaling factor. 

1) This directory contains the following Fortran files:  

2) BFGS.FOR - Scaled BFGS method with Wolfe line search 
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3) NTR.FOR -    

2

1 1

1
min ( )

2
k k kB B tr B    

 subject to: 

1 .T T
k k k k ks B s s y   

4) PASDES.FOR – Steepest descent metod. 

5) QNDIAG.FOR – Diagonal Quasi-Newton updating. Only the 

diagonal elements from the BFGS updating are retained. The off 

diagonal elements of the BFGS update are neglected. 
2 2 2

1
2

1

( ) ( ) ( )
,

( )

i i i
i i k k k
k k n Ti i

k kk ki

b s y
b b

y sb s




  


   1, , .i n  

The algorithm was suggeted by Gilbert and Lemarechal; Gill and 

Murray. It is discussed by Zhu, Nazareth and Wolkowicz (SIAM 

1999) 

6) WQND.FOR - C This is obtained from the weak-quasi-Newton 

equation. The update proposed in this paper by Dennis and 

Wolkowicz: J.E. Dennis, H. Wolkowicz, Sizing and least-change 

secant methods, SIAM J. Numerical Analysis 30(5) (1993) 1291-

1314. Only the diagonal elements from the BFGS updating are 

retained. The off diagonal elements of the BFGS update are 

neglected. 

 

2

2 21
1 2

2

1

( )
( ) ( ) ,

( )

nT i i
k k k ki i i ii

k k k k
n i i

k ki

s y b s
b b b s

b s







 




   1, , ,i n  

7) YONS.FOR - Te approximation Hessian 1kB   is a diagonal matrix 

computed as 1
1 .k k kB Y S
   (Please, see above.) 

 

The algorithm is described in the paper:  

N. Andrei, A New Diagonal Quasi-Newton Updating Method With 

Scaled Forward Finite Differences Directional Derivative for 

Unconstrained Optimization. Numerical Functional Analysis and 

Optimization, 2019, VOL. 40, NO. 13, 1467–1488. 

 

(Please see the files: NFAO2019.PDF and paperR1.doc) 

 

February 26, 2018 
 

 

<><><><><><><><><><> 
 

 

 

L-BFGS 
 

1. LBFGS14 Limited BFGS method for solving 14 applications of unconstrained 

optimization. The applications solved by LBFGS14 are: 

1. Weber Function (1) (Andrei, U71) 

2. Enzyme reaction  (Andrei, U79) (A) 
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3. Solution of a chemical reactor (A) 

4. Robot kinematics problem (A) 

5. Solar Spectroscopy (A) 

6. Estimation of parameters (A) 

7. Propan combustion in air (A) 

8. Gear train with minimum inertia (A) 

9. Human Heart Dipole. Andrei U84, pp.65 

10. Neurophysiology (A) 

11. Combustion application (A) 

12. Thermistor (A) 

13. Optimal design of a Gear Train (A)  

14. Circuit design (A) 

 

The contents of the directory LBFGS14 is as follows: 

LBFGS.FOR (Fortran package by Liu and Nocedal) 

FUNC14.TXT 

lbfgs14.out 

lbfgs.rez 

R2020T18.DOC (Technical Report with performances of LBFGS14. 

 
Performances of L-BFGS 

---------------------------------------------------------------------------------------------------------------------- 

       n    iter   fgcnt   time(c)          fx                gnorm                    Name of Applications 

 ---------------------------------------------------------------------------------------------------------------------- 

       2      55     218       0  -0.2644531414650E+03    0.5851360369660E+01    1. Weber Function (Andrei, U71)               

       4      41      48       0   0.3075056038494E-03    0.8903176713965E-08    2. Enzyme reaction  (Andrei, U79) (A)         

       6   15316   22822       4   0.5038172519506E+00    0.1643286688653E-04    3. Solution of a chemical reactor (A)         

       8       8      30       1   0.6957468202726E-05    0.3204751579182E-02    4. Robot kinematics problem (A)               

       4      23      29       0   0.8312307693160E+01    0.7194096296787E-07    5. Solar Spectroscopy (A)                     

       4      46      53       0   0.3185717487911E-01    0.2214569790005E-07    6. Estimation of parameters (A)               

       5     282     351       0   0.5884317208105E-18    0.6963808917363E-07    7. Propan combustion in air (A)               

       2      10      33       1   0.1746908655419E+01    0.4035725583973E-01    8. Gear train with minimum inertia (A)        

       8       2      23       0   0.1789025922492E+00    0.7325794325147E-01    9. Human Heart Dipole. Andrei U84,      

       6      23      38       0   0.4539057615171E+01    0.2024779517274E-07    10. Neurophysiology (A)                       

      10     155     179       1   0.3338493557009E-11    0.1532274549876E-06    11. Combustion application (A)                

       3      22      51       0   0.1721671200203E+03    0.1496223984167E+02    12. Thermistor (A)                            

       4       9      10       0   0.1971065573361E-05    0.6630614440024E-07    13. Optimal design of a Gear Train (A)        

       9    6037    6838       6   0.2350848678996E-12    0.1601637091248E-06    14. Circuit design (A)                        

 ---------------------------------------------------------------------------------------------------------------------- 

   TOTAL   22029   30723      6.00 centeseconds 

 

    Number of stored pairs (sk,yk) in L-BFGS: M =  5 

    Date: ---  Month: 6  Day: 6  Year: 2020 

June 6, 2020 
 

 

 

 

<><><><><><><><><><> 
 

 

 

 

 

Other Programs 
 

1. GRADSYS Gradient Flow Algorithm for Unconstrained Optimization. 

The algorithm is: 

,1 kkk xxx   

where kx  is computed as the solution of the following linear 

algebraic systems of equations: 

  ).()(2

kkkkk xfhxxfhI    

].1,0[  If 1  and ,1kh  then the algorithm is quadratically 

convergent. 
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The algorithm is described in: 

N. Andrei, Gradient flow algorithm for unconstrained optimization. 

Technical Report, March 23, 2004.  

(Please see the file diff.pdf) 
March 23, 2004 

2. NEWGRAD Relaxed Gradient Descent and a New Gradient Descent Methods for 

Unconstrained Optimization. 

Mainly, the algorithm is the steepest gradient where the step-length is 

modified by a multiplicative parameter: 

),(1 kkkkk xfxx    

where ]1,0[k  and k  is the step-length computed by 

backtracking. 

 

The algorithm and its theory is described in: 

N. Andrei, Theory versus empiricism in analysis of optimization 

algorithms. Technical Press, Bucharest, 2004. ISBN: 973-31-2233-5. 

N. Andrei, Criticism of the unconstrained optimization algorithms 

reasoning. Romanian Academy Publishing House, Bucharest, 2009. 

ISBN: 978-973-27-1669-4. 

 

Please see the papers: 

N. Andrei, Numerical Experiments with Gradient Descent with 

Backtracking for Unconstrained Optimization. March 2, 2005. (File: 

CGAD.DOC, 10 pages)  

N. Andrei, Numerical Experiments with Relaxed Gradient Descent 

with Backtracking for Unconstrained Optimization. March 5, 2005. 

(File: RELAXED.DOC, 12 pages) 

 

  
March 17, 2005 

 

 

<><><><><><><><><><> 

 

 

  

Constrained optimization 
 

1. KKT Karush-Kuhn-Tucker methods for solving inequality constraints 

optimization problems of the following form: 

                                                  )(min xf , 

                                           subject to:  

,0)( xg  

where ,: RRf n  and .: mn RRg   It is supposed that all functions 

of the problem are continuousli differentiable. 

 

Directorul KKT conţine un număr de 8 probleme de optimizare cu 

restricţii inegalităţi: NEWTON1.FOR, NEWTON2.FOR,... 

NEWTON8.FOR, SIMEQ.FOR, LS.FOR. 
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Problemele sunt descrise şi rezolvate în lucrarea:  

N. Andrei, Metode bazate pe condiţiile Karush-Kuhn-Tucker, 

Manuscript, 1995, cu CD. (În biblioteca mea.) 

 
March 3, 1995 

2. PREDCOR Interior-Point Predictor-Corrector algorithm for linear constrained 

optimization. 

Directorul conţine 15 exemple de probleme de optimizare cu restricţii 

linare utilizând metoda de punct interior, într-o implementare naivă. 

Sistemele de ecuaţii algebrice linare asociate metodei sun rezolvate cu 

subruruinele: DLINEQ.FOR (LU decomposition) şi DRESLV.FOR 

(Substitutions). 

Exemplul LCPC10.FOR rezolvă aplicaţia: Chemical Equilibrium 

Problem. 
December 24, 1996 

3. SPG SIMPLE BOUNDED OPTIMIZATION by Birgin, Martinez and Rydan 

 uxlxf ),(min  

where )(xf  is a continuously differentiable and its gradient is available. 

l  and u  are simple margins on the variables. It is assumed that .ul   

 

- First version: February 02, 2001 by E.G.Birgin, J.M.Martinez and  

  M.Raydan. 

- Final revision: April 30, 2001 by E.G.Birgin, J.M.Martinez and 

  M.Raydan. 

- Modified final version: May 12, 2008 by Neculai Andrei to include the  

  safeguarded cubic interpolation. 

The algorithm and its performances are presented in: 

N. Andrei, Criticism of the Constrained Optimization Algorithms 

Reasoning, Editura Academiei Române, Bucureşti, 2015.  

ISBN: 978-973-27-2527-6 (pp. 169-177) 

 

The following applications are considered: 

APPL1.FOR - Elastic-Plastic Torsion problem 

APPL2.FOR - Pressure Distribution in a Journal Bearing 

APPL3.FOR - Optimal Design with Composite Materials 

APPL4.FOR - Ginzburg-Landau (1-dimensional) problem 

APPL5.FOR - Steady State Combustion 

 

The program MSPG.FOR implements the SPG subroutine for solving a 

train of 730 problems with simple bounds. The line search subroutine is 

modified by Neculai Andrei to include the safeguarded cubic 

interpolation. 

 

The following examples are presented: 

1) SPGEX1.FOR is for minimizing the Freudenstein & Roth function 

with n=1000, ..., 10000. 

2) SPGEX2.FOR is for minimizing the Extended Penalty function with 

n=1000, ..., 10000. 

3) SPGEX3.FOR is for minimizing the Broyden Tridiagonal function 

with n=1000, ..., 10000. 
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May 12, 2008 

4. SPENBAR Package for large-scale nonlinear, equality and inequality constrained 

optimization. 

The optimization problem solved by SPENBAR is as follows: 

                                     ),(min xF  

                            subject to 

                                     ,0)( xci    ,,,1 mi   

,0)( xek    ,,,1 mek   

                                      ,jjj uxl    ,,,1 nj   

where all the functions are continuously differential. 

The program implements a modified penalty-barrier method. The 

unconstrained optimization problems is solved by means of truncated 

Newton method implemented in subroutine LMQN written by Stephen 

Nash. 

 

This directory contains 4 sub-directories (DOC, examples, PROB, 

REZMOD) and 4 Fortran files (HS108.FOR, IP.FOR, IP1.FOR and 

SPENBAR.FOR). 

 

The algorithm is described in a number of papers and Technical Reports 

as: 

N. Andrei, (1996) Computational Experience with a Modified Penalty-

Barrier Method for Large-Scale Nonlinear Constrained Optimization. 

(FORTRAN subroutines) ICI Working Paper No. AMOL-96-1, February 

6, 1996. 

 

N. Andrei, (1996) Computational Experience with SPENBAR a Sparse 

Variant of a Modified Penalty-Barrier Method for Large-Scale 

Nonlinear, Equality and Inequality Constrained Optimization. ICI 

Technical Paper No. AMOL-96-4, March 11, 1996, pp.1-69. 

 

N. Andrei, (2006) Numerical Examples with SPENBAR for Large-Scale 

Nonlinear, Equality and Inequality Constrained Optimization with Zero 

Columns in Jacobian Matrices. ICI Technical Paper No. AMOL-96-5, 

March 29, 1996. 

 

N. Andrei, (2001) Numerical Examples with SPENBAR - Modified 

penalty barrier method for large-scale nonlinear programming 

problems. Part I. ICI Technical Report, ICI-TR-01/2001, Bucharest, 

February 2001. Technical Report placed in Library of Romanian 

Academy. 

 

N. Andrei, (2001) Computational experience with SPENBAR. A sparse 

modified penalty-barrier method for large-scale nonlinear, equality and 

inequality, constrained optimization. Technical Report No.4/2001, 

February 19, 2001. (Manuscript. În biblioteca mea.) 

 

N. Andrei, (2015) Criticism of the Constrained Optimization Algorithms 

Reasoning, Editura Academiei Române, Bucureşti, 2015.  

ISBN: 978-973-27-2527-6 (pp. 517-537) 
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N. Andrei, (2017) Continuous Nonlinear Optimization for Engineering 

Applications in GAMS Technology. Springer Optimization and Its 

Applications, Volume 121, Springer Science+Business Media New York 

2017, ISBN: 978-3-319-58356-3, e-book ISBN: 978-3-319-58356-3, 

ISSN: 1931-6828, DOI: 10.1007/978-3-319-58356-3, Springer New 

York Heidelberg Dordrecht London, 508 + XXIV pages. 

 

OPIS.TXT contains the list of problems from SPENBAR collection. 
February 19, 2001 

5. TOLMINV Package of subroutines that calculate the the least value of a 

differentiable function of several variables subject to linear constraints 

on the values of the variables written by M.J.D. Powell. 

TOLMIN, written by Powell, works with two-dimensional arrays and 

solves the problems of the following types: 

                                ),(min xF  

                      subject to: 

                                ,j

T

j bxa    ,,,1 MEQj   

,j
T

j bxa    ,,,1 mMEQj   

                                ,iii uxl    .,,1 ni   

All the subroutines of the program are modified by N. Andrei to work 

with vectors, without considering the spsrsity the the matrix 

corresponding to linear constraints. This is TOLMINV package. 

 

This Directory contains three sub-directories: TOLMIN14, 

TOLMINMA, TOLMINVE. 

 

Subdirectory TOLMIN14 includes three programs for solving 

constrained optimization problems as follows: 

 

MAIN01.FOR is the main program for solving the nonlinear 

optimization problem presented in Example 14.1 in the book:  

N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii, 

Editura Academiei, 2015, pp. 629. 
   THE COMPUTED SOLUTION POINT IS 
       1     0.8750081257267E-07 

       2     0.4629495896370E-04 

       3     0.9999514660798E+00 

       4     0.5001292705362E+00 

       5     0.9999908024081E+00 

       6     0.4999956364708E+01 

       7     0.3000004697421E+01 

       8     0.1000000000000E+01 

 

            X(I)           X(I)-XL(I)     XU(I)-X(I) 

       1    8.7500813E-08  8.7500813E-08  1.9999999E+00 

       2    4.6294959E-05  5.0000463E+00  9.9995371E-01 

       3    9.9995147E-01  9.9995147E-01  1.0000485E+00 

       4    5.0012927E-01  1.5001293E+00  1.4998707E+00 

       5    9.9999080E-01  9.9999080E-01  3.0000092E+00 

       6    4.9999564E+00  5.9999564E+00  5.0000436E+00 

       7    3.0000047E+00  3.0000047E+00  2.9999953E+00 

       8    1.0000000E+00  2.0000000E+00  0.0000000E+00 

 

     FINAL CONSTRAINT RESIDUALS = 

  0.0000E+00  0.0000E+00  1.7764E-15  0.0000E+00 

 

     Function value in optimal point= 0.2999999978913E+01 

 

     Execution Time:  0: 0: 0: 0 
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MAIN02.FOR is the main program for solving the nonlinear 

optimization problem presented in Example 5.3 in the book:  

N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii, 

Editura Academiei, 2015, pp. 266. 
     THE COMPUTED SOLUTION POINT IS 
       1     0.4002737835268E+00 

       2     0.1305663058260E+00 

       3     0.0000000000000E+00 

       4     0.0000000000000E+00 

       5     0.9033793559852E+00 

       6     0.4168581403599E+00 

       7     0.0000000000000E+00 

       8     0.1509334100456E+01 

       9     0.1522805326970E+01 

      10     0.5379458016316E+00 

      11     0.1013056630583E+01 

      12     0.5527662953395E+00 

      13     0.0000000000000E+00 

      14     0.0000000000000E+00 

      15     0.6010093996177E+00 

 

            X(I)           X(I)-XL(I)     XU(I)-X(I) 

       1    4.0027378E-01  4.0027378E-01  1.5997262E+00 

       2    1.3056631E-01  1.3056631E-01  1.8694337E+00 

       3    0.0000000E+00  0.0000000E+00  2.0000000E+00 

       4    0.0000000E+00  0.0000000E+00  2.0000000E+00 

       5    9.0337936E-01  9.0337936E-01  1.0966206E+00 

       6    4.1685814E-01  4.1685814E-01  1.5831419E+00 

       7    0.0000000E+00  0.0000000E+00  2.0000000E+00 

       8    1.5093341E+00  1.5093341E+00  4.9066590E-01 

       9    1.5228053E+00  1.5228053E+00  4.7719467E-01 

      10    5.3794580E-01  5.3794580E-01  1.4620542E+00 

      11    1.0130566E+00  1.0130566E+00  9.8694337E-01 

      12    5.5276630E-01  5.5276630E-01  1.4472337E+00 

      13    0.0000000E+00  0.0000000E+00  2.0000000E+00 

      14    0.0000000E+00  0.0000000E+00  2.0000000E+00 

      15    6.0100940E-01  6.0100940E-01  1.3989906E+00 

 

     FINAL CONSTRAINT RESIDUALS = 

 -1.3878E-16  0.0000E+00  4.4409E-16  3.3307E-16  5.5511E-16  6.6613E-16 

  1.1102E-15 

 

     Function value in optimal point= 0.2192129651805E+02 

 

     Execution Time:  0: 0: 0: 0 

 

MAIN03.FOR is the main program for solving the nonlinear 

optimization problem presented in Example 14.3 in the book:  

N. Andrei, Critica Ratiunii Algoritmilot de Optimizare cu Restrictii, 

Editura Academiei, 2015, pp. 266. 
     THE COMPUTED SOLUTION POINT IS 

       1     0.2812500000000E+01 

       2     0.0000000000000E+00 

       3     0.7187500000000E+01 

       4     0.3750000000000E+01 

       5     0.0000000000000E+00 

       6     0.0000000000000E+00 

       7     0.0000000000000E+00 

       8     0.3125000000000E+01 

       9     0.0000000000000E+00 

      10     0.0000000000000E+00 

      11     0.0000000000000E+00 

      12     0.5718750000000E+02 

      13     0.2562500000000E+02 

 

            X(I)           X(I)-XL(I)     XU(I)-X(I) 

       1    2.8125000E+00  2.8125000E+00  9.7187500E+01 

       2    0.0000000E+00  0.0000000E+00  1.0000000E+02 

       3    7.1875000E+00  7.1875000E+00  9.2812500E+01 

       4    3.7500000E+00  3.7500000E+00  9.6250000E+01 

       5    0.0000000E+00  0.0000000E+00  1.0000000E+02 

       6    0.0000000E+00  0.0000000E+00  1.0000000E+02 

       7    0.0000000E+00  0.0000000E+00  1.0000000E+02 

       8    3.1250000E+00  3.1250000E+00  9.6875000E+01 

       9    0.0000000E+00  0.0000000E+00  1.0000000E+02 

      10    0.0000000E+00  0.0000000E+00  1.0000000E+02 
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      11    0.0000000E+00  0.0000000E+00  1.0000000E+02 

      12    5.7187500E+01  5.7187500E+01  4.2812500E+01 

      13    2.5625000E+01  2.5625000E+01  7.4375000E+01 

 

     FINAL CONSTRAINT RESIDUALS = 

 -1.7764E-15  0.0000E+00  3.5527E-15  5.3291E-15  1.4211E-14  0.0000E+00 

 

     Function value in optimal point= 0.1568830990135E+07 

 

     Execution Time:  0: 0: 0: 0 

 
November 22, 1995 

6. PSO-CO Particle Swarm Optimization (PSO). 

In this directory I included a number of Fortran packages for constrained 

optimization using the particle swarm optimization method.  

 

For solving the problem },,1,0)(),(min{ mixcxf i  the algorithm 

for PSO considers the following strategy. 

Using the PSO algorithm for unconstrained optimization minimize the 

penalty function:  

         ( ) ( ) ( ) ( ),F x f x h t H x   

where: 

         γ( ( ))

1

( ) θ( ( ))( ( )) ,i

m
q x

i i

i

H x q x q x


  

         ( ) max{0, ( )},i iq x c x   1, , ,i m  
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q x
q x

q x


 
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         ( ) ,h t t t   

Here, t  is the number of iteration.  

 

The applications solved by this method are as follows: 

ALKI-PSO - Optimization of an alkylation process, Variant 1, 

CAM-PSO - Shape optimization of a cam, 

DES-PSO - Distribution of electrons on a sphere, 

HANG-PSO - Hanging chain, 

MSP3-PSO - 3-stage membrane separation, 

MSP5-PSO - A 5-stage membrane separation process, 

PPSE-PSO - Static Power Scheduling, 

PREC-PSO - Optimal Reactor Design, 

TRAFO-PSO - Transformer design. 

BRAKE-PSO - Design of a disc brake, 

EX1-PSO – Example 1, 

EX2-PSO – Example 2, 

LATHE.PSO - Multi-spindle automatic lathe 

SPRING.PSO - Minimizing the weight of a tension/compression spring 

WESSEL.PSO - Pressure vessel 

 



 75 

Please, see the book: „Critica Raţiunii Algoritmilor de Optimizare cu 

Restricţii”, Bucureşti, Editura Academiei Române, 2015, Capitolul 19. 

See also: the paper Anale-PSO.doc and the technical report PSO.doc 

(October 9, 2014). 

 

Please, see the directory PSO-CO in CONSTRAINED-OPTIM. 
May 21, 2014 

7. CAON A collection of nonlinear optimization applications in GAMS 

language. Se prezintă 25 de modele de optimizare neliniară, exprimate 

în limbajul GAMS. 

 

See: N. Andrei, CAON: O colecţie de aplicaţii de optimizare neliniară 

în limbajul GAMS. Technical Report No.1/2011, January 31, 2011.  

(105 pages with CD). 

 

Please, see the directory CAON in CONSTRAINED_OPTIM. Please, 

see the Technical Report: r1a11.doc. The mathematical models in 

GAMS are placed in directory CD-GAMS. 

 

January 31, 2011 

 

 

 

 

♦ 

 
 

 


