
Gradient Flow Algorithm for Unconstrained
Optimization

Neculai Andrei1

Abstract. The gradient flow approach for unconstrained optimization is presented.
The idea of this approach is that for an unconstrained optimization problem an ordinary
differential equation to associate. Fundamentally this is a gradient system based on the
first order optimality conditions of the problem. Using a discretization scheme, based on
a two level implicit time discretization technique, with a splitting parameter � 5 ^3> 4`, an
algorithm is obtained. The convergence of this algorithm is analyzed and it is shown that
this is linearly convergent when 3 � � ? 4 and quadratically convergent when � @ 4
and the integration step is sufficiently large. At every step a linear algebraic system is
solved, but no linear search is required. Numerical experiments on a limited number of test
functions show that this approach based on integration of a gradient system is more robust
and even superior to the Newton’s method.

Key words. Unconstrained optimization, gradient flow method, quadratic conver-
gence.

1. Introduction

Unconstrained optimization, expressed as plq i+{,> where i+{, is a real function, is one
of the most active area in optimization community, virtually appearing in every human ac-
tivity. For solving these problems many efficient methods have been suggested. Excellent
presentations of these methods can be found, for example, in (Refs. 1-5). The most useful
algorithms classify in: the conjugate gradient method and its variants, the Newton method
and its extensions, the BFGS variable metric method and its limited memory variants, the
truncated Newton method and the Nelder-Mead simplex method. All these methods con-
sider iterations of the form

{n.4 @ {n . �ngn>

where gn is a descent search direction and �n is a steplength obtained by a one-dimensional
search. The conjugate - gradient methods consider the search direction as gn @ �ui+{n,.
�ngn�4> where the scalar �n is chosen in such a manner that the method reduces to the lin-
ear conjugate gradient when the function is quadratic and the line search is exact. The rest
of methods defines the search direction by gn @ �E�4

n
ui+{n,> where En is a nonsin-

gular symmetric matrix. Mainly, the matrix En is selected as: En @ L (the steepest de-
scent method), En @ u5i+{n, (the Newton’s method) or an approximation of the Hessian
u
5i+{n, (BFGS, DFP, SR1 etc.).

� Research Institute for Informatics, 8-10, Averescu Avenue, Bucharest, Romania, E-mail: nandrei@u3.ici.ro

1



Other methods, different from those above mentioned, are the gradient flow meth-
ods, known as stable barrier-projection and barrier-Newton methods, which have been
introduced for the first time by Evtushenko (Refs. 6,7) and by Evtushenko and Zhadan
(Refs. 8-10). Convergence of these methods via Lyapunov functions has been considered
by Smirnov (Ref. 10). Recently, improvements and some computational experience with
these methods have been considered by Wang, Yang and Teo (Ref. 12). Basically, in this
approach a constrained optimization problem is reformulated as an ordinary differential
equation (ODE) in such a way that the solution of this ODE converges to an equilibrium
point of the optimization problem as parameter w from the ODE goes to4=

In this paper, a gradient flow approach for unconstrained optimization is proposed. To a
general unconstrained optimization problem an ODE is associated. Basically, this ODE is a
gradient system. For integration of this ODE a discretization scheme, based on a two level
implicit time discretization scheme with a splitting parameter � is proposed. It is shown
that the solution of this discretized gradient flow equation converges to a local minimum
of the original problem, either linearly or quadratically according to the choice of � and of
the time step size of the series of the discretization time points. When � @ 4 and the time
step size tends to4, then the corresponding algorithm is quadratically convergent.

The structure of the paper is as follows. Section 2 is dedicated to present the idea of
the gradient flow approach for unconstrained optimization. In section 3 we present the
corresponding gradient flow algorithm, as well as its convergence analysis. Some numeri-
cal experiments and comparisons with the Newton method with backtracking are given in
section 4.

2. The gradient flow approach for unconstrained
optimization

Consider the following unconstrained optimization problem

plq i+{,> (1)
where { 5 Uq and i = Uq

$ U is a function assumed to be twice continuous differentiable.
As we know, a necessary condition for the point {� be an optimal solution for (1) is:

ui+{
�

, @ 3= (2)
This is a system of q nonlinear equations, which must be solved to get the optimal

solution {�= In order to fulfill this optimality condition the following continuous gradient
flow reformulation of the problem is suggested: solve the following ordinary differential
equation:

g{+w,

gw
@ �ui+{+w,, (3)

with the initial condition

{+3, @ {3= (4)
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The following theorem gives the convergence result of the system (3) initialized with (4).
Theorem 2.1. Consider that {

� is a point satisfying (2). Suppose that u5
i+{�, is

positive definite. If {3 is close enough to {
�
> then {+w,> solution of (3), tends to {

� as w

goes to 4=

Proof. The system (3) can be written as
=

{@ �+{,>

where �+{, @ �ui+{,= To show that {� is an assymptotically stable point for (3) we
shall consider the Poincaré - Lyapunov theory (Ref. 13). According to this theory, {� is an
asymptotically stable point for the nonlinear differential equation system

=

{@ �+{, if �+{,
is continuously differentiable and the linearized system

=

|@ u�+{�,|>

where | @ { � {
�
> is exponentially stable, i.e. all eigenvalues of u�+{�, are strictly

negative. Considering the Taylor’s expansion of �+{, around {
�
>and having in view that

ui+{�, @ 3> we get:

g{

gw

�@ �+{�, .u�+{�,+{� {
�,

@ �
�
ui+{�, .u5

i+{�,+{� {
�,

�

@ �u5
i+{�,+{� {

�,=

But,u5
i+{�, is positive definite by the assumption of the theorem. Therefore its eigen-

values �
l

A 3> for all l @ 4> = = = > q= By the Poincaré-Lyapunov theory it follows that
olp
w$4

|+w, @ 3> or {+w,$ {
� as w$4= �

The following theorem shows that i+{+w,, is strictly decreasing along the solution of
(3).

Theorem 2.2. Let {+w, be the solution of (3). For a fixed w3 � 3 if ui+{+w,, 9@ 3 for
all w A w3, then i+{+w,, is strictly decreasing with respect to w> for all w A w3=

Proof. We have:

gi+{+w,,

gw
@ ui+{+w,,W

g{+w,

gw

@ �ui+{+w,,Wui+{+w,,

@ �nui+{+w,,n5
5
=

Since ui+{+w,, 9@ 3 when w A w3>it follows that gi+{+w,,@gw ? 3> i.e. i+{+w,, is strictly
decreasing with respect to w A w3=�

Observe that the ordinary differential equation (3), associated to (1), is a gradient sys-
tem (Ref. 14, pp.199). Gradient systems have special properties that make their flows
very simple. For gradient system (3) at regular points {, characterized by the fact that
ui+{, 9@ 3> the trajectories cross level surfaces of the function i+{, orthogonally. Non-
regular points are equilibria of the system, and if {� is an isolated minimum of i+{,> then
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{
� is an asymptotically stable equilibrium of the gradient system (3).

3. The gradient flow algorithm for unconstrained
optimization

As we have seen, solving the unconstrained optimization problem (1) has been reduced to
that of integration of the ordinary differential equation (3) with initial condition (4). Now
we shall consider a discretization of this ODE as well as the corresponding integration
scheme.

Let 3 @ w3 ? w4 ? � � � ? wn ? � � � be a sequence of time points for the time w � w3=

Consider kn @ wn.4 � wn the sequence of time distances between two successive time
points. With these, let us consider the following time-steeping discretization of (3):

{n.4 � {n

kn

@ � ^+4� �,ui+{n, . �ui+{n.4,` > (5)

where � 5 ^3> 4` is a parameter. From this we get:

{n.4 @ {n � kn ^+4� �,ui+{n, . �ui+{n.4,` =

When � @ 3 the above discretization is the explicit forward Euler’s scheme. On the other
hand, when � @ 4 we have the implicit backward Euler’s scheme. But,

ui+{n.4, @ ui+{n, .u
5
i+{n,�{n .�+�{n,>

where �{n @ {n.4�{n and�+�{n, is the remainder satisfying n�+�{n,n @ R

�
n�{nn

5
�
=

Therefore

{n.4 @ {n � kn

�
L . kn�u

5
i+{n,

�
�4

^ui+{n, . ��+�{n,` =

Omitting the higher order term �+�{n, we get:

{n.4 @ {n � kn

�
L . kn�u

5
i+{n,

�
�4
ui+{n,> (6)

for any � 5 ^3> 4` = Considering {3 as the initial guess, then (6) defines a series i{nj = The
convergence of (6) is given by

Theorem 3.1. Let i{nj be the sequence defined by (6) and {
� a solution of (1), such

that u5
i+{�, is positive definite. If the initial point {3 is close enough to {

�
> then:

(i) If � 5 ^3> 4` and kn A 3 is sufficiently small, then {n converges linearly to {
�
=

(ii) If � @ 4 and kn $4> then {n converges quadratically to {
�
=

Proof. (i) From (6) we have:
�
L . kn�u

5
i+{n,

�
+{n.4 � {n, @ �knui+{n,

hence:

{n.4 @ {n � kn

�
ui+{n, . �u

5
i+{n,+{n.4 � {n,

�
= (7)

Substracting {
� from both sides of (7) and having in view that hn @ {n�{

�
> {n.4�{n @

hn.4 � hn and ui+{�, @ 3> we get:
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hn.4 @ hn � kn

�
ui+{n,�ui+{

�

, . �u
5
i+{n,+hn.4 � hn,

�
=

Now using the mean value theorem we have:

hn.4 @ hn � kn

�
u
5
i+�

n
,hn . �u

5
i+{n,+hn.4 � hn,

�
>

where �n 5 ^{n> {
�
` = Solving for hn.4, we have:

hn.4 @

q
L � kn

�
L . kn�u

5
i+{n,

�
�4
u
5
i+�

n
,

r
hn= (8)

Considering the norm of both sides of this equality we obtain:

nhn.4n � *+{n> �n> �> kn, nhnn > (9)
where

*+{n> �n> �> kn, @

���L � kn

�
L . kn�u

5
i+{n,

�
�4
u
5
i+�

n
,

��� = (10)

From (9) we see that if *+{n> �n> �> kn, ? 4> then hn converges to zero linearly. With these,
selecting �

n
@ {n> we can write:

*+{n> �n> �> kn, �

#
4�

kn�
n

plq

4 . kn��
n

pd{

$
? 4> (11)

where �nplq and �
n

pd{ represents the minimum and the maximum eigenvalues ofu5
i+{n,>

respectively. Therefore, from (9) it follows that olp
n$4

hn @ 3 linearly, i.e. {n $ {
� linearly.

(ii) Consider � @ 4 in (7), we get:
{n.4 � {n

kn

@ �

�
ui+{n, .u

5
i+{n,�{n

�
>

where �{n @ {n.4 � {n= When kn $4 the above relation reduced to

ui+{n, .u
5
i+{n,�{n @ 3

which is the Newton method applied to ui+{, @ 3= When {n is sufficiently close to {
�,

as we know the Newton method is quadratically convergent, proving the theorem. �
Remark 3.1. From (9) and (11), with � @ 4, we have:

nhn.4n � sn.4 nh3n

where

sn.4 @

n\
l@3

#
4�

kl�
l

plq

4 . kl�
l

pd{

$
=

But, u5
i+{l, is positive definite, therefore for all l @ 4> = = = n>

3 ? 4�
kl�

l

plq

4 . kl�
l

pd{

? 4=

So, sn> for all n> is a decreasing sequence, from +3> 4,, i.e. it is convergent. If kl $ 4>

then for all l @ 4> = = = n>
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4�
kl�

l
plq

4 . kl�
l
pd{

$ 4� 4@�
�
u
5i+{l,

�
=

Clearly, if there is an l for which �
�
u
5i+{l,

�
is close to 1, then the convergence of the

algorithm is very rapid.
Based on (6), for solving (1), the following algorithm can be presented:

Algorithm GFUO (Gradient Flow Unconstrained Optimization )
Step 1. Consider the initial point {3 5 Uq> a parameter � 5 ^3> 4` > a sequence of time

step size iknj and an % A 3 sufficiently smal. Set n @ 3=

Step 2. Solve for �{n the system

�
L . kn�u

5i+{n,
�
�{n @ �knui+{n,= (12)

Step 3. Update the variables: {n.4 @ {n. �{n=

Step 4. Test for continuation of iterations. If nui+{n,n � %> stop; otherwise set n @

n . 4 and continue with step 2.

As the theorem 3.1 recommends, the GFUO algorithm is quadratically convergent if
� @ 4 and kn $ 4= The problem is how to choose the sequence kn= The most direct
idea is to choose kn in such a way that the matrix of the system (12) to be positive definite.
The following theorem suggests how to choose the value kn of time distances between two
successive time points.

Theorem 3.2. If kn A pd{
q
�

4

�n
l

> l @ 4> = = = > q
r
> where �nl > l @ 4> = = = > q> are the

eigenvalues of u5i+{n,> then
�
L . knu

5i+{n,
�

is positive definite.
Proof. The matrixu5i+{n, is symmetric, i.e. it has real eigenvalues �nl > l @ 4> = = = > q.

There exists a matrix S such that

S�4u5i+{n,S @ gldj+�n
4
> = = = > �nq,=

Therefore S�4
�
L . knu

5i+{n,
�
S @ L.kngldj+�

n
4
> = = = > �nq,> which is positive def-

inite when 4 . kn�
n
l A 3> for all l @ 4> = = = > q= �

In order to see the complexity of the GFUO algorithm let us denote

dl @
kl�

l
plq

4 . kl�
l
pd{

and consider dm @ plq idl = 3 � l � nj = Then

sn.4 @

n\
l@3

+4� dl, � +4� dm,
n.4

i.e. nhn.4n � sn.4 nh3n � +4� dm,
n.4

nh3n = Thus, the number of iterations required to
obtain an accuracy nhn.4n @ n{n.4 � {�n � %> starting at point {3, is bounded by
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orj5 %� orj5 nh3n

orj5+4� dm,
� 4=

This expression depends on the final accuracy, on the initial estimation of the optimal point,
as well as on the distribution of eigenvalues of the Hessian matrices of function i along the
iterations.

4. Numerical experiments

In order to see the performances of the algorithm GFUO we present some numerical exper-
iments obtained with a Fortran implementation of it. In all experiments we have considered
� @ 4. The tolerance % is chosen to be 43�:= The time step size kn is considered the same
for all n> equal with k= The GFUO algorithm is compared with the Newton algorithm with
backtracking:

{n.4 @ {n � �nu
5
i+{n,

�4
ui+{n,>

where the steplength �n is chosen to satisfy the first Wolfe condition:

i+{n . �ngn, � i+{n, . ��nui+{n,
W
gn>

by backtracking, starting with �n @ 4 and reducing this value as �n @ �nv> where � @

3=3334> v @ 3=; and gn @ �u
5
i+{n,

�4
ui+{n,=

Example 1. (Full matrix)

i+{, @

q[
l@4

l{
5
l .

4

433

#
q[
l@4

{l

$5
=

Considering q @ 4333> table 1 gives the number of iterations subject to different initial
points and values for time step size k=

Table 1. Number of iterations for different initial points and k (GFUO and Newton).

q @ 4333 k @ 4 k @ 43 k @ 43
5

k @ 43
6 Newton

{3 @ ^3=8> = = = > 3=8` 15 6 4 3 2
{3 @ ^43=8> = = = > 43=8` 18 7 4 3 2

{3 @ ^433=8> = = = > 433=8` 20 7 5 3 2
{3 @ ^4333=8> = = = > 4333=8` 22 8 5 4 2

Example 2. (Diagonal)

i+{, @

q[
l@4

l

43
+h{s+{l,� {l, =

Table 2. Number of iterations for different initial points and k (GFUO and Newton).
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q @ 4333 k @ 4 k @ 43 k @ 43
5

k @ 43
6 Newton

{3 @ ^4> = = = > 4` 141 21 7 5 5
{3 @ ^43> = = = > 43` 154 30 17 15 15

{3 @ ^433> = = = > 433` 244 120 107 105 105

Example 3. (Tridiagonal)

i+{, @

�
+8� 6{4 � {

5
4,{4 � 6{5 . 4

�5
.

q�4[
l@5

�
+8� 6{l � {

5
l
,{l � {l�4 � 6{l.4 . 4

�5
.

�
+8� 6{q � {

5
q
,{q � {q�4 . 4

�5
>

Table 3. Number of iterations for different initial points and k (GFUO and Newton).

q @ 4333 k @ 4 k @ 43 k @ 43
5

k @ 43
6 Newton

{3 @ ^�4> = = = >�4` 8 6 5 5 5
{3 @ ^�43> = = = >�43` 18 15 14 14 14

{3 @ ^�433> = = = >�433` 28 26 25 25 25
{3 @ ^4> = = = > 4` 11 8 7 6 6

{3 @ ^43> = = = > 43` 20 17 16 15 15
{3 @ ^433> = = = > 433` 30 27 26 25 25

Example 4. (Full matrix)

i+{, @

q�4[
l@4

+{l � 4,
5
.

3
C

q[
m@4

{
5
m
� 3=58

4
D
5

=

For q @ 433 and q @ 533 the algorithms GFUO and Newton with backtracking give the
results in table 4a and 4b.

Table 4a. Number of iterations for different initial points and k (GFUO and Newton).

q @ 433 k @ 4 k @ 43 k @ 43
5

k @ 43
6 Newton

{3 @ ^4> 5> = = = > q` 23 20 19 19 19
{3 @ ^4@43> 5@43> = = = > q@43` 17 14 14 13 13

{3 @ ^4 � 43> 5 � 43> = = = > q � 43` 29 26 25 25 25

Table 4b. Number of iterations for different initial points and k (GFUO and Newton).

q @ 533 k @ 4 k @ 43 k @ 43
5

k @ 43
6 Newton

{3 @ ^4> 5> = = = > q` 25 22 22 21 21
{3 @ ^4@43> 5@43> = = = > q@43` 19 17 16 16 16

{3 @ ^4 � 43> 5 � 43> = = = > q � 43` 30 28 27 27 27

Example 5. (Full matrix)
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i+{, @ +{4 � 6,5.
q[

l@5

�
{4 � 6� 5 +{4 . {5 . = = = {l,

5
�5

=

Table 5a. Number of iterations for different initial points and k (GFUO and Newton).

q @ 83 k @ 43 k @ 43
5

k @ 43
6

k @ 43
7 Newton

{3 @ ^3=334> = = = > 3=334` 2348 398 140 18 8
{3 @ ^3=34> = = = > 3=34` 6390 327 86 78 14
{3 @ ^3=4> = = = > 3=4` 4406 320 68 48 25
{3 @ ^4> = = = > 4` 1043 166 74 65 41

{3 @ ^43> = = = > 43` 1055 177 85 76 52

Table 5b. Number of iterations for different initial points and k (GFUO and Newton).

q @ 433 k @ 43 k @ 43
5

k @ 43
6

k @ 43
7 Newton

{3 @ ^3=334> = = = > 3=334` 4668 1690 85 111 11
{3 @ ^3=34> = = = > 3=34` 11873 999 106 35 16
{3 @ ^3=4> = = = > 3=4` 1049 158 72 61 38
{3 @ ^4> = = = > 4` 1069 179 93 82 50

{3 @ ^43> = = = > 43` 1081 189 103 91 62

Example 6. (Bidiagonal)

i+{, @
q�4[
l@4

+{l.4 � {5
l
,5 . +4� {l,

5=

Considering the initial point {3 @ ^�4=5> 4> � � � >�4=5> 4`, the following results are ob-
tained:

Table 6. Number of iterations for different values of k (GFUO and Newton).

q k @ 4 k @ 43 k @ 43
5

k @ 43
6 Newton

50 48 15 14 14 9
100 48 15 14 14 9

1000 48 15 14 14 11
2000 48 15 14 14 11
3000 48 15 14 14 12
5000 48 15 14 14 12

Example 7. (Powel function)

i+{, @

q@7[
l@4

+{7l�6 . 43{7l�5,
5 . 8 +{7l�4 � {7l,

5 .

+{7l�5 � 5{7l�4,
7
. 43 +{7l�6 � {7l,

7
=
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Considering the initial point {3 @ ^6>�4> 3> 4> = = = > 6>�4> 3> 4`> the following results are
obtained:

Table 7. Number of iterations for different values of k (GFUO and Newton).

q k @ 43
5

k @ 43
6

k @ 43
7

k @ 43
8 Newton

400 715 87 25 21 17
800 897 105 27 21 18

1200 1024 118 29 21 18
1600 1126 129 30 21 18
2000 1211 137 31 22 18

Example 8. (Extended Rosenbrock function)

i+{, @

q@5[

l@4

f

�
{5l � {

5

5l�4

�5
. +4� {5l�4,

5
=

For the initial point {3 @ ^�4=5> 4> = = = >�4=5> 4`> and f @ 433 the following results are
obtained:

Table 8a. Number of iterations for different values of k (GFUO and Newton).

q k @ 43 k @ 43
5

k @ 43
6

k @ 43
7 Newton

2 15 9 7 7 20
100 16 9 7 7 20
1000 17 10 8 7 20
2000 17 10 8 7 20

For f @ 4333 we get the following results:

Table 8b. Number of iterations for different values of k (GFUO and Newton).

q k @ 43 k @ 43
5

k @ 43
6

k @ 43
7 Newton

2 16 9 7 7 38
100 17 9 7 7 39
1000 18 10 7 7 39
2000 18 10 7 7 39

For f @ 43333 we get the results:

Table 8c. Number of iterations for different values of k (GFUO and Newton).

q k @ 43 k @ 43
5

k @ 43
6

k @ 43
7 Newton

2 16 9 7 6 78
100 18 10 7 6 79
1000 18 10 7 7 79
2000 19 10 7 7 79

Example 9. (White and Holst function)
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i+{, @

q@5[

l@4

f
�
{5l � {6

5l�4

�5
. +4� {5l�4,

5
=

For the initial point {3 @ ^�4=5> 4> = = = >�4=5> 4`> and f @ 433 the following results are
obtained:

Table 9a. Number of iterations for different values of k (GFUO and Newton).

q k @ 43 k @ 43
5

k @ 43
6

k @ 43
7 Newton

2 19 11 7 6 26
100 21 11 8 7 26
1000 22 12 8 7 26
2000 22 12 8 7 26

For f @ 4333 we get the following results:

Table 9b. Number of iterations for different values of k (GFUO and Newton).

q k @ 43 k @ 43
5

k @ 43
6

k @ 43
7 Newton

2 20 11 8 7 51
100 21 12 8 7 52
1000 22 12 8 7 52
2000 23 12 8 7 52

For f @ 43333 we get the results:

Table 9c. Number of iterations for different values of k (GFUO and Newton).

q k @ 43 k @ 43
5

k @ 43
6

k @ 43
7 Newton

2 21 12 8 7 108
100 22 12 8 7 108
1000 23 13 9 7 108
2000 24 13 9 7 108

Example 10. (Arrowhead function)

i+{, @
q�4[

l@4

�
{5l . {5q

�5
� 7{l . 6=

For the initial point {3 @ ^4> 4> = = = > 4> 4` the following results are obtained:

Table 10. Number of iterations for different values of k (GFUO and Newton).
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q k @ 43 k @ 43
5

k @ 43
6

k @ 43
7 Newton

10 7 6 6 6 7
100 7 6 6 6 7
1000 7 6 6 6 7
2000 7 6 6 6 7

Example 11. (Arrowhead-Bidiagonal function)

i+{, @ +{4 � {5,
5
.

q�4[

l@5

+{l�4 . {l . {q,
7
. +{q�4 � {q,

5=

For the initial point {3 @ ^4>�4> = = = > 4>�4` the following results are obtained:

Table 11. Number of iterations for different values of k (GFUO and Newton).
q k @ 43

7
k @ 43

8
k @ 43

9
k @ 43

: Newton
10 17 17 17 17 18
100 19 19 19 19 20

1000 27 20 21 21 22
2000 29 21 21 21 22

Example 12. (Engval function)

i+{, @

q�4[

l@5

�
+{5

l�4 . {5
l
,
5
� 7{l�4 . 6

�
=

For the initial point {3 @ ^5> = = = > 5` the following results are obtained:

Table 12. Number of iterations for different values of k (GFUO and Newton).
q k @ 43 k @ 43

5
k @ 43

6
k @ 43

7 Newton
10 10 8 8 8 9

100 10 8 8 8 9
1000 10 8 8 8 9
5000 10 8 8 8 9

5. Conclusion

In this paper we proposed a gradient flow approach of an unconstrained optimization prob-
lem, which basically is a particularization of the gradient flow approach of the nonlinear
equality constrained optimization problem by Wang, Yang and Teo (Ref. 12). The cor-
responding algorithm is based on a two level implicit time discretization scheme with a
splitting parameter � of an ordinary differential equation associated to the original uncon-
strained optimization problem. It is shown that the algorithm converges to a local minimum
of the optimization problem either linearly or quadratically, depending on the value of the
splitting parameter. Numerical experiments show that the algorithm is comparable with that
of Newton’s, for some ill-conditioned problems being superior. At every step it is necesarry
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to solve an q�dimensional algebraic system of linear equations, but unlike the Newton’s
method no linear search is required.
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