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algorithm is, scaled conjugate gradient algorithms, what the best stopping criterion in 
conjugate gradient algorithms is etc. 
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1. Introduction 
The conjugate gradient method represents a major contribution to the panoply of methods for 
solving large-scale unconstrained optimization problems. They are characterized by low 
memory requirements and have strong local and global convergence properties. The 
popularity of these methods is remarkable partially due to their simplicity both in their 
algebraic expression and in their implementation in computer codes, and partially due to their 
efficiency in solving large-scale unconstrained optimization problems.  
The conjugate gradient method has been devised by Magnus Hestenes (1906-1991) and 
Eduard Stiefel (1909-1978) in their seminal paper where an algorithm for solving symmetric, 
positive-definite linear algebraic systems has been presented [38]. After a relatively short 
period of stagnation, the paper by Reid [51] brought the conjugate gradient method as a main 
active area of research in unconstrained optimization. In 1964 the method has been extended 
to nonlinear problems by Fletcher and Reeves [32], which is usually considered as the first 
nonlinear conjugate gradient algorithm. Since then a large number of variants of conjugate 
gradient algorithms have been suggested. A survey on their definition including 40 nonlinear 
conjugate gradient algorithms for unconstrained optimization is given by Andrei [13]. Even if 
the conjugate gradient methods are now over 50 years old, they continue to be of a 
considerable interest particularly due to their convergence properties, a very easy 
implementation effort in computer programs and due to their efficiency in solving large-scale 
problems. For general unconstrained optimization problem: 
                                                                  min ( )

nx R
f x

∈
,                                                           (1.1) 

where : nf R → R  is a continuously differentiable function, bounded from below, starting 
from an initial guess, a nonlinear conjugate gradient algorithm generates a sequence of points 
{ }kx , according to the following recurrence formula: 
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                                                             1k k k kx x dα+ = + ,                                                     (1.2) 
where kα  is the step length, usually obtained by the Wolfe line search,  

                                               ( ) ( ) T
k k k k k k k ,f x d f x g dα ρα+ − ≤                                      (1.3)   

                                                                                                                  (1.4) 1 ,T T
k k k kg d g dσ+ ≥

with 0 1/ 2 1,ρ σ< < ≤ <  and the directions  are computed as: kd
                                                1 1k k kd g skβ+ += − + 0 0.d g= −,                                           (1.5) 
Here kβ  is a scalar known as the conjugate gradient parameter,  and 

 In the following 
( )kg f x= ∇ k

1 .k k ks x x+= − 1 .k k ky g g+= −  Different conjugate gradient algorithms 
correspond to different choices for the parameter .kβ  Therefore, a crucial element in any 
conjugate gradient algorithm is the formula definition of kβ . Any conjugate gradient 
algorithm has a very simple general structure as illustrated below. 
 
 

The prototype of Conjugate Gradient Algorithm 
Step 1. Select the initial starting point 0x dom f∈  and compute: 0 ( )0f f x=  and 

 Set for example0 ( ).g f x= ∇ 0 0 0d g= −  and 0.k =   

Step 2. Test a criterion for stopping the iterations. For example, if kg ε
∞
≤ , then stop; 

otherwise continue with step 3. 
Step 3. Determine the steplength .kα  

Step 4. Update the variables as: 1k k k kx x dα+ = + . Compute 1kf +  and  Compute 
 and  

1.kg +

1k ky g g+= − k 1 .k k ks x x+= −
Step 5. Determine kβ .  

Step 6. Compute the search direction as: 1 1k kd g k ksβ+ += − + . 

Step 7. Restart criterion. For example, if the restart criterion of Powell 
2

1 0.2T
k k kg g g+ > 1+  is satisfied, then set 1 1k kd g+ += − . 

Step 8. Compute the initial guess α αk k k kd d= − −1 1 / ,  set k k= +1 and continue 
with step 2.  

 
This is a prototype of the conjugate gradient algorithm, but some more sophisticated variants 
are also known (CONMIN [52, 53], SCALCG [1, 2, 3, 4], ASCALCG [12], ACGHES [11], 
ACGMSEC [10], CG_DESCENT [36, 37]). These variants focus on parameter kβ  
computation and on the steplength determination.   
 
2. The open problems 
In the following we shall present some open problems in conjugate gradient algorithms. These 
problems refer to the initial direction selection, to the conjugacy condition, to the steplength 
computation, new formula for conjugate parameter computation based on function’s values, 
the influence of accuracy of line search procedure on the efficiency of conjugate gradient 
algorithm, how we can consider the problem’s structure on conjugate gradient algorithms, 
how we can take the second order information in these algorithms, what the best restart 
procedure is, what the best hybrid conjugate gradient algorithm is, scaled conjugate gradient 
algorithms, what the best stopping criterion in conjugate gradient algorithms is, how these 
algorithms can be modified for solving simple bounded optimization problems etc. 
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Problem 1. Why is the initial search direction 0d 0g= −  critical?  

Crowder and Wolfe [26] presented a 3-dimensional strongly convex quadratic example 
showing that if the initial search direction is not the steepest descent, then the convergence 
rate of conjugate gradient is linear. On the other hand, Beale [22] showed that if  

                                           0 1 1 1
1 1 0

0 0

T T
k k k

k k T T
k k

y g g gd g d
y d g g

+ + +
+ += − + + kd

0

                                   (2.1) 

then if  then conjugate directions are still obtained. This approach given by (2.1) 
allows a set of conjugate directions to be generated starting from any initial direction  
However, since  remains in the formula for 

0 ,d g≠ −

0.d

0d 1kd +  along the iterations, it may be undesirable 
[31].  
Later, Powell [49] showed that if ( )f x  is a convex quadratic function, then using an arbitrary 
initial search direction  the solution is obtained at a linear rate of convergence. Nazareth 
[43] suggested a conjugate gradient algorithm with a complicated three-term recurrence for 

 as 

0d

1kd +

                                           1
1 1

1 1

,
T T
k k k k

k k k kT T
k k k k

y y y yd y d d
y d y d

−
+ −

− −

= − + +                                      (2.2) 

and  In this form, apart from a scalar multiplier, the new direction given by (2.2) does 
not depend on the steplength. He proved that if 

0 0.d =
( )f x  is a convex quadratic, then for any 

steplength kα  the search directions are conjugate relatively to the Hessian of .f  However, if 
 then  can become zero away from the minimum. Although interesting, this 

innovation has not been profitable in practice. An alternative way of allowing an arbitrary 
initial direction  for quadratic functions was suggested by Allwright [19] who introduced a 
change of variable based on a factorization of the Hessian of the function 

0 ,d g≠ − 0 kd

0d
.f  Observe that all 

these remarks address only to the convex quadratic functions; for the general nonlinear 
function we have no results on this problem.  
 
Problem 2. What is the best conjugacy condition? 

The conjugacy condition is expressed as 1 0.T
k ky d + =  Recently, Dai and Liao [27] introduced 

the new conjugacy condition  where  is a scalar. This is indeed very 
reasonable since in real computation the inexact line search is generally used. However, this 
condition is very dependent on the nonnegative parameter t , for which we do not know any 
formula to choose in an optimal manner. 

1 1,
T T
k k k ky d ts g+ += − 0t ≥

 
Problem 3. Why does the sequence of steplength { }kα tend to vary in a totally unpredictable 
manner and differ from 1 by two order of magnitude? 

Intensive numerical experiments with different variants of conjugate gradient algorithms 
proved that the step length may differ from 1 up to two orders of magnitude, being larger or 
smaller than 1, depending on how the problem is scaled. Moreover, the sizes of the step 
length tend to vary in a totally unpredictable way. This is in sharp contrast with the Newton 
and quasi-Newton methods, as well as with the limited memory quasi-Newton methods, 
which usually admit the unit step length for most of the iterations, thus requiring only very 
few function evaluations for step length determination. Numerical experiments with the 
limited memory quasi Newton method by Liu and Nocedal [41] show that it is successful [9]. 
One explanation of the efficiency of the limited memory quasi-Newton method is given by its 
ability to accept unity steplengths along the iterations.  

 3



In an attempt to take the advantage of this behavior of conjugate gradient algorithms Andrei 
[14] suggested an acceleration procedure by modifying the steplength kα  (computed by 
means of the Wolfe line search conditions) through a positive parameter kη , in a 
multiplicative manner, like 1k k k k kx x dη α+ = + , in such a way as to improve the reduction of 
the function’s values along the iterations. It is shown that the acceleration scheme is linear 
convergent, but the reduction in function value is significantly improved. Intensive numerical 
comparisons with different accelerated conjugate gradient algorithms are documented in [9, 
15]. An acceleration of the gradient descent algorithm with backtracking for unconstrained 
optimization is given in [8]. 
 
Problem 4. What is the influence of the accuracy of line search procedure on the 
performances of conjugate gradient algorithms? 

For any unconstrained optimization algorithm one of the crucial elements is the stepsize 
computation. Many procedures have been suggested. In the exact line search the step kα  is 
selected as: 
                                                       

0
arg min ( ),k k kf x d

α
α α

>
= +                                           (2.3) 

where  is a descent direction. In some very special cases (quadratic problems, for example) 
it is possible to compute the step 

kd

kα analytically, but for the vast majority of cases it is 

computed to approximately minimize f  along the ray { }: 0k kx dα α+ ≥ ,  or at least to 

reduce f  sufficiently. In practice the most used are the inexact procedures. A lot of inexact 
line search procedures have been proposed: Goldstein [34], Armijo [21], Wolfe [57], Powell 
[48], Dennis and Schnabel [30], Potra and Shi [47], Lemaréchal [40], Moré and Thuente [42], 
Hager and Zhang [36], and many others. The most used is based on the Wolfe line search 
conditions (1.3) and (1.4). An important contribution in understanding the behavior of Wolfe 
conditions was given by Hager and Zhang [36, 37] by introducing the approximate Wolfe 
conditions 
                                               .                                        (2.4) 1(2 1) T T T

k k k k k kg d g d g dρ +− ≥ ≥σ
The first inequality in (2.4) is an approximation to the first Wolfe condition (1.3). When the 
iterates are near a local optimum this approximation can be evaluated with greater accuracy 
than the original condition, since the approximate Wolfe conditions are expressed in terms of 
a derivative, not as the difference of function values. It is worth saying that the first Wolfe 
condition (1.3) limits the accuracy of a conjugate gradient algorithm to the order of the square 
root of the machine precision, while the approximate Wolfe conditions (2.4) achieve accuracy 
on the order of the machine precision [36].  
It seems that the higher accuracy of the steplength, the faster convergence of a conjugate 
gradient algorithm. For example the CG_DESCENT algorithm by Hager and Zhang which 
implement (2.4) is the fastest known conjugate gradient variant.  
In this context another interesting open question is whether the nonmonotone line search [35] 
is more effective than the Wolfe line search.  
 
Problem 5. How can we use the function values in kβ  to generate new conjugate gradient 
algorithms? 

This problem is taken from Yuan [58]. Generally, in conjugate gradient algorithms the 
parameter kβ  is computed using ,kg  1 ,kg +  ,ky  ,ks    and 

[5, 13]. As we can see in the formula for 

,T
k ky s 1,

T
k kg g + 1

T
k ky g +

1
T
k ks g + kβ  the difference 1( ) ( )k kf x f x +−  is not 

used at all. In [59] Yabe and Takano, using a result of Zhang, Deng and Chen [55], suggest 
the following formula for kβ  
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                                                         1( ,
T

YT k k k
k T

k k

g z ts
d z

β + −
=

)
                                                 (2.5) 

where ,k
k k kT

k u

z y u
s u
δη

= +  1 1 k6( ( ) ( )) 3( )T
k k k k kf x f x g g sη += − + + 0+ , δ >  is a constant 

and  satisfies  for example n
ku R∈ 0;T

k ks u ≠ .k ku s=  In the same context based on the 
modified secant condition of Zhang, Deng and Chen [55], with ,k ku s=  Andrei [10] 
proposed the following formula for kβ  

                                        1
2 1 ,

T T
k k k k k

k T T
k k k k k kk

s g y g
y s y ss

δηβ 1

δη δ
+

⎛ ⎞
⎜ ⎟= − +
⎜ ⎟ + +⎝ ⎠ η

+                                (2.6) 

where 0δ ≥  is a scalar parameter.  Another possibility is presented by Yuan [58] as 

                                               1

1

.
( ) /

T
Y k k
k T

k k k k k

y g
f f d g

β
α

+

+

=
− − / 2

                                         (2.7) 

 
Problem 6. Can we take advantage of problem structure to design more effective nonlinear 
conjugate gradient algorithms? 

This problem was formulated by Nocedal [44]. When the problem is partially separable, i.e. it 
can be expressed as a sum of element functions, each of which does have a large invariant 
subspace [24], can we formulate a partitioned updating of parameter kβ  to obtain a powerful 
conjugate gradient algorithm? This idea of decomposition of partially separable functions in 
the context of large-scale optimization was considered in quasi-Newton methods by Conn, 
Gould and Toint [25]. The advantage of this approach is that the information contained in the 
partially separable description of the function is so detailed that it can be used in exploring the 
objective function only along some relevant directions. The idea is to ignore some invariant 
subspace of the function and only consider its complement. The question is whether we can 
use this type of invariant subspace information to design new formula for kβ .  
 
Problem 7. How can we consider the second order information in conjugate gradient 
algorithms? 

In [2, 3] Andrei suggested the following formula for kβ : 

                                                
2

1 1
2

1

( )
( )

T T
k k k k

k T
k k k

s f x g s g
s f x s

β 1k+ +

+

∇ −
=

∇
+ .                                       (2.8) 

Observe that if the line search is exact, then we get the Daniel method [29]. The salient point 
with this formula for kβ  computation is the presence of the Hessian matrix. For large-scale 
problems, choices for the update parameter that do not require the evaluation of the Hessian 
matrix are often preferred in practice to the methods that require the Hessian.  
A direct possibility to use the second order information given by the Hessian matrix is to 
compute the Hessian / vector product 2

1( )k kf x s+∇ . However, our numerical experiments 
proved that even though the Hessian is partially separable (block diagonal) or it is a multi-
diagonal matrix, the Hessian / vector product 2

1( )k kf x s+∇  is time consuming, especially for 

large-scale problems. Besides, what happens when  In an effort to use 
the Hessian in 

2
1( )ks Ker f x +∈ ∇ ?k

kβ  Andrei [11] suggested a nonlinear conjugate gradient algorithm in which 

the Hessian / vector product 2
1( )k kf x s+∇  is approximated by finite differences: 
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                                        2 1
1

( ) (( ) k k k
k k

f x s f xf x s 1) ,δ
δ

+
+

+∇ + −∇
∇ =                                (2.9) 

where 

                                                         12 (1m k

k

x
s

ε
δ ++
=

)
,                                              (2.10) 

and mε  is epsilon machine. 
As we know, for quasi-Newton methods an approximation matrix kB  to the Hessian 

2 ( )kf x∇  is used and updated so that the new matrix 1kB +  satisfies the secant condition 

1 .k k kB s y+ =  Therefore, as it is explained in [2, 3, 4] in order to have an algorithm for solving 
large-scale problems we can assume that the pair  satisfies the secant condition. 
Using this assumption we get: 

( , )k ks y

                                                        1( ) ,
T

k k k k
k T

k k

y s g
y s

θβ + −
= 1+                                          (2.11) 

where 1kθ + is a parameter. Birgin and Martínez [23] arrived at the same formula for ,kβ  but 
using a geometric interpretation of quadratic function minimization.  
Further in [10] we experienced another nonlinear conjugate gradient algorithm in which the 
Hessian / vector product 2

1( )k kf x s+∇  is approximated by the modified secant condition 
introduced by Zhang, Deng and Chen [55] and by Zhang and Xu [56], obtaining kβ  as in 
(2.6).  
 
Problem 8. What is the best scaled conjugate gradient algorithm? 

Some authors suggested the search direction of the following form 
                                                       1 1 1 ,k k k kd g ksθ β+ + += − +                                              (2.12) 
where 1kθ +  is a positive scalar or a symmetric and positive definite matrix [1, 23]. The 
formula (2.12) is known as the scaled conjugate gradient algorithm. Observe that if θ k+ =1 1,  
then we get the classical conjugate gradient algorithms according to the value of the scalar 
parameter β k .  On the other hand, if β k = 0, then we get another class of algorithms 
according to the selection of the parameterθ k+1 . Considering  β k = 0,  there are two 
possibilities for θ k+1 : a positive scalar or a positive definite matrix. If θ k+ =1 1 , then we have 
the steepest descent algorithm. If θ k kf x+ +

−= ∇1
2

1
1( ) , or an approximation of it, then we get 

the Newton or the quasi-Newton algorithms, respectively. Therefore, we see that in the 
general case, when θ k+ ≠1 0 is selected in a quasi-Newton manner, and β k ≠ 0,  then (2.12) 
represents a combination between the quasi-Newton and the conjugate gradient methods. 
However, if θ k+1 is a matrix containing some useful information about  the inverse Hessian of 
function f , we are better off using d gk k+ + k+= −1 1 1θ since the addition of the term β k ks in 
(2.12) may prevent the direction 1kd +  from being a descent direction unless the line search is 
sufficiently accurate. In [1, 23] 1kθ +  is selected as the inverse of the Rayleigh quotient. 
Another selection based on the values of the minimizing function in two successive points is 
presented in [1, 4].  
 
Problem 9. Which is the best hybrid conjugate gradient algorithm? 

Hybrid conjugate gradient algorithms have been devised to use and combine the attractive 
features of the classical conjugate gradient algorithms. Touati-Ahmed and Storey [54], Hu 
and Storey [39], Gilbert and Nocedal [33] suggested hybrid conjugate gradient algorithms 
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using projections of Fletcher-Reeves [32], Polak-Ribière [45] and Polyak [46] conjugate 
gradient algorithms. Another source of hybrid conjugate gradient algorithms is based on the 
concept of convex combination of classical conjugate gradient algorithms. Thus in [6, 7] 
Andrei introduced a new class of the hybrid conjugate gradient algorithm based on a convex 
combination of Hestenes-Stiefel [38] and Dai-Yuan [28]. In [16] other hybrid conjugate 
gradient algorithms are designed as convex combination of Polak-Ribière-Polyak [45, 46], 
and Dai-Yuan [28]. Generally, the performance of the hybrid variants based on the concept of 
convex combination is better than that of the constituents [17, 18]. But, finding the best 
convex combination of the classical conjugate gradient algorithms remains for further study. 
 
Problem 10. What is the best restart procedure of conjugate gradient algorithms? 

In the early conjugate gradient algorithms, the restarting strategy was usually to restart 
whenever  or  When  is very large and the number of clusters of similar 
eigenvalues of the Hessian is very small, this strategy can be very inefficient. Powell [50] has 
suggested restarting whenever 

k n= 1.k n= + n

                                                         
2

1 0.2T
k k kg g g+ ≥ 1+ .                                                (2.13) 

On quadratic functions the left-hand side of (2.13) is an indicator of the nonconjugacy of the 
search directions and therefore a signal that the current cycle must be terminated and another 
one must be started with negative of the current gradient. It is also desirable to restart if the 
direction is not effectively downhill. Powell suggested restarting if  
                                                 21.2 0.8T

k k k kg d g g− < < − 2                                        (2.14) 
is not satisfied. Another criterion for restarting the iterations in conjugate gradient algorithms 
was designed by Birgin and Martínez [23] 

                                                 3
1 1 1 12

10T
k k k kd g d g−
+ + + +> −

2
.                                       (2.15) 

In (2.15) when the angle between 1kd +  and 1kg +−  is not acute enough then restart the 
algorithm with 1kg +− . Clearly, more sophisticated restarting procedures can be imagined, but 
which one is the best remains to be seen. 
 
Problem 11. What is the best criterion for stopping the conjugate gradient iterations?  

In infinite precision, a necessary condition for *x  to be the exact minimizer of function f  is 
 In an iterative and finite precision algorithm, we must modify this condition as 
 Although  can also occur at a maximum or at a saddle point, the 

line search strategy makes the convergence of the algorithm virtually impossible to maxima 
or saddle points. Therefore,  is considered a necessary and sufficient condition for 

*( ) 0.f x∇ =
*( ) 0.f x∇ ≅ *( ) 0f x∇ =

*( ) 0f x∇ =
*x  to be a local minimizer of .f  

For linear conjugate gradient algorithms different stopping criteria were analysed by Arioli 
and Loghin [20]. For nonlinear conjugate gradient algorithms the following stopping criteria 
were suggested 
                                            ( ) ,kf x gε∞

∇ ≤                                                                      (2.16) 

                                            1( )T
k k k f kg d f xα ε +≤ ,                                                           (2.17) 

                                            ( ) (1 ( ) )k g kf x fε
∞

∇ ≤ + x ,                                                 (2.18) 

                                            { }0 0( ) max , ( ) ,k gf x f xε ε
∞

∇ ≤ ∇
∞

                                  (2.19) 

                                            
2

( ) ,kf x gε∇ ≤                                                                       (2.20) 
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where, for example , 2010fε
−= 610gε

−=  and 12
0 10ε −= .  For large-scale problems 

( )kf x
∞

∇ is more suitable to be used to stop the algorithm, but for small problems it is better 

to use 
2

( )kf x∇ . 
 
Problem 12. Affine components of the gradient. 

The Newton method has a very nice property. If any component functions of the gradient 
( )f x∇  are affine, then each iterate generated by the Newton method will be a solution of 

these components, since the affine model associated to the system ( ) 0f x∇ =  will always be 
exact for these functions. Is there an equivalent property for conjugate gradient algorithms? 
 
Problem 13. What is the interrelationship between conjugate gradient and quasi-Newton 
algorithms? 

Both these algorithms have some maturity with very well established theoretical results and 
strong computational experience. The question is that we don’t have any significant progress 
in designing efficient and robust algorithms for large-scale problems using concepts from 
both these two classes of algorithms. 
 
Problem 14. Can the nonlinear conjugate gradient algorithms be extended to solve simple 
bounded constrained optimization?  

Consider the problem 

                                                        { }min ( )|
nx R

f x l x u
∈

≤ ≤ ,                                               (2.21) 

where  and  are known vectors from l u .nR  How can we adapt the conjugate gradient 
algorithms to solve (2.21)? A possible idea is to consider the techniques from the interior 
point methods and devise a nonlinear conjugate gradient algorithm in which the bounds on 
variables are not dealt with explicitly [44].  
 
3. Conclusion 
For more than 50 years the conjugate gradient algorithms have been under an intensive 
theoretical and computational analysis. Today, they represent an important component of 
optimization algorithms. In this paper we have presented some interesting open problems 
concerning the design and implementation in computing codes of nonlinear conjugate 
gradient algorithms. 
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