Gradient Flow Algorithm for Unconstrained
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Abstract. The gradient flow approach for unconstrained optimization is presented.
The idea of this approach is that for an unconstrained optimization problem an ordinary
differential equation to associate. Fundamentaly this is a gradient system based on the
first order optimality conditions of the problem. Using a discretization scheme, based on
atwo level implicit time discretization technique, with a splitting parameter 6 € [0, 1], an
algorithm is obtained. The convergence of this algorithm is analyzed and it is shown that
this is linearly convergent when 0 < # < 1 and quadraticaly convergent when 6 = 1
and the integration step is sufficiently large. At every step a linear algebraic system is
solved, but no linear searchisrequired. Numerical experiments on alimited number of test
functions show that this approach based on integration of a gradient system is more robust
and even superior to the Newton’'s method.

Key words. Unconstrained optimization, gradient flow method, quadratic conver-
gence.

1. Introduction

Unconstrained optimization, expressed as min f(x), where f(x) isarea function, is one
of the most active areain optimization community, virtually appearing in every human ac-
tivity. For solving these problems many efficient methods have been suggested. Excellent
presentations of these methods can be found, for example, in (Refs. 1-5). The most useful
algorithms classify in: the conjugate gradient method and its variants, the Newton method
and its extensions, the BFGS variable metric method and its limited memory variants, the
truncated Newton method and the Nelder-Mead simplex method. All these methods con-
sider iterations of the form

Tit1 = T + Aidg,

where d;, isadescent search direction and )\, isasteplength obtained by a one-dimensional
search. The conjugate - gradient methods consider thesearch directionasdy, = —V f (a)+
Bdi—1, wherethe scalar 3, is chosen in such amanner that the method reducesto the lin-
ear conjugate gradient when the function is quadratic and the line search is exact. The rest
of methods defines the search direction by d;, = —B,;1Vf(a:k), where B, is anonsin-
gular symmetric matrix. Mainly, the matrix By, is selected as. B, = I (the steepest de-
scent method), By, = V2 f(x,) (the Newton’s method) or an approximation of the Hessian
V2 f(x;) (BFGS, DFR SR1 etc.).
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Other methods, different from those above mentioned, are the gradient flow meth-
ods, known as stable barrier-projection and barrier-Newton methods, which have been
introduced for the first time by Evtushenko (Refs. 6,7) and by Evtushenko and Zhadan
(Refs. 8-10). Convergence of these methods via Lyapunov functions has been considered
by Smirnov (Ref. 10). Recently, improvements and some computational experience with
these methods have been considered by Wang, Yang and Teo (Ref. 12). Basicaly, in this
approach a constrained optimization problem is reformulated as an ordinary differential
equation (ODE) in such away that the solution of this ODE converges to an equilibrium
point of the optimization problem as parameter ¢ from the ODE goes to co.

In this paper, agradient flow approach for unconstrained optimizationisproposed. Toa
general unconstrained optimization problem an ODE isassociated. Basically, thisODEisa
gradient system. For integration of this ODE a discretization scheme, based on atwo level
implicit time discretization scheme with a splitting parameter 6 is proposed. It is shown
that the solution of this discretized gradient flow equation converges to alocal minimum
of the original problem, either linearly or quadratically according to the choice of 6 and of
the time step size of the series of the discretization time points. When 6 = 1 and thetime
step size tends to oo, then the corresponding agorithm is quadratically convergent.

The structure of the paper is as follows. Section 2 is dedicated to present the idea of
the gradient flow approach for unconstrained optimization. In section 3 we present the
corresponding gradient flow algorithm, aswell asits convergence analysis. Some numeri-
cal experiments and comparisons with the Newton method with backtracking are given in
section 4.

2. Thegradient flow approach for unconstrained
optimization

Consider the following unconstrained optimization problem

min f(x), ()
wherez € R™and f : R™ — Risafunctionassumed to betwice continuousdifferentiable.
As we know, a necessary condition for the point z* be an optimal solution for (1) is:

Vf(z®)=0. )

This is a system of n nonlinear equations, which must be solved to get the optimal

solution z*. In order to fulfill this optimality condition the following continuous gradient

flow reformulation of the problem is suggested: solve the following ordinary differential
equation:

dz(t)
dt

=-V/f(z(t)) ©)

with theinitia condition

x(0) = zo. (4



The following theorem gives the convergence result of the system (3) initialized with (4).
Theorem 2.1. Consider that =* is a point satisfying (2). Suppose that V2f(:c*) is
positive definite. If xq isclose enoughto z*, then z(t), solution of (3), tendsto =* as ¢
goes to co.
Proof. The system (3) can be written as

i=(x),
where ®(x) = —V f(x). To show that z* is an assymptotically stable point for (3) we
shall consider the Poincaré - Lyapunov theory (Ref. 13). According to thistheory, * isan
asymptotically stable point for the nonlinear differential equation system z= ®(x) if ®(z)
is continuoudly differentiable and the linearized system

Y= V(" )y,
wherey = x — z*, is exponentidly stable, i.e. al eigenvalues of V& (z*) are strictly

negative. Considering the Taylor's expansion of ®(x) around «*,and having in view that
Vf(z*) =0, weget:

d
= = )+ VO (@ — )
= — V") + V(") (@ — )]
— —VQf(a:*)(a: —z").

But, V2 f(2*) is positive definite by the assumption of thetheorem. Thereforeitseigen-
values \; > 0, foral i = 1,...,n. By the Poincaré-Lyapunov theory it follows that
flim y(t) =0,0rz(t) — a* ast — co. W

The following theorem shows that f(x(t)) is strictly decreasing along the solution of
©)

Theorem 2.2. Let z(t) bethe solution of (3). For afixed ¢ty > 0if Vf(x(t)) # 0 for
al t > tg, then f(x(t)) isstrictly decreasing with respect to ¢, for all ¢ > tg.

Proof. We have:

df(z(t) dx(t)
— = Vi)
— V)TV f(2(t)

= —[IVf(®)]3-

Since Vf(x(t)) # 0whent > tg,it followsthat df (z(t))/dt < 0,i.e f(x(t)) isstrictly
decreasing with respect to z > t;.H

Observe that the ordinary differential equation (3), associated to (1), is a gradient sys-
tem (Ref. 14, pp.199). Gradient systems have specia properties that make their flows
very simple. For gradient system (3) at regular points x, characterized by the fact that
Vf(z) # 0, the trgjectories cross level surfaces of the function f(z) orthogonally. Non-
regular points are equilibria of the system, and if z* isan isolated minimum of f(x), then



x* isan asymptotically stable equilibrium of the gradient system (3).

3. Thegradient flow algorithm for unconstrained
optimization

As we have seen, solving the unconstrained optimization problem (1) has been reduced to
that of integration of the ordinary differential equation (3) with initial condition (4). Now
we shall consider a discretization of this ODE as well as the corresponding integration
scheme.

LetO =tg <ty < --- < tg < --- beasequence of time points for thetimet > ¢,.
Consider h, = tr11 — ti the sequence of time distances between two successive time
points. With these, let us consider the following time-steeping discretization of (3):

Thtl Tk

P (1 =0)V f(zr) + OV f(zr 1)l )
where 6 € [0, 1] isaparameter. From this we get:

Tpr =k — hye [(1 = O)V f(@e) + OV f(2r41)] -
When 6 = 0 the above discretization is the explicit forward Euler's scheme. On the other
hand, when § = 1 we have the implicit backward Euler's scheme. But,

Vf(xge1) = Vf(xw) + V2 f(xg)dzs + B(6xy),
where sy, = x4 1 —xj, and (6a,) istheremainder satisfying ||®(8x1,) || = O (Haka) .
Therefore
a1 = xp — by, [T+ V2 f ()] [V f(h) + 0D (52y,)].
Omitting the higher order term ®(éx,) we get:

T = @ — g [T+ WbV f ()] Vf (), ()
forany 6 € [0, 1] . Considering ¢ asthe initial guess, then (6) defines aseries {z;,} . The
convergence of (6) isgiven by

Theorem 3.1. Let {z;} be the sequence defined by (6) and =* a solution of (1), such
that V2 f(2*) is positive definite. If theinitial point g is close enough to z*, then:

(i) If 6 €[0,1] and Ay > 0 issufficiently small, then x;, convergeslinearly to =*.

@i If 6 =1and hy — oo, then x; converges quadratically to a*.

Proof. (i) From (6) we have:

[I+ hkbV? f(21)] (241 — 21) = —haV f(2)
hence:

Tiy1 = T — i [V (i) + 0V f(21) (@11 — )] - )
Substracting z* from both sides of (7) and havinginview that e, = x — *, X1 — 2z =
erp+1 — e and Vf(z*) =0, we get:



epr1 = ex — hy [Vf(:vk) —Vf(z*) + 9V2f(:ck)(ek+1 — ek)] )
Now using the mean value theorem we have:
erv1 = ex — hi [V2F(Eg)er + OV f(ar) (ens1 — ex)]
where ¢, € [z, x*]. Solving for e 1, we have:

e = {1 = i [I+hdV2f ()] V2F(€5) } en. ®)
Considering the norm of both sides of this equality we obtain:
lewrall < p(@n; E, 0, hue) llewl|, ©)
where
€0, h) = ||T = i [T+ btV £ ()] V2£(E)|) (10)

From (9) we seethat if p(z, &, 0, hi) < 1, then ey, convergesto zero linearly. With these,
selecting §;, = 1, we can write:

(20, &4, 0,h) < [ 1 i i <1 (11)
L,y ) = - T ok )
P i T 1+ hebAF

ki and \E  represents the minimum and the maximum eigenvalues of V2 f(x,),
respectively. Therefore, from (9) it followsthat klim er = Olinearly,i.e. x; — x* linearly.

(ii) Consider 0 = 1in(7), we get:

Dl Bk [V f(ar) + V2 f (wr)62]
I

where 6z, = 441 — z. When hy, — oo the above relation reduced to

Vf(x) + V2 f(xgp)dx, =0

which is the Newton method applied to V f(z) = 0. When xy, is sufficiently close to «*,
as we know the Newton method is quadratically convergent, proving the theorem. i
Remark 3.1. From (9) and (11), with 6 = 1, we have:

where \*

llexr1ll < pryalleol|

: |
RNy

pen 11 (1 I ) |
0 1+ hA

max

where

But, V2 f(x;) is positive definite, thereforefor adl i = 1, .. . k,

h\!
0<1l— ——21 1.
1 +IIZ)\:’HELX

So, pg, for al k, is a decreasing sequence, from (0, 1), i.e. it isconvergent. If h; — oo,
thenfordli=1,...k,



hiAi i 2
— —fmin 1 1/k (V2 (1)) .
T, 1)
Clearly, if thereis an i for which x (V> f(z;)) is close to 1, then the convergence of the
algorithm isvery rapid.
Based on (6), for solving (1), the following algorithm can be presented:

Algorithm GFUO (Gradient Flow Unconstrained Optimization )

Sep 1. Consider theinitia point 2 € R™, aparameter § € [0, 1], asequence of time
stepsize {hy} and an e > 0 sufficiently smal. Set &k = 0.

Sep 2. Solvefor 6z, the system

[I 4+ 10V f(2p)] 6r = —hi,V f (). (12)
Sep 3. Updatethe variables: zj, 1 = xp+ 6.
Step 4. Test for continuation of iterations. If ||V f(x)|| < e, stop; otherwise set k =
k -+ 1 and continue with step 2.

As the theorem 3.1 recommends, the GFUO algorithm is quadratically convergent if
0 = 1and hi — oo. The problem is how to choose the sequence k. The most direct
ideaisto choose iy, in such away that the matrix of the system (12) to be positive definite.
Thefollowing theorem suggests how to choose the value i, of time distances between two
successive time points.

Theorem 32. If h;, > max{—%,z‘ = 1,...,n} ,where \¥ i = 1,... n, arethe
eigenvalues of V? f(zy), then [I + hy, V2 f(xy,)] is positive definite.

Proof. The matrix V2 f(x,) is symmetric, i.e. it hasreal eigenvdu&)\f,i =1,...,n.
There exists amatrix P such that

PV f(xr)P = diag( A}, ..., \F).

Therefore P~ [I + hy V2 f(zk)] P = I+ hydiag(A},. .., Ay,), whichis positive def-
initewhen 1 + hk/\f >0, foradli=1,...,n. 1R

In order to see the complexity of the GFUO agorithm let us denote
9N

min

IR PN

max

a;

and consider a; = min{a; : 0 <i < k}.Then
k
P =] [ (1 — @) < (1 —ay)**!
=0
i.e |lexs1]l < prt1lleol] < (1—a;)* ! eoll . Thus, the number of iterations required to
obtain an accuracy |leg+1]| = [|zr+1 — 2*|| < e, starting at point x, is bounded by




log, € — logy ||e| _
logy(1 — a;)
Thisexpression depends on thefinal accuracy, on theinitia estimation of the optimal point,
aswell ason the distribution of eigenvalues of the Hessian matrices of function f along the
iterations.

1.

4. Numerical experiments

In order to see the performances of the algorithm GFUO we present some numerical exper-
iments obtained with a Fortran implementation of it. In all experimentswe have considered
6 = 1. Thetolerance ¢ is chosen to be 10~7. The time step size h;, is considered the same
for al &, equal with h. The GFUO algorithm is compared with the Newton algorithm with
backtracking:

Tt = T — M V2 f () "IV f (),
where the steplength )\, is chosen to satisfy the first Wolfe condition:

f(@r + Medi) < f(or) + aXe V(1)L di,

by backtracking, starting with A\, = 1 and reducing thisvalue as A\, = A\rs, where o =
0.0001, s = 0.8 and dj, = — V2 f(z1) "'V f(z).

Example 1. (Full matrix)
2
n 1 n
_ 2, L ,
f(z) 7; ix; + 100 <; a:l> .

Considering n = 1000, table 1 gives the number of iterations subject to different initial
points and values for time step size h.

Table 1. Number of iterations for different initial points and 2 (GFUO and Newton).

| n = 1000 |h=1]h=10] h=10" [ h=10" | Newton |
zo = [0.5,...,0.5] 15 6 4 3 2
xo = [10.5,...,10.5] 18 7 4 3 2
xo = [100.5, ..., 100.5] 20 7 5 3 2
xo = [1000.5,...,1000.5] | 22 8 5 4 2

Example 2. (Diagonal)

Table 2. Number of iterations for different initial points and 2 (GFUO and Newton).



| n = 1000 |h=1[h=10 | h=10" | h=10" | Newton |

zo=11,... 1] 141 21 7 5 5
20 = [10,...,10] | 154 30 17 15 15
2o = [100,...,100] | 244 | 120 107 105 105

Example 3. (Tridiagonal)

fl@) = ((6—3a;—ai)ay — 3z + 1)2 +
n—1

((5 —3x; — .CLZQ).CLl — 21 —3x41 + 1)2 +

((5— 3wy — a2)Tn — Tp_1 + 1)2 ,

Table 3. Number of iterations for different initial points and 2 (GFUO and Newton).

| n = 1000 |h=1[h=10 | h=10"° | h=10" [ Newton |
vo=[—1,...,—1] 8 6 5 5 5
zg = [ 10,...,—10] 18 15 14 14 14
zg = [—-100,...,—-100] [ 28 26 25 25 25
zo=[1,...,1] 1 8 7 6 6
zo = [10,...,10] 20 17 16 15 15
zo = [100, ..., 100] 30 27 26 25 25
Example 4. (Full matrix)
n—1 n 2
fla) =) (w:—1)"+ (Z a? — 0.25) .
i=1 j=1

For n = 100 and n = 200 the agorithms GFUO and Newton with backtracking give the
resultsin table 4aand 4b.

Table 4a. Number of iterations for different initial points and 2 (GFUO and Newton).

n = 100 |h=1[h=10| h=10" | h=10" | Newton |
zo=11,2,...,n] 23 20 19 19 19
xo = [1/10,2/10,...,n/10] 17 14 14 13 13
xg = [1%10,2%10,...,nx 10] 29 26 25 25 25
Table 4b. Number of iterations for different initial points and 2 (GFUO and Newton).
n = 200 |h=1[h=10| h=10" | h=10" | Newton |
zo=11,2,...,n] 25 22 22 21 21
zo = |1/10,2/10, ..., n/10] 19 17 16 16 16
xg =[1%10,2%10,...,n* 10] 30 28 27 27 27

Example 5. (Full matrix)



f(x):(x1—3)2+§n: (w1—3—2(1;1+372+...xi)2)2.

=2

Table 5a. Number of iterations for different initial points and 2 (GFUO and Newton).

| n =50 |h=10| h=10" [ h=10"° | h=10" | Newton |
xo = [0.001,...,0.001] | 2348 398 140 18 8
xo = [0.01,...,0.01] 6390 327 86 78 14
xo = [0.1,...,0.1] 4406 320 68 48 25
zo=1L...,1] 1043 166 74 65 41
2o = 110, ..., 10] 1055 177 85 76 52
Table 5b. Number of iterations for different initial pointsand 2 (GFUO and Newton).
| n = 100 |h=10| h=10" [ h=10"° | h=10" | Newton |
zo = [0.001,...,0.001] | 4668 1690 85 m 11
zg = [0.01,...,0.01] 11873 999 106 35 16
2o =10.1,...,0.1] 1049 158 72 61 38
zg=11,...,1] 1069 179 93 82 50
xo = [10,...,10] 1081 189 103 91 62
Example 6. (Bidiagonal)
n—1
f@) =) (w1 —29)” + (1 — ).
=1
Considering the initia point 2o = [-1.2,1,---,—1.2,1], the following results are ob-

tained:

Table 6. Number of iterations for different values of » (GFUO and Newton).
| n [h=1]h=10[h=10" | h=10" | Newton |

50 48 15 14 14 9
100 48 15 14 14 9
1000 48 15 14 14 n
2000 48 15 14 14 u
3000 48 15 14 14 12
5000 48 15 14 14 12

Example 7. (Powel function)
n/4

f@) = Y (4341024 2)° +5(vai 1 — 2a)” +

i=1

(ai-9 — 2-734i—1)4 + 10 (z45-3 — -734i)4 .



Considering the initial point 2o = [3,-1,0,1,...,3,—1,0,1], the following results are
obtained:

Table 7. Number of iterations for different values of 4 (GFUO and Newton).
| n [h=10" | h=10° [ h=10" | h=10" | Newton |

400 715 87 25 21 17
800 897 105 27 21 18
1200 1024 118 29 21 18
1600 1126 129 30 21 18
2000 1211 137 31 22 18
Example 8. (Extended Rosenbrock function)
n/2
2
f(l) :Z c (ﬂjgi — x%ifl) -+ (1 — :L‘Qi_l)Q .
=1
For theinitial point zo = [-1.2,1,..., —1.2,1], and ¢ = 100 the following results are

obtained:

Table 8a. Number of iterations for different values of » (GFUO and Newton).
| n [h=10]h=10"| h=10" [ h=10" | Newton |

2 15 9 7 7 20
100 16 9 7 7 20
1000 17 10 8 7 20
2000 17 10 8 7 20

For ¢ = 1000 we get the following results:

Table 8b. Number of iterations for different values of A (GFUO and Newton).
| n [h=10]h=10" | h=10" [ h=10" | Newton |

2 16 9 7 7 38
100 17 9 7 7 39
1000 18 10 7 7 39
2000 18 10 7 7 39

For ¢ = 10000 we get the results:

Table 8c. Number of iterations for different values of ~ (GFUO and Newton).
| n [h=10[h=10° [ h=10" | h=10" | Newton |

2 16 9 7 6 78
100 18 10 7 6 79
1000 18 10 7 7 79
2000 19 10 7 7 79

Example 9. (White and Holst function)
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n/2
2
f(.fl?) :Z c (-7721' - l’gi_l) + (]. - J}Qi_l)Q .
i=1
For theinitid point zg = [-1.2,1,...,—1.2,1], and ¢ = 100 the following results are
obtained:

Table 9a. Number of iterations for different values of 1 (GFUO and Newton).

| n [h=10[h=10° [ h=10" | h=10" | Newton |

2 19 n 7 6 26
100 21 n 8 7 26
1000 22 12 8 7 26
2000 22 12 8 7 26

For ¢ = 1000 we get the following results:

Table 9b. Number of iterations for different values of » (GFUO and Newton).

| n [h=10]h=10" | h=10" [ h=10" | Newton |

2 20 n 8 7 51
100 21 12 8 7 52
1000 22 12 8 7 52
2000 23 12 8 7 52

For ¢ = 10000 we get the results:

Table 9¢c. Number of iterations for different values of 4 (GFUO and Newton).

| n [h=10]h=10" | h=10" [ h=10" | Newton |

2 21 12 8 7 108
100 22 12 8 7 108
1000 23 13 9 7 108
2000 24 13 9 7 108
Example 10. (Arrowhead function)
n—1
f(2) :Z (a:? + xi)Q —4z; + 3.
=1
For theinitia point g = [1,1,...,1,1] thefollowing results are obtained:

Table 10. Number of iterations for different values of » (GFUO and Newton).

1n



| n [h=10[h=10° [ h=10" | h=10" | Newton

10 7 6 6 6 7
100 7 6 6 6 7
1000 7 6 6 6 7
2000 7 6 6 6 7
Example 11. (Arrowhead-Bidiagonal function)
n—1
f@)= (w1 —22)*+ > (@14 2+ 2n)" + (Tn1— 20)”.
=2
For theinitia point g = [1,—1,...,1, —1] the following results are obtained:

Table 11. Number of iterations for different values of A (GFUO and Newton).
| n [h=10" | h=10" [ h=10° | h=10" | Newton |

10 17 17 17 17 18
100 19 19 19 19 20
1000 27 20 21 21 22
2000 29 21 21 21 22

Example 12. (Engval function)
n—1

Fla) =3 {2 +a?)? — 4wy + 3}
=2

For theinitia point zo = [2, . .., 2] thefollowing results are obtained:

Table 12. Number of iterations for different values of » (GFUO and Newton).
| n [h=10[h=10° [ h=10" | h=10" | Newton |

10 10 8 8 8 9
100 10 8 8 8 9
1000 | 10 8 8 8 9
5000 | 10 8 8 8 9
Conclusion

In this paper we proposed a gradient flow approach of an unconstrained optimization prob-
lem, which basically is a particularization of the gradient flow approach of the nonlinear
equality constrained optimization problem by Wang, Yang and Teo (Ref. 12). The cor-
responding algorithm is based on atwo level implicit time discretization scheme with a
splitting parameter 6 of an ordinary differential equation associated to the origina uncon-
strained optimization problem. It isshown that the algorithm convergesto alocal minimum
of the optimization problem either linearly or quadratically, depending on the value of the
splitting parameter. Numerical experiments show that the algorithm is comparablewith that
of Newton’s, for someill-conditioned problemsbeing superior. At every stepit isnecesarry
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to solve an n—dimensional algebraic system of linear equations, but unlike the Newton's
method no linear search is required.
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