Another accelerated conjugate gradient algorithm with guaranteed descent and conjugacy conditions for large-scale unconstrained optimization

Neculai Andrei
Research Institute for Informatics,
Center for Advanced Modeling and Optimization,
8-10, Averescu Avenue, Bucharest 1, Romania,
E-mail: nandrei@ici.ro

Abstract. In this paper we suggest another accelerated conjugate gradient algorithm that for all $k \geq 0$ both the descent and the conjugacy conditions are guaranteed. The search direction is selected as $d_{k+1} = -\theta_k g_{k+1} + (y_k^T g_{k+1} / y_k^T s_k) s_k - t_k (s_k^T g_{k+1} / y_k^T s_k) s_k$, where $g_{k+1} = \nabla f(x_{k+1})$, $s_k = x_{k+1} - x_k$. The coefficients θ_k and t_k in this linear combination are selected in such a way that both the descent and the conjugacy condition are satisfied at every iteration. The algorithm introduces the modified Wolfe line search in which the parameter in the second Wolfe condition is modified at every iteration. It is shown that both for uniformly convex functions and for general nonlinear functions the algorithm with strong Wolfe line search generates directions bounded away from infinity.

The algorithm uses an acceleration scheme modifying the steplength α_k in such a manner as to improve the reduction of the function values along the iterations. Numerical comparisons with some conjugate gradient algorithms using a set of 75 unconstrained optimization problems with different dimensions, some of them from the CUTE library, show that the computational scheme outperforms the known conjugate gradient algorithms like Hestenes and Stiefel; Polak, Ribière and Polyak; Dai and Yuan or the hybrid Dai and Yuan; CG_DESCENT with Wolfe line search by Hager and Zhang, as well as the quasi-Newton L-BFGS by Liu and Nocedal.

Keywords: Conjugate gradient, Wolfe line search, descent condition, conjugacy condition, unconstrained optimization.

AMS subject classifications: 49M20, 65K05, 90C30

1. Introduction

For solving the unconstrained optimization problems

$$\min_{x \in \mathbb{R}^n} f(x),$$

(1.1)

where $f : \mathbb{R}^n \to \mathbb{R}$ is a continuously differentiable function, bounded from below, one of the most elegant and probably the simplest methods are the conjugate gradient methods. For solving this problem, starting from an initial guess $x_0 \in \mathbb{R}^n$, a nonlinear conjugate gradient method, generates a sequence $\{x_k\}$ as:

$$x_{k+1} = x_k + \alpha_k d_k,$$

(1.2)

where $\alpha_k > 0$ is obtained by line search, and the directions d_k are generated as:

$$d_{k+1} = -g_{k+1} + \beta_k d_k, \quad d_0 = -g_0.$$

(1.3)

In (1.3) β_k is known as the conjugate gradient parameter and $g_k = \nabla f(x_k)$. The search direction d_k, assumed to be a descent one, plays the main role in these methods. On the other
hand, the stepsize α_k guarantees the global convergence in some cases and is crucial in efficiency. Different conjugate gradient algorithms correspond to different choices for the scalar parameter β_k. Plenty of conjugate gradient methods are known and an excellent survey of these methods with a special attention on their global convergence is given by Hager and Zhang [26]. Line search in the conjugate gradient algorithms often is based on the standard Wolfe conditions [41, 42]

$$f(x_k + \alpha_k d_k) - f(x_k) \leq \rho \alpha_k g_k^T d_k,$$

$$g(x_k + \alpha_k d_k)^T d_k \geq \sigma g_k^T d_k,$$

where d_k is supposed to be a descent direction and $0 < \rho \leq 1/2 < \sigma < 1$.

A numerical comparison of conjugate gradient algorithms (1.2) and (1.3) with Wolfe line search, for different formulae of parameter β_k computation, including the Dolan and Moré performance profile [19], is given in [6].

If the initial direction d_0 is selected as $d_0 = -g_0$, and the objective function to be minimized is a convex quadratic function

$$f(x) = \frac{1}{2} x^T A x + b^T x + c$$

and the exact line searches are used, that is

$$\alpha_k = \arg \min_{\alpha \geq 0} f(x_k + \alpha d_k),$$

then the conjugacy condition

$$d_k^T A d_j = 0$$

holds for all $i \neq j$. This relation (1.8) is the original condition used by Hestenes and Stiefel [27] to derive the conjugate gradient algorithms, mainly for solving symmetric positive-definite systems of linear equations. Using (1.3) and (1.6)-(1.8) it can be shown that x_{k+1} is the minimum of the quadratic function (1.6) in the subspace $x_k + \text{span}\{g_1, g_2, \ldots, g_k\}$ and the gradients g_1, g_2, \ldots, g_k are mutually orthogonal unless that $g_k = 0$ [20]. It follows that for convex quadratic functions the solution will be found after at most n iterations. Powell [38] shown that if the initial search direction is not g_0 then even for quadratic functions (1.6) the conjugate gradient algorithms does not terminate within a finitely number of iterations. It is well known that the conjugate gradient algorithm converges at least linearly [34]. An upper bound for the rate of convergence of conjugate gradient algorithms was given by Yuan [43].

Let us denote $y_k = g_{k+1} - g_k$. For a general nonlinear twice differential function f, by the mean value theorem, there exists some $\xi \in (0,1)$ such that

$$d_{k+1}^T y_k = \alpha_k d_{k+1}^T \nabla^2 f(x_k + \xi \alpha_k d_k) d_k.$$

Therefore, it seems reasonable to replace (1.8) with the following conjugacy condition

$$d_{k+1}^T y_k = 0.$$

In order to accelerate the conjugate gradient algorithm Perry [33] (see also Shanno [39]) extended the conjugacy condition by incorporating the second order information. He used the secant condition $H_{k+1} y_k = s_k$, where H_k is a symmetric approximation to the inverse Hessian and, as usual, $s_k = x_{k+1} - x_k$. Since for quasi-Newton method the search direction d_{k+1} is computed as $d_{k+1} = -H_{k+1} g_{k+1}$, it follows that

$$d_{k+1}^T y_k = -(H_{k+1} g_{k+1})^T y_k = -g_{k+1}^T (H_{k+1} y_k) = -g_{k+1}^T s_k,$$

thus obtaining a new conjugacy condition. Recently, Dai and Liao [15] extended this condition and suggested the following new conjugacy condition

$$d_{k+1}^T y_k = -v g_{k+1}^T s_k,$$

where v is a positive constant.
where $v \geq 0$ is a scalar.

Conjugate gradient algorithms are based on the conjugacy condition. To minimize a convex quadratic function in a subspace spanned by a set of mutually conjugate directions is equivalent to minimize this function along each conjugate direction in turn. This is a very good idea, but the performance of these algorithms is dependent on the accuracy of the line search. However, in conjugate gradient algorithms we always use inexact line search. Hence, when the line search is not exact, the “pure” conjugacy condition (1.10) may have disadvantages. Therefore, it seems more reasonable to consider in conjugate gradient algorithms the conjugacy condition (1.11). When the algorithm is convergent observe that $g_{k+1}^T s_k$ tends to zero along the iterations, and therefore conjugacy condition (1.11) tends to the pure conjugacy condition (1.10).

Conjugate gradient algorithm (1.2) and (1.3) with exact line search always satisfy the condition

$$g_{k+1}^T d_{k+1} = -\|g_{k+1}\|^2$$

which is in a direct connection with the sufficient descent condition

$$g_{k+1}^T d_{k+1} \leq -w \|g_{k+1}\|^2,$$

for some positive constant $w > 0$. Observe that w is an arbitrary positive constant. The sufficient descent condition has been used often in the literature to analyze the global convergence of the conjugate gradient algorithms with inexact line search based on the strong Wolfe conditions. The sufficient descent condition is not needed in the convergence analyses of the Newton or quasi-Newton algorithms. However, it is necessary for the global convergence of conjugate gradient algorithms [18].

$$\rho_{DL}^k = \frac{y_k^T (y_k - v s_k)}{y_k^T s_k}.$$

(1.13)

For an exact line search we see that g_{k+1} is orthogonal to s_k. Therefore, for an exact line search, the DL method reduces to the Hestenes and Stiefel (HS) method. Observe that due to the Powell’s example, the DL method may not converge for an exact line search. To overcome this and to ensure convergence Dai and Liao modified their formula as

$$\rho_{DL+}^k = \max \left\{ \frac{g_{k+1}^T y_k}{y_k^T s_k}, 0 \right\} - v \frac{g_{k+1}^T s_k}{y_k^T s_k}.$$

(1.14)

If the level set $S = \{ x \in \mathbb{R}^n : f(x) \leq f(x_0) \}$ is bounded and the gradient $\nabla f(x)$ is Lipschitz continuous on S, and if d_k satisfies the sufficient descent condition (1.12), it is shown in [15] that DL+ implemented with a strong Wolfe line search is globally convergent. Numerical results are reported in [15] for $v = 0.1$ and $v = 1$. However, for different choices of v, the numerical results are quite different.

In this paper we suggest a new conjugate gradient algorithm that for all $k > 0$ both the descent and the conjugacy conditions are guaranteed. In section 2 we present the search direction, as well as the main ingredients for its computation. The search direction is selected as a linear combination of $-g_{k+1}$ and s_k, where the coefficients in this linear combination are selected in such a way that both the descent and the conjugacy condition to be satisfied at every iteration. In section 3 we prove the convergence of the algorithm. It is shown that both for uniformly convex functions and for general nonlinear functions the corresponding algorithm with strong Wolfe line search generates directions bounded away from infinity. Section 4 is devoted to present the algorithm in its accelerated version. The idea of this computational scheme is to take advantage that the step lengths α_k in conjugate gradient algorithms are very different from 1. Therefore, we suggest we modify α_k in such a manner as to improve the reduction of the function values along the iterations. In section 5 some numerical experiments and performance profiles of Dolan-Moré corresponding to this new
conjugate gradient algorithm are given. The performance profiles correspond to a set of 75 unconstrained optimization problems presented in [1]. Each problem was tested 10 times for a gradually increasing number of variables: \(n = 1000, 2000, \ldots, 10000 \). It is shown that this new conjugate gradient algorithm outperforms the classical Hestenes and Stiefel [27], Dai and Yuan [17], Polak, Ribière and Polyak [35, 36], hybrid Dai and Yuan [17] conjugate gradient algorithms, the CG_DESCENT conjugate gradient algorithm with Wolfe line search by Hager and Zhang [25] and also L-BFGS by Liu and Nocedal [29].

2. Conjugate gradient algorithm with guaranteed descent and conjugacy conditions

For solving the minimization problem (1.1) let us consider the following conjugate gradient algorithm

\[
x_{k+1} = x_k + \alpha_k d_k, \tag{2.1}
\]

where \(\alpha_k > 0 \) is obtained by the Wolfe line search, and the directions \(d_k \) are generated as:

\[
d_{k+1} = -\theta_k g_{k+1} + \beta_k s_k, \tag{2.2}
\]

\[
\beta_k = \frac{y^T_k g_{k+1} - t_k s^T_k g_{k+1}}{y^T_k s_k}, \tag{2.3}
\]

\[d_0 = -g_0, \quad \text{where } \theta_k \text{ and } t_k \text{ are scalar parameters which follows to be determined. Observe that in } d_{k+1}, \text{ given by } (2.2), \text{ } g_{k+1} \text{ is scaled by parameter } \theta_k \text{ and the parameter } t_k \text{ in } (2.3) \text{ is changed at every iteration. Algorithms of this form, or variations of them, have been studied by many authors. For example, Andrei [3,4,5] considers a preconditioned conjugate gradient algorithm where the preconditioner is a scaled memoryless BFGS matrix and the parameter scaling the gradient is selected as the spectral gradient. On the other hand Birgin and Martinez [11] suggested a spectral conjugate gradient method, where } \theta_k = s^T_k s_k / s^T_k y_k. \text{ Yuan and Stoer [44] studied the conjugate gradient algorithm on a subspace, where the search direction } d_{k+1} \text{ is taken from the subspace } \text{span}\{g_{k+1}, d_k\}. \text{ Observe that if for every } k \geq 1, \theta_k = 1 \text{ and } t_k = v, \text{ then } (2.2) \text{ reduces to the Dai and Liao direction (1.13).}

In our algorithm for all } k \geq 0 \text{ the scalar parameters } \theta_k \text{ and } t_k \text{ in } (2.2) \text{ and } (2.3) \text{ respectively are determined in such a way that both the descent and the conjugacy conditions are satisfied. Therefore, from the descent condition (1.12) we have}

\[
-\theta_k \left\| g_{k+1} \right\|^2 + \frac{(y^T_k g_{k+1})(s^T_k g_{k+1})}{y^T_k s_k} - t_k \frac{(s^T_k g_{k+1})^2}{y^T_k s_k} = -w \left\| g_{k+1} \right\|^2 \tag{2.4}
\]

and from the conjugacy condition (1.11)

\[
-\theta_k y^T_k g_{k+1} + y^T_k g_{k+1} - t_k s^T_k g_{k+1} = -v(s^T_k g_{k+1}), \tag{2.5}
\]

where } v > 0 \text{ and } w > 0 \text{ are known scalar parameters. Observe that in (2.4) we modified the classical sufficient descent condition (1.12) with equality. It is worth saying that the main condition in any conjugate gradient algorithm is the descent condition } g^T_k d_k < 0 \text{ or the sufficient descent condition (1.12). In our algorithm we have selected } w \text{ close to 1. This is enough a reasonable value. For example, Hager and Zhang [25] show that in their CG_DESCENT algorithm } w = 7/8. \text{ On the other hand, the conjugacy condition (1.10) or its modification (1.11) is not so stringent. In fact very few conjugate gradient algorithms satisfy this condition. For example, the Hestenes and Stiefel algorithm has this property that the pure conjugacy condition always holds, independent of the line search.}
If \(v = 0 \), then (2.5) is the “pure” conjugacy condition. However, in our algorithm in order to accelerate the algorithm and to incorporate the second order information we take \(v > 0 \).

Now, let us define
\[
\bar{\Delta}_k = (y_k^T g_{k+1})(s_k^T g_{k+1}) - \|g_{k+1}\|^2 (y_k^T s_k),
\]
(2.6)
\[
\Delta_k = (s_k^T g_{k+1})\bar{\Delta}_k,
\]
(2.7)
\[
a_k = v(s_k^T g_{k+1}) + y_k^T g_{k+1},
\]
(2.8)
\[
b_k = w\|g_{k+1}\|^2 (y_k^T s_k) + (y_k^T g_{k+1})(s_k^T g_{k+1}).
\]
(2.9)

Supposing that \(\Delta_k \neq 0 \) and \(y_k^T g_{k+1} \neq 0 \), then from the linear algebraic system given by (2.4) and (2.5) we get
\[
t_k = \frac{b_k (y_k^T g_{k+1}) - a_k (y_k^T s_k)\|g_{k+1}\|^2}{\Delta_k},
\]
(2.10)
\[
\theta_k = \frac{a_k - t_k (s_k^T g_{k+1})}{y_k^T g_{k+1}},
\]
(2.11)
with which the parameter \(\beta_k \) and the direction \(d_{k+1} \) can immediately be computed.

Observe that, using (2.10) in (2.11) we get
\[
\theta_k = \frac{a_k}{y_k^T g_{k+1}} \left[1 + \frac{(y_k^T s_k)\|g_{k+1}\|^2}{\bar{\Delta}_k} \right] - \frac{b_k}{\bar{\Delta}_k},
\]
(2.12)

Again, using (2.10) in (2.3) have
\[
\beta_k = \frac{y_k^T g_{k+1}}{y_k^T s_k} \left(1 - \frac{b_k}{\bar{\Delta}_k} \right) + \frac{a_k}{\bar{\Delta}_k}\|g_{k+1}\|^2.
\]
(2.13)

Therefore, the crucial element in the algorithm is \(\bar{\Delta}_k \).

In the following, in order to define the algorithm we shall consider a small modification of the second Wolfe line search condition (1.5) as
\[
g(x_k + \alpha_k d_k)^T d_k \geq \sigma_k g_k^T d_k,
\]
(2.14)
where \(\sigma_k \) is a sequence of parameters satisfying the condition \(0 < \rho < \sigma_k < 1 \), for all \(k \). Therefore, in our algorithm we consider that the rate of decrease of \(f \) in the direction \(d_k \) at \(x_k \), which is modified at every iteration, of the rate of decrease of \(f \) in the direction \(d_k \) at \(x_k \), the condition \(\rho < \sigma_k \), for all \(k \geq 0 \), guarantees that (1.4) and (2.14) can be satisfied simultaneously. We call (1.4) and (2.14) as the modified Wolfe conditions. The following proposition can be proved.

Proposition 2.1. Assume that \(d_k \) is a descent direction and \(\nabla f \) satisfies the Lipschitz condition \(\|\nabla f(x) - \nabla f(x_k)\| \leq L\|x - x_k\| \) for all \(x \) on the line segment connecting \(x_k \) and \(x_{k+1} \), where \(L \) is a positive constant. If the line search satisfies the modified Wolfe conditions (1.4) and (2.14), then
\[
\alpha_k \geq \frac{(1 - \sigma_k)}{L} g_k^T d_k = \omega_k.
\]
(2.15)

Proof. To prove (2.15) subtract \(g_k^T d_k \) from both sides of (2.14) and using the Lipschitz condition we get:
\[(\sigma_k - 1) g_k^T d_k \leq (g_{k+1} - g_k)^T d_k \leq \alpha_k L \|d_k\|^2.\]

But, \(d_k\) is a descent direction and since \(\sigma_k < 1\), we immediately get (2.15).

Observe that \(\omega_k\) defined in (2.15) is positive for all \(k \geq 1\).

Proposition 2.2. If

\[
\frac{1}{2} < \sigma_k \leq \frac{\|g_{k+1}\|^2}{y_k^T g_{k+1} + \|g_{k+1}\|^2}, \tag{2.16}
\]

then for all \(k \geq 1\), \(\overline{\Delta}_k < 0\).

Proof. Observe that

\[s_k^T g_{k+1} = s_k^T y_k + s_k^T g_k < s_k^T y_k. \tag{2.17}\]

The modified Wolfe condition (2.14) gives

\[g_{k+1}^T s_k \geq \sigma_k g_k^T s_k = -\sigma_k y_k^T s_k + \sigma_k g_k^T s_k. \tag{2.18}\]

Since \(\sigma_k < 1\), we can rearrange (2.18) to obtain

\[g_{k+1}^T s_k \geq \frac{-\sigma_k}{1-\sigma_k} y_k^T s_k. \tag{2.19}\]

Now, combining this lower bound for \(g_{k+1}^T s_k\) with the upper bound (2.17) we get

\[\left|g_{k+1}^T s_k\right| \leq \left|y_k^T s_k\right| \max\left\{1, \frac{\sigma_k}{1-\sigma_k}\right\}. \tag{2.20}\]

Since \(\sigma_k > 1/2\), from (2.20) we can write

\[\left|g_{k+1}^T s_k\right| < \frac{\sigma_k}{1-\sigma_k} \left|y_k^T s_k\right|. \tag{2.21}\]

If (2.16) is true, then

\[\frac{\sigma_k}{1-\sigma_k} \left|y_k^T g_{k+1}\right| \leq \left\|g_{k+1}\right\|^2. \tag{2.22}\]

Again, observe that the Wolfe condition gives \(y_k^T s_k > 0\) (if \(g_k \neq 0\)). Therefore,

\[\frac{\sigma_k}{1-\sigma_k} \left|y_k^T s_k\right| \leq \left|y_k^T s_k\right| \left\|g_{k+1}\right\|^2. \tag{2.23}\]

From (2.21) and (2.23) we can write

\[\left|s_k^T g_{k+1}\right| \left|y_k^T g_{k+1}\right| < \frac{\sigma_k}{1-\sigma_k} \left|y_k^T s_k\right| \left|y_k^T g_{k+1}\right| \leq \left|y_k^T s_k\right| \left\|g_{k+1}\right\|^2, \tag{2.24}\]

i.e. \(\overline{\Delta}_k < 0\) for all \(k \geq 1\).

In our algorithm we consider

\[\sigma_k = \frac{\left\|g_{k+1}\right\|^2}{\left|y_k^T g_{k+1}\right| + \left\|g_{k+1}\right\|^2}. \tag{2.25}\]

Proposition 2.3. Suppose that \(d_k\) is a descent direction and \(\nabla f(x)\) is Lipschitz continuous on the level set \(S = \{x \in \mathbb{R}^n : f(x) \leq f(x_0)\}\). Then the sequence \(\{\overline{\Delta}_k\}\) given by (2.6) is uniformly bounded away from zero, independent of \(k\).
Proof. Suppose that \(g_k \neq 0 \) for all \(k \geq 1 \), otherwise a stationary point is obtained. Defining \(\gamma = \inf \{ \|g_k\| : k \geq 0 \} \), we have \(\gamma > 0 \). Therefore, for all \(k \), from (2.25) \(\sigma_k < 1 \). Observe that with this value for \(\sigma_k \), from (2.21) it follows that \(\bar{\lambda}_k < 0 \) for all \(k \geq 1 \). Now, from proposition 2.1, the modified Wolfe condition (2.14) and the descent condition (2.4), since \(\sigma_k < 1 \), for all \(k \geq 1 \), we have

\[
y_k^T s_k = \alpha_k y_k^T d_k = \alpha_k (g_{k+1} - g_k)^T d_k \geq \alpha_k (\sigma_k - 1) g_k^T d_k
\]

\[= -\alpha_k (\sigma_k - 1) w \|g_k\| \geq \omega_k (1 - \sigma_k) w \gamma > 0.
\]

Therefore, for all \(k \) from (2.25), \(\sigma_k \) from (2.21) it follows that \(\sigma_k \) is uniformly bounded away from zero independent of \(k \).

On the other hand, observe that the first Wolfe condition (1.4) limits the accuracy of the algorithm to the order of the square root of the machine precision [25]. Therefore, even that the line search is not exact, however the line search based on the modified Wolfe conditions is enough accurate to ensure that \(s_k^T g_{k+1} \) tends to zero along the iterations. Therefore, since by (2.22) \(\sqrt[2]{s_k^T g_{k+1}} \) is bounded, it follows that \((y_k^T s_k)(s_k^T g_{k+1}) \to 0\). Since \(\bar{\lambda}_k < 0 \) for all \(k \geq 1 \), we have that the sequence \(\{\bar{\lambda}_k\} \) is uniformly bounded away from zero independent of \(k \).

Some remarks are in order.

1) Suppose that \(d_k \) is a descent direction and \(g_k \neq 0 \) for all \(k \geq 1 \), otherwise a stationary point is obtained. From the descent condition (2.4) we can write

\[\beta_k (s_k^T g_{k+1}) = (\theta_k - w) \|g_{k+1}\|^2. \quad \text{(2.26)}\]

Since \(s_k^T g_{k+1} \) tends to zero (\(d_k \) is a descent direction) it follows that \(\theta_k \) tends to \(w > 0 \), and hence \(\theta_k > 0 \). Since \(w \) is a real positive and finite constant, and \(\theta_k \to w \), there exists the arbitrary and positive constants \(0 < c_1 \leq w \) and \(c_2 \geq w \), such that for any \(k \geq 1 \), \(c_1 \leq \theta_k \leq c_2 \).

2) Observe that \(g_k^T g_{k+1} = \|g_{k+1}\|^2 - y_k^T g_{k+1} \). On the other hand, from (2.25) it follows that

\[\|y_k^T s_k\| \geq \omega_k (1 - \sigma_k) w \gamma > 0, \text{ for all } k \geq 1, \text{ i.e. } (y_k^T s_k) \|g_{k+1}\|^2 \text{ is uniformly bounded away from zero independent of } k.
\]

Therefore, \(|y_k^T s_k| \leq \|g_{k+1}\|^2 \). Hence,

\[\|g_k^T g_{k+1}\| = \|y_k^T g_{k+1}\| \leq \|y_k^T g_{k+1}\| \leq \|g_{k+1}\|^2 + \|y_k^T g_{k+1}\| = \frac{1 - \sigma_k}{\sigma_k} \|g_{k+1}\|^2. \quad \text{(2.27)}\]

Since \(g_k^T d_k = -w \|g_k\|^2 < 0 \), it follows that \(d_k \) is a descent direction. If \(\alpha_k \) satisfies the modified Wolfe conditions (1.4) and (2.14) and the Lipschitz assumption holds, then the Zoutendijk condition is satisfied [18, 26]. In section 3 we prove that \(\|d_k\| \) is bounded by a positive constant. This property combined with Zoutendijk condition and sufficient descent of \(d_k \) prove that our algorithm (2.1), (2.2) with (2.12) and (2.13) is globally convergent in the sense that \(\liminf_{k \to \infty} \|g_k\| = 0 \). Hence, since \(1/2 < \sigma_k < 1 \), from (2.27) it follows that \(g_{k+1}^T g_k \to 0 \) faster than \(\|g_k\|^2 \) does. Now, since \(|y_k^T g_{k+1}| \leq \|g_{k+1}\|^2 + \|g_k^T g_{k+1}\| \), then

\[\sigma_k = \frac{\|g_{k+1}\|^2}{\|y_k^T g_{k+1}\|^2 + \|g_{k+1}\|^2} \geq \frac{\|g_{k+1}\|^2}{2 \|g_{k+1}\|^2 + \|g_k^T g_{k+1}\|}. \quad \text{(2.28)}\]
Therefore, from (2.28) we have that in the bounded sequence \(\{\sigma_k\} \) there exists a subsequence \(\sigma_{k_j} \rightarrow 1/2 \), i.e. \(0 < \rho < \sigma_k < 1 \), since usually \(\rho \) is selected enough small to ensure the reduction of function values along the iterations.

3) By the second Wolfe condition (2.14) we have \(y_k^T s_k = (g_{k+1} - g_k)^T s_k \geq (\sigma_k - 1)g_k^T s_k \). But from the descent condition (2.4) it follows that \(g_k^T s_k = \alpha_k g_k^T d_k = -\alpha_k w \|g_k\| \). From proposition 2.1 we have \(g_k \neq 0 \), then by the modified second Wolfe condition (2.14), for all \(k \geq 0 \), \(y_k^T s_k > 0 \). On the other hand, since \(w > 0 \), from (2.24) it follows that

\[
\frac{w}{\|g_{k+1}\|} (y_k^T s_k) \geq \frac{1}{\|s_k g_{k+1}\|} \cdot \\
\therefore \text{since \(s_k^T g_{k+1} \) tends to zero, from (2.9) \(b_k > 0 \) for all \(k \geq 0 \).}
\]

3. Convergence analysis

In this section we analyze the convergence of the algorithm (2.1) and (2.2), where \(\theta_k \) and \(\beta_k \) are given by (2.11) and (2.3) respectively, and \(d_0 = -g_0 \). In the following we consider that \(g_k \neq 0 \) for all \(k \geq 1 \), otherwise a stationary point is obtained. Assume that:

(i) The level set \(S = \{x \in \mathbb{R}^n : f(x) \leq f(x_0)\} \) is bounded, i.e. there exists a positive constant \(B > 0 \) such that for all \(x \in S \), \(\|x\| \leq B \).

(ii) In a neighborhood \(N \) of \(S \), the function \(f \) is continuously differentiable and its gradient is Lipschitz continuous, i.e. there exists a constant \(L > 0 \) such that \(\|\nabla f(x) - \nabla f(y)\| \leq L \|x - y\| \) for all \(x, y \in N \).

Under these assumptions on \(f \) there exists a constant \(\Gamma \geq 0 \) such that \(\|\nabla f(x)\| \leq \Gamma \) for all \(x \in S \). In order to prove the global convergence, we assume that the step size \(\alpha_k \) in (2.1) is obtained by the strong Wolfe line search, that is,

\[
\begin{align*}
& f(x_k + \alpha_k d_k) - f(x_k) \leq \rho \alpha_k g_k^T d_k, \\
& g(x_k + \alpha_k d_k)^T d_k \leq \sigma g_k^T d_k.
\end{align*}
\]

where \(\rho \) and \(\sigma \) are positive constants such that \(0 < \rho \leq \sigma < 1 \).

For the conjugate gradient algorithm (2.2) where \(\theta_k \) and \(\beta_k \) are given by (2.11) and (2.3) respectively, with strong Wolfe line search, the following Lemmas can be proved. The first two Lemmas were established by Zoutendijk [45] and Wolfe [41, 42], but for completeness we present them here (see also [28]).

Lemma 3.1. Suppose that the assumptions (i) and (ii) hold. Consider that \(\alpha_k \) is obtained by the strong Wolfe line search (3.1) and (3.2) and the descent condition hold. Then

\[
\sum_{k=0}^{\infty} -\alpha_k g_k^T d_k < \infty.
\]

Proof. From (3.1) and the descent condition (2.4) we have that

\[
f_{k+1} - f_k \leq \rho \alpha_k g_k^T d_k \leq 0.
\]
Therefore, \(\{f_k\}\) is a decreasing sequence. Since \(f\) is bounded below there exist a constant \(f^*\) such that
\[
\lim_{k \to \infty} f_k = f^*.
\] (3.5)
From (3.5) it follows that
\[
\sum_{k=0}^{\infty} (f_k - f_{k+1}) = \lim_{n \to \infty} \sum_{k=0}^{n} (f_k - f_{k+1}) = \lim_{n \to \infty} (f_0 - f_{n+1}) = f_0 - f^*.
\]
Hence, \(\sum_{k=0}^{\infty} (f_k - f_{k+1}) < +\infty\). From (3.4) it follows (3.3).

Lemma 3.2. Consider the conjugate gradient algorithm (2.2) where \(\theta_k\) and \(\beta_k\) are given by (2.11) and (2.3) respectively and \(\alpha_k\) is obtained by the strong Wolfe line search (3.1) and (3.2). Suppose that the assumptions (i) and (ii), as well as the descent condition hold. Then
\[
\sum_{k=0}^{\infty} \frac{(g_k^T d_k)^2}{\|d_k\|^2} < +\infty.
\] (3.6)

Proof. From the strong Wolfe line search and the assumptions (i) and (ii), we get
\[-(1-\sigma)g_k^T d_k \leq (g_{k+1} - g_k)^T d_k \leq L\alpha_k \|d_k\|^2.
\]
Therefore,
\[
\alpha_k \geq \frac{-(1-\sigma)g_k^T d_k}{L\|d_k\|^2}.
\] (3.7)
We know that for all \(k\), \(g_k^T d_k < 0\). Hence, using Lemma 3.1 we get
\[
\sum_{k=0}^{\infty} \frac{(g_k^T d_k)^2}{\|d_k\|^2} \leq \frac{L}{1-\sigma} \sum_{k=0}^{\infty} (-\alpha_k g_k^T d_k) < +\infty. \]

Observe that (3.6), known as the Zoutendijk condition, is obtained under the assumptions that the strong Wolfe line search hold and that \(d_k\) is a descent direction, independent by its form.

Lemma 3.3. Consider the conjugate gradient algorithm (2.2) where \(\theta_k\) and \(\beta_k\) are given by (2.11) and (2.3) respectively and \(\alpha_k\) is obtained by the strong Wolfe line search (3.1) and (3.2). Suppose that the assumptions (i) and (ii) hold, and \(\theta_k \in [0, 2\sigma]\). Then either
\[
\liminf_{k \to \infty} \|g_k\| = 0
\] (3.8)
or
\[
\sum_{k=0}^{\infty} \frac{\|g_k\|^2}{\|d_k\|^2} < \infty.
\] (3.9)

Proof. Squaring the both terms of \(d_{k+1} + \theta_k g_{k+1} = \beta_k s_k\) we get
\[
\|d_{k+1}\|^2 + \theta_k^2 \|g_{k+1}\|^2 + 2\theta_k d_{k+1}^T g_{k+1} = \beta_k^2 \|s_k\|^2.
\]
But, from (2.4) \(d_{k+1}^T g_{k+1} = -w\|g_{k+1}\|^2\). Therefore,
\[
\|d_{k+1}\|^2 = -(\theta_k^2 - 2\theta_k w)\|g_{k+1}\|^2 + \beta_k^2 \|s_k\|^2.
\] (3.10)
Observe that for \(\theta_k \in [0, 2w] \), \(\theta_k^2 - 2\theta_k w \leq 0 \) and is bounded below by \(-w^2\). On the other hand from (2.2) we have \(g_{k+1}^T d_{k+1} - \beta_k g_k^T s_k = -\theta_k \| g_{k+1} \|^2 \). Using the strong Wolfe line search we get

\[
\| g_{k+1}^T d_{k+1} \| + \sigma |\beta_k| \| g_k^T s_k \| \geq \theta_k \| g_{k+1} \|^2. \tag{3.11}
\]

Now, considering the following inequality true for all \(a, b, \sigma \geq 0 \), with \(a = \| g_{k+1}^T d_{k+1} \| \) and \(b = |\beta_k| \| g_k^T s_k \| \) after some algebra we get

\[
(g_{k+1}^T d_{k+1})^2 + \beta_k^2 (g_k^T s_k)^2 \geq \frac{\theta_k^2}{1 + \sigma^2} \| g_{k+1} \|^2.
\]

But, \(\theta_k \geq c_i \) and \(1/2 < \sigma < 1 \). Therefore \(\theta_k^2 / (1 + \sigma^2) \geq c_i^2 / 2 \). Hence

\[
(g_{k+1}^T d_{k+1})^2 + \beta_k^2 (g_k^T s_k)^2 \geq e \| g_{k+1} \|^2. \tag{3.12}
\]

where \(e = c_i^2 / 2 \) is a positive constant.

Using (3.10) and (3.12) we can write

\[
\frac{(g_{k+1}^T d_{k+1})^2 + (g_k^T s_k)^2}{\| s_k \|^2} = \frac{1}{\| d_{k+1} \|^2} \left[(g_{k+1}^T d_{k+1})^2 + \| d_{k+1} \|^2 (g_k^T s_k)^2 \right] \geq \frac{1}{\| d_{k+1} \|^2} \left[(g_{k+1}^T d_{k+1})^2 + \frac{(g_k^T s_k)^2}{\| s_k \|^2} \left(-\theta_k^2 - 2\theta_k w \right) \| g_{k+1} \|^2 + \beta_k^2 \| s_k \|^2 \right] \geq \frac{g_{k+1}^T s_k}{\| s_k \|^2} \left(e - \frac{(\theta_k^2 - 2\theta_k w) (g_k^T s_k)^2}{\| g_{k+1} \|^2} \right). \tag{3.13}
\]

From Lemma 3.2 we know that

\[
\lim_{k \to \infty} \frac{(g_k^T s_k)^2}{\| s_k \|^2} = 0.
\]

On the other hand, for \(\theta_k \in [0, 2w] \), \(\theta_k^2 - 2\theta_k w \) is finite. Therefore, if (3.8) is not true, then

\[
\lim_{k \to \infty} \frac{(g_k^T s_k)^2 (\theta_k^2 - 2\theta_k w)}{\| s_k \|^2 \| g_{k+1} \|^2} = 0.
\]

Hence,

\[
\frac{(g_{k+1}^T d_{k+1})^2 + (g_k^T s_k)^2}{\| d_{k+1} \|^2} \geq e \frac{\| g_{k+1} \|^4}{\| s_k \|^2 \| d_{k+1} \|^2}, \tag{3.14}
\]

holds for all sufficiently large \(k \). Therefore, by Lemma 3.2 it follows that (3.9) is true. \[\blacksquare\]

Using Lemma 3.3 we can prove the following proposition which has a crucial role in proving the convergence of our algorithm.

Proposition 3.1. Consider the conjugate gradient algorithm (2.2) where \(\theta_k \) and \(\beta_k \) are given by (2.11) and (2.3) respectively and \(\alpha_k \) is obtained by the strong Wolfe line search (3.1) and (3.2). Suppose that the assumptions (i) and (ii) hold, and \(\theta_k \in [0, 2w] \). If
\[\sum_{k \geq 1} \frac{1}{\|d_k\|} = \infty, \]
\[\text{then} \]
\[\liminf_{k \to \infty} \|g_k\| = 0. \]

Proof. Suppose by contradiction that there is a positive constant \(\gamma \) such that \(\|g_k\| \geq \gamma \) for all \(k \geq 1 \). Therefore, from Lemma 3.3 it follows that

\[\sum_{k \geq 1} \frac{1}{\|d_k\|} \leq \frac{1}{\gamma} \sum_{k \geq 1} \|g_k\| < \infty, \]

which is in contradiction with (3.15).

Therefore, the iteration can fail, in the sense that \(\|g_k\| \geq \gamma > 0 \) for all \(k \), only if \(\|d_k\| \to \infty \) sufficiently rapidly.

Convergence for uniformly convex functions. For uniformly convex functions we can prove that the norm of the direction \(d_k \) generated by (2.2), where \(\theta_k \) and \(\beta_k \) are given by (2.11) and (2.3) respectively, is bounded. Thus by Proposition 3.1 we can prove the following result.

Theorem 3.1. Suppose that the assumptions (i) and (ii) hold. Consider the method (2.1)-(2.3) and (2.11), where \(d_k \) is a descent direction and \(\alpha_k \) is obtained by the strong Wolfe line search. Suppose that there exists the positive constants \(c_2 \) and \(t \) such that \(\theta_k \leq c_2 \) and \(|\beta_k| \leq t \) for all \(k \geq 1 \). If there exists a constant \(\mu > 0 \) such that

\[(\nabla f(x) - \nabla f(y))^T (x - y) \geq \mu \|x - y\|^2 \]

for all \(x, y \in S \), then

\[\lim_{k \to \infty} g_k = 0. \]

Proof. From (3.17) it follows that \(f \) is a uniformly convex function in \(S \) and therefore

\[y_k^T s_k \geq \mu \|s_k\|^2. \]

Again, by Lipschitz continuity \(\|y_k\| \leq L \|v_k\| \). Now, from (2.3) we have that

\[|\beta_k| = \left| \frac{y_k^T s_k}{y_k^T s_k} - t_k \right| \leq \frac{\|v_k\| \|s_k\| \|s_{k+1}\|}{\mu \|s_k\|^2} + t_k \frac{\|s_k\| \|s_{k+1}\|}{\mu \|s_k\|^2} \]

\[\leq \frac{L \|v_k\| \|s_k\| \|s_{k+1}\|}{\mu \|s_k\|^2} + L \|v_k\| \|s_{k+1}\| \frac{L + t}{\mu \|s_k\|^2} \]

Hence, from (2.2):

\[\|d_{k+1}\| \leq c + \frac{L + t}{\mu \|s_k\|^2} \|s_k\| = \left(c + \frac{L + t}{\mu \|s_k\|^2} \right) \Gamma. \]

Which implies that (3.15) is true. Therefore, by Proposition 3.1 we have (3.16), which for uniformly convex functions is equivalent to (3.18).
Convergence for general nonlinear functions. Firstly, we prove that in very mild conditions the direction \(d_k \) generated by (2.2), where \(\theta_k \) and \(\beta_k \) are given by (2.11) and (2.3) respectively, is bounded. Again, by Proposition 3.1 we can prove the following result.

Theorem 3.2. Suppose that the assumptions (i) and (ii) hold. Consider the conjugate gradient algorithm (2.1), where the direction \(d_{k+1} \) is given by (2.2) and (2.3), and the step length \(\alpha_k \) is obtained by the strong Wolfe line search (3.1) and (3.2). Assume that for all \(k \geq 0 \) there exist positive constants \(c_1 > 0 \) and \(c_2 > 0 \) such that \(y_k^T g_{k+1} \leq c / \| s_k \| \) and \(\theta_k \leq c_2 \) respectively, then \(\liminf_{k \to \infty} \| g_k \| = 0 \).

Proof. From (2.3) using (2.10) after some algebra we get

\[
\beta_k = \frac{y_k^T g_{k+1}}{y_k^T s_k} \left(1 - \frac{b_k}{\Delta_k} \right) + d_k \frac{\| g_{k+1} \|^2}{\Delta_k}. \tag{3.22}
\]

Suppose that \(g_k \neq 0 \), otherwise a stationary point is obtained. By the Wolfe line search \(y_k^T s_k > 0 \). Since \(d_k \) is a descent direction for all \(k \geq 0 \), it follows that \(\| s_k \| \) tends to zero.

Hence, there exists a positive constant \(c_3 > 0 \) such that

\[
\frac{\| y_k^T g_{k+1} \|}{\| y_k^T s_k \|} \leq c_3. \tag{3.23}
\]

Now, observe that since for all \(k \geq 0 \), \(b_k > 0 \) and \(\Delta_k < 0 \), it follows that \(-b_k / \Delta_k > 0 \). Besides, from (2.6) and (2.9) we can write

\[
-\frac{b_k}{\Delta_k} = w + (1 + w) \frac{(y_k^T g_{k+1})(s_k^T g_{k+1})}{-\Delta_k}. \tag{3.24}
\]

Since \(-\Delta_k > 0 \) and \(s_k^T g_{k+1} \) tends to zero along the iterations, it follows that \(-b_k / \Delta_k \) tends to \(w > 0 \). Therefore, there exists a positive constant \(c_4 > 0 \) such that \(1 < 1 - b_k / \Delta_k \leq c_4 \).

Again observe that if \(g_k \neq 0 \) from the Wolfe line search \(y_k^T s_k > 0 \). Hence, there exists a positive constant \(c_5 > 0 \) such that \(0 < y_k^T s_k \leq c_5 / \| s_k \| \) for all \(k \geq 0 \).

Now, from (2.8) and (2.20) we have

\[
|a_k| = \| v(s_k^T g_{k+1} + (y_k^T g_{k+1}) \| \leq v \| s_k^T g_{k+1} \| + |y_k^T g_{k+1}|
\]

\[
\leq v \| y_k^T s_k \| \max \left\{ 1, \frac{\sigma}{1 - \sigma} \right\} + |y_k^T g_{k+1}| \leq v \frac{c_5}{\| s_k \|} \max \left\{ 1, \frac{\sigma}{1 - \sigma} \right\} + \frac{c}{\| s_k \|}. \tag{3.25}
\]

Since \(\{\Delta_k\} \) is uniformly bounded away from zero independent of \(k \) and \(\Delta_k < 0 \) for all \(k \geq 1 \), there exists a positive constant \(c_6 \) such that \(\Delta_k > c_6 \). Therefore, from (3.25) it follows that

\[
|a_k| \frac{\| g_{k+1} \|}{\| \Delta_k \|} \leq \left(v c_5 \max \left\{ 1, \frac{\sigma}{1 - \sigma} \right\} + c \right) \frac{\Gamma^2}{c_6 \| s_k \|}. \tag{3.26}
\]

With these, from (3.22) we can write

\[
|\beta_k| \leq \frac{\| y_k^T g_{k+1} \|}{\| y_k^T s_k \|} \left| -\frac{b_k}{\Delta_k} \right| + |a_k| \frac{\| g_{k+1} \|^2}{\| \Delta_k \|}.
\]
\[
\begin{align*}
\leq & \frac{c_1}{\|s_k\|}c_4 + \left(vc_5 \max\left\{1, \frac{\sigma}{1-\sigma}\right\} + c\right) \frac{\Gamma^2}{c_6} \frac{1}{\|s_k\|} \\
= & \left[c_1c_4 + \left(vc_5 \max\left\{1, \frac{\sigma}{1-\sigma}\right\} + c\right) \frac{\Gamma^2}{c_6} \right] \frac{1}{\|s_k\|},
\end{align*}
\] (3.27)

From (2.2) we have
\[
\|d_{k+1}\| \leq \|g_k\| + \|\beta_k\| \|s_k\| \\
\leq c_1\Gamma + \left[c_1c_4 + \left(vc_5 \max\left\{1, \frac{\sigma}{1-\sigma}\right\} + c\right) \frac{\Gamma^2}{c_6} \right] \frac{1}{\|s_k\|} \|s_k\| = E, \quad (3.28)
\]

where \(E \) is a positive constant. Therefore, for all \(k \geq 0 \), \(\|d_k\| \leq E \), which implies (3.15).

Therefore, by Proposition 3.1, since \(d_k \) is a descent direction, we have \(\lim_{k \to \infty} \|g_k\| = 0. \)

Observe that if for every \(k \geq 1 \), \(\theta_k = 1 \) and \(t_k = 0 \), then (2.2) reduces to the Hestenes and Stiefel direction. For an exact line search the HS algorithm reduces to that of Polak-Ribière and Polyak (PRP). Therefore, the convergence properties of the HS method should be similar to the convergence properties of the PRP method. In particular, for a general nonlinear function by the Powell’s example, the HS method with an exact line search may not converge. Hence, our method (2.1)-(2.3) need not converge for general functions. Therefore, like in Gilbert and Nocedal [22], who proved the global convergence of the PRP method with the restriction that \(\beta_k^{\text{PRP}} \geq 0 \), we replace (2.3) by
\[
\beta_k = \max \left\{ \frac{y_k^T g_{k+1}}{y_k^T s_k}, 0 \right\} - t_k \frac{y_k^T g_{k+1}}{y_k^T s_k}, \quad (3.29)
\]

and prove the global convergence of this modification of the algorithm for general functions.

Lemma 3.4. Suppose that the assumptions (i) and (ii) hold. Consider the conjugate gradient algorithm (2.2), where \(\theta_k \) and \(\beta_k \) are given by (2.11) and (3.29) respectively and \(\alpha_k \) is obtained by the strong Wolfe line search. Suppose that there exists the positive constants \(c_1 \) and \(t \) such that \(\theta_k < c_2 \) and \(|t_k| < t \) for all \(k \geq 1 \). If there exists a positive constant \(\gamma > 0 \) such that
\[
\|g_k\| \geq \gamma \quad (3.30)
\]
for all \(k \geq 0 \), then \(d_k \neq 0 \) and
\[
\sum_{k=1}^{\infty} \|u_{k+1} - u_k\|^2 < \infty, \quad (3.31)
\]
where \(u_k = d_k / \|d_k\| \).

Proof. First, we note that \(d_k \neq 0 \), otherwise the descent condition (2.4) is not true. Therefore, \(u_k \) is well defined. Besides, by (3.30) and the Proposition 3.1 we have
\[
\sum_{k=0}^{\infty} \frac{1}{\|d_k\|} < \infty, \quad (3.32)
\]
otherwise (3.16) is true, contradicting (3.30)

Now, as usual (see [15]) we can consider \(\beta_k = \beta_k^1 + \beta_k^2 \), where
\[
\beta_k^1 = \max \left\{ \frac{y_k^T g_{k+1}}{y_k^T s_k}, 0 \right\}
\]

\[
\beta_k^2 = -t_k \frac{s_k^T g_{k+1}}{y_k^T s_k}.
\]

Define
\[
v_{k+1} = -\theta_k g_{k+1} + \beta_k^2 s_k,
\]
\[
r_{k+1} = \frac{v_{k+1}}{d_{k+1}},
\]
\[
\delta_k = \beta_k \frac{\|d_k\|}{\|d_{k+1}\|} \geq 0.
\]

With these we have
\[
u_{k+1} = r_{k+1} + \alpha_k \delta_k u_k.
\]

But, \(\|u_k\| = \|u_{k+1}\| = 1\) and therefore from (3.38) we obtain
\[
\|r_{k+1}\| = \|u_{k+1} - \alpha_k \delta_k u_k\| = \|\alpha_k \delta_k u_{k+1} - u_k\|.
\]

Now, using the condition \(\delta_k \geq 0\), the triangle inequality and (3.39) we have
\[
\|u_{k+1} - u_k\| = \|(1 + \alpha_k \delta_k)u_{k+1} - (1 + \alpha_k \delta_k)u_k\|
\leq \|u_{k+1} - \alpha_k \delta_k u_k\| + \|\alpha_k \delta_k u_{k+1} - u_k\| = 2 \|r_{k+1}\|.
\]

On the other hand, from the strong Wolfe line search and the descent condition it follows that
\[
\frac{s_k^T g_{k+1}}{y_k^T s_k} \leq \max \left\{ 1, \frac{\sigma}{1 - \sigma} \right\}.
\]

Hence, from the definition of \(v_{k+1}\) given by (3.35), (3.41) and the assumptions (i) and (ii), i.e. \(\|x_k\| \leq B\) and \(\|g_k\| \leq \Gamma\) for all \(k \geq 0\), we obtain
\[
\|v_{k+1}\| \leq \beta_k \|g_{k+1}\| + \|r_{k+1}\| \frac{s_k^T g_{k+1}}{y_k^T s_k} \|s_k\|
\leq c_k \Gamma + t \max \left\{ 1, \frac{\sigma}{1 - \sigma} \right\} 2B.
\]

Therefore,
\[
\|u_{k+1} - u_k\| \leq 2 \|r_{k+1}\| = \frac{2 \|v_{k+1}\|}{\|d_{k+1}\|} \leq \frac{2 \|r_{k+1}\|}{\|d_{k+1}\|} \left(c_k \Gamma + t \max \left\{ 1, \frac{\sigma}{1 - \sigma} \right\} 2B \right),
\]

which completes the proof. \(\blacksquare\)

This lemma shows that asymptotically the search directions generated by the algorithm (2.2), where \(\theta_k\) and \(\beta_k\) are computed as in (2.11) and (3.29) respectively, change slowly.

Lemma 3.5. Suppose that the assumptions (i) and (ii) hold. Consider the conjugate gradient algorithm (2.2), where \(\theta_k\) and \(\beta_k\) are given by (2.11) and (3.29) respectively and \(\alpha_k\) is obtained by the strong Wolfe line search and for all \(k \geq 0\), \(\alpha_k \geq \omega > 0\). Suppose that there exist the positive constants \(t\) and \(\gamma\) such that for all \(k \geq 1\), \(|\epsilon_k| < t\) and \(\|g_k\| > \gamma\), respectively. Then there exist the constants \(b > 1\) and \(\lambda > 0\) such that for all \(k \geq 1\)
\[
|\beta_k| \leq b
\]

(3.43)
\[\|s_k\| \leq \lambda \implies |\beta_k| \leq \frac{1}{b}. \]

Proof. We have
\[y_k^T s_k \geq (\sigma - 1) s_k^T g_k = (\sigma - 1) \alpha_k d_k^T g_k = -(\sigma - 1) \alpha_k w \| g_k \|^2 \geq (1 - \sigma) \omega w^2. \]

Therefore
\[|\beta_k| \leq \left| \frac{y_k^T g_{k+1}}{y_k^T s_k} \right| + |k_k| \left| \frac{s_k^T g_{k+1}}{y_k^T s_k} \right| \leq \frac{\|y_k\| \|g_{k+1}\|}{(1 - \sigma) \omega w^2} + t \frac{\|s_k\| \|g_{k+1}\|}{(1 - \sigma) \omega w^2} \]
\[\leq \frac{L \|s_k\| \Gamma + t \|s_k\| \Gamma}{(1 - \sigma) \omega w^2} \leq \frac{2(L + t) \Gamma \Gamma}{(1 - \sigma) \omega w^2} = b. \]

Without loss of generality we can define \(b \) such that \(b > 1 \). Let us define
\[\lambda = \frac{(1 - \sigma) \omega w^2}{2(L + t) \Gamma b}. \]

Obviously, if \(\|s_k\| \leq \lambda \), then from the third inequality in (3.45) we have
\[|\beta_k| \leq \frac{(L + t) \Gamma \lambda}{(1 - \sigma) \omega w^2} = \frac{1}{b}. \]

Therefore, for \(b \) and \(\lambda \) defined in (3.45) and (3.46) respectively, it follows that the relations (3.43) and (3.44) hold. \(\blacksquare \)

The property presented in Lemma 3.5, which is similar to but slightly different from Property (*) in [22], can be used to show that if the gradients are bounded away from zero and (3.43) and (3.44) hold, then a finite number of steps \(s_k \) cannot be too small. Therefore, the algorithm makes a rapid progress to the optimum. Indeed, for \(\lambda > 0 \) and a positive integer \(J \) let us define the set of index
\[K_{\lambda,J}^k = \{i \in N^*: k \leq i \leq k + J - 1, \|s_k\| > \lambda \}, \]
where \(N^* \) is the set of positive integers. The following Lemma is similar to Lemma 3.5 in [15] and Lemma 4.2 in [22].

Lemma 3.6. Suppose that all assumptions of Lemma 3.5 are satisfied. Then there exists a \(\lambda > 0 \) such that for any \(J \in N^* \) and any index \(k_0 \), there is a greater index \(k \geq k_0 \) such that \(\|K_{\lambda,J}^k \| > J / 2 \).

Using Lemma 3.4 and Lemma 3.6 we can prove the global convergence of the conjugate gradient algorithm (2.2) where \(\theta_k \) and \(\beta_k \) are given by (2.11) and (3.29) respectively and \(\alpha_k \) is obtained by the strong Wolfe line search. The following Theorem is similar to Theorem 3.6 in Dai and Liao [15] or to Theorem 3.2 in Hager and Zhang [25] and the proof is omitted here.

Theorem 3.3. Suppose that the assumptions (i) and (ii) hold. Consider the conjugate gradient algorithm (2.2), where \(\theta_k \) and \(\beta_k \) are given by (2.11) and (3.29) respectively and \(\alpha_k \) is obtained by the strong Wolfe line search. Then we have
\[\liminf_{k \to \infty} \|g_k\| = 0. \]
4. DESCON algorithm

In this section we present an accelerated conjugate gradient algorithm with guaranteed
descent and conjugacy conditions for large scale unconstrained optimization given by (2.1)
and (2.2), where the parameters θ_k and β_k are computed as in (2.12) and (2.13) respectively.
We know that in conjugate gradient algorithms the search directions tend to be poorly scaled,
and as a consequence the line search must perform more function evaluations in order to
obtain a suitable steplength α_k. Therefore, the research effort was directed to design
procedures for direction computation which takes the second order information. For example,
the algorithms implemented in SCALCG by Andrei [3-5], or CONMIN by Shanno and Phua
[40] use the BFGS preconditioning with remarkable results. On the other hand, in our
algorithm the search direction is computed to satisfy both the descent and the conjugacy
conditions.

In conjugate gradient methods the step lengths computed by means of the Wolfe line search
(1.4) and (1.5) may differ from 1 in a very unpredictable manner [32]. They can be larger or
smaller than 1 depending on how the problem is scaled. This is in very sharp contrast to the
Newton and quasi-Newton methods, including the limited memory quasi-Newton methods,
which accept the unit steplength most of the time along the iterations, and therefore usually
they require only few function evaluations per search direction. Numerical comparisons
between conjugate gradient method and limited memory quasi Newton method by Liu and
Nocedal [29] showed that the latter is more successful [6]. One partial explanation of the
efficiency of this limited memory quasi-Newton method is given by its ability to accept unity
step lengths along the iterations. In this section we take advantage of this behavior of
conjugate gradient algorithms and consider an acceleration scheme we have presented in [7]
(see also [2]). Basically the acceleration scheme modifies the steplength α_k in a
multiplicative manner to improve the reduction of the function values along the iterations. In
accelerated algorithm instead of (2.1) the new estimation of the minimum point is computed as

$$x_{k+1} = x_k + \xi_k \alpha_k d_k,$$

where

$$\xi_k = -\frac{a_k}{b_k},$$

$$a_k = \alpha_k g_k^T d_k, \quad b_k = -\alpha_k (g_k - g_z)^T d_k, \quad g_z = \nabla f (z) \quad \text{and} \quad z = x_k + \alpha_k d_k.$$

Hence, if $b_k \neq 0$, then the new estimation of the solution is computed as $x_{k+1} = x_k + \xi_k \alpha_k d_k$, otherwise

$$x_{k+1} = x_k + \alpha_k d_k.$$

Observe that since ρ in (1.4) is enough small (usually $\rho = 0.0001$), the
Wolfe line search leads to very small reductions in function’s values along the iterations. The
acceleration scheme (4.1) emphasizes the reduction of function’s values, since in conjugate
gradient algorithms often $\alpha_k > 1$ along the iterations (see [7]). Therefore, using the
definitions of g_k, s_k, y_k and the above acceleration scheme (4.1) and (4.2) we can present
the following conjugate gradient algorithm.

DESCON algorithm

Step 1. Select a starting point $x_0 \in \text{dom } f$ and compute: $f_0 = f(x_0)$ and $g_0 = \nabla f(x_0)$.
Select some positive values for ρ and σ, and for v and w. Set $d_0 = -g_0$ and $k = 0$.

Step 2. Test a criterion for stopping the iterations. If the test is satisfied, then stop;
otherwise continue with step 3.

Step 3. Determine the steplength α_k by using the Wolfe line search conditions (1.4) - (1.5)
Step 4. Acceleration scheme. Compute: \(z = x_k + \alpha_k d_k \), \(g_z = \nabla f(z) \) and \(y_k = g_z - g_z \).

Step 5. Compute: \(\alpha_k = \nabla g^T_k d_k \), and \(\beta_k = -\alpha_k y_k^T d_k \).

Step 6. If \(\bar{b}_k \neq 0 \), then compute \(\xi_k = -\bar{a}_k / \bar{b}_k \) and update the variables as \(x_{k+1} = x_k + \xi_k \alpha_k d_k \), otherwise update the variables as \(x_{k+1} = x_k + \alpha_k d_k \). Compute \(f_{k+1} \) and \(g_{k+1} \). Compute \(y_k = g_{k+1} - g_k \) and \(s_k = x_{k+1} - x_k \).

Step 7. Compute \(\Delta_k \) as in (2.6).

Step 8. If \(|\Delta_k| \geq \epsilon_m \), then determine \(\theta_k \) and \(\beta_k \) as in (2.12) and (2.13) respectively, else set \(\theta_k = 1 \) and \(\beta_k = 0 \).

Step 9. Compute the search direction as: \(d_{k+1} = -\theta_k g_{k+1} + \beta_k s_k \).

Step 10. Compute \(\sigma = \|g_{k+1}\|^2 / \|y^T_k g_{k+1}\| + \|g_{k+1}\|^2 \).

Step 11. Restart criterion. If \(\|g^T_{k+1} g_k\| > 0.2 \|g_{k+1}\|^2 \) then set \(d_{k+1} = -g_{k+1} \).

Step 12. Consider \(k = k + 1 \) and go to step 2.

It is well known that if \(f \) is bounded along the direction \(d_k \) then there exists a stepsize \(\alpha_k \) satisfying the Wolfe line search conditions (1.4) and (1.5). In our algorithm when the Powell restart condition is satisfied, then we restart the algorithm with the negative gradient \(-g_{k+1} \).

More sophisticated reasons for restarting the algorithms have been proposed in the literature [16], but we are interested in the performance of a conjugate gradient algorithm that uses this restart criterion associated to a direction satisfying both the descent and the conjugacy conditions. Under reasonable assumptions, the Wolfe conditions and the Powell restart criterion are sufficient to prove the global convergence of the algorithm. The first trial of the step length crucially affects the practical behavior of the algorithm. At every iteration \(k \geq 1 \) the starting guess for the step \(\alpha_k \) in the line search is computed as \(\alpha_{k-1} / \|d_k\| \). This selection was used for the first time by Shanno and Phua in CONMIN [40] and in SCALCG by Andrei [3-5]. Observe that in the line search procedure (step 3) the steplength \(\alpha_k \) is computed using the updated value of the parameter \(\sigma \), computed as in step 10. For uniformly convex functions, we can prove the linear convergence of the acceleration scheme [7].

The DESCON algorithm can be implemented in some other variants. For example in step 8 when \(|\Delta_k| \geq \epsilon_m \) is not satisfied, we can set \(\theta_k = 1 \) and compute \(\beta_k \) as in classical conjugate gradient algorithms like Hestenes and Stiefel [27], Dai and Yuan [17], Polak, Ribiére and Polyak [35, 36], etc. Another variant of DESCON can use (2.1) and (2.2) where \(\theta_k \) and \(\beta_k \) are computed as in (2.11) and (3.29) respectively. However, our intensive numerical experiments proved that all these variants are not faster or more robust than the variant presented in DESCON algorithm above.

5. Numerical results and comparisons

In this section we report some numerical results obtained with an implementation of the DESCON algorithm. The code is written in Fortran and compiled with f77 (default compiler settings) on a Workstation Intel Pentium 4 with 1.8 GHz. DESCON uses the loop unrolling to a depth of 5. We selected a number of 75 large-scale unconstrained optimization test functions in generalized or extended form [1] (some from CUTE library [12]). For each test function we have taken ten numerical experiments with the number of variables increasing as \(n = 1000, 2000, \ldots, 10000 \). The algorithm implements the Wolfe line search conditions with
\[\rho = 0.0001, \quad \sigma = \|g_{k+1}\| \sqrt{1 + \left(\|v^T g_{k+1}\| + \|g_{k+1}\|^2\right)} \], and the same stopping criterion
\[\|g_k\|_\infty \leq 10^{-6} \], where \(\|\cdot\|_\infty \) is the maximum absolute component of a vector. In DESCON we set \(w = 7/8 \) and \(v = 0.05 \). In our numerical experiments \(\theta_k \) is not restricted in the interval \([0, 2w]\). In all the algorithms we considered in this numerical study the maximum number of iterations is limited to 10000.

The comparisons of algorithms are given in the following context. Let \(f_i^{\text{ALG1}} \) and \(f_i^{\text{ALG2}} \) be the optimal value found by ALG1 and ALG2, for problem \(i = 1, \ldots, 750 \), respectively. We say that, in the particular problem \(i \), the performance of ALG1 was better than the performance of ALG2 if:
\[
\left| f_i^{\text{ALG1}} - f_i^{\text{ALG2}} \right| < 10^{-3} \tag{5.1}
\]
and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the CPU time of ALG1 was less than the number of iterations, or the number of function-gradient evaluations, or the CPU time corresponding to ALG2, respectively.

In the first set of numerical experiments we compare DESCON versus Dai and Liao (\(v = 1 \)) conjugate gradient algorithm (1.13). Figure 1 shows the Dolan and Moré CPU performance profile of DESCON versus DL (\(v = 1 \)). In a performance profile plot, the top curve corresponds to the method that solved the most problems in a time that was within a factor \(\tau \) of the best time. The percentage of the test problems for which a method is the fastest is given on the left axis of the plot. The right side of the plot gives the percentage of the test problems that were successfully solved by these algorithms, respectively. Mainly, the right side is a measure of the robustness of an algorithm.

![Fig. 1. DESCON (w = 7/8, v = 0.05) versus DL (v = 1).](image)

When comparing DESCON with DL (\(v = 1 \)) conjugate gradient algorithm subject to CPU time metric we see that DESCON is top performer, i.e. the accelerated Dai and Liao conjugate
gradient algorithm with guaranteed descent and conjugacy conditions is more successful and more robust than the Dai and Liao conjugate gradient algorithms with $v = 1$. Comparing DESCON with DL ($v = 1$) (see Figure 1), subject to the number of iterations, we see that DESCON was better in 605 problems (i.e., it achieved the minimum number of iterations in 605 problems). DL ($v = 1$) was better in 52 problems and they achieved the same number of iterations in 63 problems, etc. Out of 750 problems, only for 720 problems does the criterion (5.1) hold. Therefore, DESCON appears to generate the best search direction and the best steplength, on average.

In the second set of numerical experiments we compare DESCON versus Hestenes and Stiefel (HS) ($\beta_k^{HS} = \frac{y_k^T g_{k+1}}{y_k^T s_k}$) [27], versus Dai and Yuan (DY) ($\beta_k^{DY} = \frac{g_i^T y_{k+1} s_k}{y_i^T s_k}$) [17] and versus Polak-Ribière-Polyak (PRP) ($\beta_k^{PRP} = \frac{y_k^T g_{k+1}}{g_i^T g_k}$) [35, 36], conjugate gradient algorithms. Figures 2-4 present the Dolan and Moré CPU performance profile of DESCON versus HS, DY and PRP, respectively.

An attractive feature of the Hestenes and Stiefel conjugate gradient algorithm is that the pure conjugacy condition $y_k^T d_{k+1} = 0$ always is satisfied, independent of the line search. On the other hand, under strong convexity assumption of f, the global convergence of the PRP method with exact line search has been proved by Polak and Ribiére [35]. For an exact line search the convergence properties of the HS method are similar to the convergence properties of the PRP method. Therefore, by Powell’s example [37], the HS method with exact line search may not converge for a general nonlinear function. Therefore, the convergence of PRP method for general nonlinear functions is uncertain. Based on Powell’s work, Gilbert and Nocedal [22] presented an elegant analysis and proved that the PRP method is globally convergent if β_k^{PRP} is restricted to be nonnegative and the steplength satisfies the sufficient descent condition (1.12) in each iteration. Both the HS and PRP methods possess a built-in restart feature that addresses directly to the jamming phenomenon. When the step $x_{k+1} - x_k$ is small, the factor $y_k = g_{k+1} - g_k$ in the numerator of β_k tends to zero. Therefore, β_k becomes small and the new search direction d_{k+1} essentially becomes the steepest descent direction $-g_{k+1}$. Hence, both HS and PRP methods automatically adjust β_k to avoid jamming. The performance of these methods is better than the performance of DY. On the other hand, the DY method always generates descent directions and when implemented with a standard Wolfe line search is globally convergent. In [14] Dai established a remarkable property for the DY conjugate gradient algorithm, relating the descent directions to the sufficient descent condition. It is shown that if there exist constants γ_1 and γ_2 such that $\gamma_1 \leq ||g_i|| \leq \gamma_2$ for all k, then for any $p \in (0,1)$, there exists a constant $c > 0$ such that the sufficient descent condition $g_i^T d_i \leq -c ||g_i||$ holds for at least $\lfloor pk \rfloor$ indices $i \in [0,k]$, where $\lfloor j \rfloor$ denotes the largest integer $\leq j$. However, the DY method does not satisfy the conjugacy condition. In contrast, observe that in DESCON the search directions are always descent directions and the conjugacy condition always is satisfied independent of the accuracy of the line search.
Fig. 2. DESCON \((w = 7/8, v = 0.05) \) versus Hestenes-Stiefel.

Fig. 3. DESCON \((w = 7/8, v = 0.05) \) versus Dai-Yuan.
The DY method has better global convergence properties than the Fletcher and Reeves method [21]. As a result, Dai and Yuan [17] considered the possibility to combine DY with other conjugate gradient methods. The following two hybrid methods were proposed in [17]:

\[
\beta_k^{\text{HDY}} = \max \left\{ \frac{1-\sigma}{1+\sigma} \beta_k^{\text{DY}}, \min \{ \beta_k^{\text{HS}}, \beta_k^{\text{DY}} \} \right\}
\]

and

\[
\beta_k^{\text{HDYZ}} = \max \left\{ 0, \min \{ \beta_k^{\text{HS}}, \beta_k^{\text{DY}} \} \right\}.
\]

The numerical experiments indicated that both these hybrid methods have similar performances [6]. Therefore, in the third set of numerical experiments we compare DESCON versus hybrid Dai-Yuan \((\beta_k^{\text{HDY}} = \max \left\{ -c \beta_k^{\text{DY}}, \min \{ \beta_k^{\text{HS}}, \beta_k^{\text{DY}} \} \right\}, c = (1-\sigma)/(1+\sigma), \sigma = 0.8 \) [17]. The hDY method reduces to the Fletcher and Reeves method [21] if \(f \) is a strictly convex quadratic function and the line search is exact. For a standard Wolfe line search, Dai and Yuan [17] proved that it produces descent directions at every iteration and they established the global convergence of their hybrid conjugate gradient algorithm when the Lipschitz assumption holds. However, the hDY conjugate gradient algorithm does not satisfy the conjugacy condition. Figure 5 presents the Dolan and Moré CPU time performance profile of DESCON versus hDY. The best performance, relative to the CPU time metric, again was obtained by DESCON, the top curve in Figure 5.
In the fourth set of numerical experiments we compare DESCON versus CG_DESCENT by Hager and Zhang [25]. CG_DESCENT is a modification of HS and was devised in order to ensure sufficient descent, independent of the accuracy of the line search. Hager and Zhang [25] proved that at every iteration the direction d_k in their algorithm satisfies the sufficient descent condition $g_k^T d_k \leq -(7/8) \|g_k\|^2$. This is the main reason we considered $w = 7/8$ in all our numerical experiments. CG_DESCENT has a very advanced line search procedure that utilizes the “approximate Wolfe conditions” which provides a more accurate way to check the usual Wolfe conditions when the iterates are near a local minimum of the function f. However, in CG_DESCENT the conjugacy condition (1.11) holds approximately. CG_DESCENT like DESCON uses the loop unrolling to a depth of 5. Figure 6 presents the Dolan and Moré CPU time performance profile of DESCON versus CG_DESCENT with Wolfe line search. Again, the best performance, relative to the CPU time metric, was obtained by DESCON, the top curve in Figure 6.

Finally we compare DESCON versus L-BFGS (m=3) by Liu and Nocedal [29] as in Figure 7, where m is the number of pairs (s_k, y_k) used. Observe that DESCON is top performer again. The differences are significant. The linear algebra in the L-BFGS code to update the search direction is very different from the linear algebra used in DESCON. On the other hand the steplength in L-BFGS is determined at each iteration by means of the line search routine MCVSRCH, which is a slight modification of the routine CSRCH written by Moré and Thuente [30].
In the following, in Figure 8, we present the performance profile of DESCON \((w = 7/8, v = 0.05)\) versus HS, PRP, CG_DESCENT and L-BFGS \((m=3)\), subject to CPU time metric. We see that among these algorithms DESCON is top performer. Observe that these algorithms can be classified in three major classes: DESCON and CG_DESCENT; HS and PRP, and finally the limited memory quasi-Newton L-BFGS.
In order to see the performances of the algorithm we present a sensitivity study of DESCON subject to the variation of v and w parameters. Both these parameters emphasize the importance of the conjugacy condition and the sufficient descent condition, respectively. From (2.2), (2.3) and (2.6)-(2.11) we have

\[
\frac{\partial d_{k+1}}{\partial w} = \frac{(y_k^T s_k)\|g_{k+1}\|^2}{\Delta_k} \left(g_{k+1} - \frac{y_k^T g_{k+1}}{y_k^T s_k} s_k\right),
\]

(5.2)

\[
\frac{\partial d_{k+1}}{\partial v} = -\frac{(s_k^T g_{k+1})}{\Delta_k} \left((s_k^T g_{k+1}) g_{k+1} - \|g_{k+1}\|^2 s_k\right).
\]

(5.3)

Observe that if the line search is exact ($s_k^T g_{k+1} = 0$) then from (5.3) we see that the algorithm is not sensitive to the variation of v. However, in our algorithm the line search is not exact.

Table 1 presents the total number of iterations (#iter), the total number of function and its gradient evaluations (#fgt) and the total CPU time (cput) for solving the above set of 750 unconstrained optimization test problems for $w = 7/8$ and for different values of v. For example, for solving the set of 750 problems with $w = 7/8$ and $v = 0$, the total number of iteration is 258495, the total number of function and its gradient evaluations is 601615 and the total CPU time is 281.22 seconds, etc.

In Table 1 we have a computational evidence of the sensitivity of DESCON corresponding to a set of 12 numerical experiments subject to variation of v parameter. The best results corresponding to this set of 12 numerical experiments are obtained for $v = 0.05$. Subject to the CPU time metric the average of the total CPU time corresponding to these 12 numerical experiments, for solving 750 problems in each experiment, is $3467.27/12=288.93$.
seconds. The largest deviation is of 20.22 seconds and corresponds to the numerical experiment in which \(v = 1 \). Therefore, in all these 12 numerical experiments the maximum deviation is of \(20.22/750 = 0.0269 \) seconds per problem.

<table>
<thead>
<tr>
<th>(v)</th>
<th>(#\text{iter})</th>
<th>(#\text{fgt})</th>
<th>(\text{cput})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>258495</td>
<td>601615</td>
<td>281.22</td>
</tr>
<tr>
<td>0.001</td>
<td>260994</td>
<td>617922</td>
<td>289.15</td>
</tr>
<tr>
<td>0.005</td>
<td>262993</td>
<td>638135</td>
<td>293.31</td>
</tr>
<tr>
<td>0.01</td>
<td>259220</td>
<td>610071</td>
<td>287.77</td>
</tr>
<tr>
<td>0.02</td>
<td>256349</td>
<td>596269</td>
<td>280.94</td>
</tr>
<tr>
<td>0.05</td>
<td>257401</td>
<td>598061</td>
<td>277.12</td>
</tr>
<tr>
<td>0.07</td>
<td>260234</td>
<td>622866</td>
<td>293.70</td>
</tr>
<tr>
<td>0.1</td>
<td>258965</td>
<td>607951</td>
<td>281.98</td>
</tr>
<tr>
<td>0.2</td>
<td>270643</td>
<td>639619</td>
<td>299.59</td>
</tr>
<tr>
<td>0.5</td>
<td>259877</td>
<td>617219</td>
<td>291.09</td>
</tr>
<tr>
<td>0.7</td>
<td>269096</td>
<td>626097</td>
<td>282.25</td>
</tr>
<tr>
<td>1</td>
<td>271124</td>
<td>677019</td>
<td>309.15</td>
</tr>
</tbody>
</table>

In the following we present the sensitivity of DESCON subject to the variation of \(w \) parameter. Table 2 presents the total number of iterations, the total number of function and its gradient evaluations and the total CPU time for solving the above set of 750 unconstrained optimization test problems for \(v = 0.05 \) and for 6 different values of \(w \).

<table>
<thead>
<tr>
<th>(w)</th>
<th>(#\text{iter})</th>
<th>(#\text{fgt})</th>
<th>(\text{cput})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>260019</td>
<td>612548</td>
<td>283.96</td>
</tr>
<tr>
<td>0.6</td>
<td>258562</td>
<td>608102</td>
<td>282.50</td>
</tr>
<tr>
<td>0.7</td>
<td>262148</td>
<td>645578</td>
<td>295.08</td>
</tr>
<tr>
<td>0.8</td>
<td>259623</td>
<td>608464</td>
<td>283.98</td>
</tr>
<tr>
<td>0.9</td>
<td>258696</td>
<td>609549</td>
<td>285.08</td>
</tr>
<tr>
<td>1</td>
<td>258387</td>
<td>600603</td>
<td>277.26</td>
</tr>
</tbody>
</table>

The best results corresponding to this set of 6 numerical experiments are obtained for \(w = 1 \). Subject to CPU time metric for solving 750 problems in each of these 6 numerical experiments the total CPU time difference is of 295.08 – 277.26 = 17.82 seconds. Therefore, in all these 6 numerical experiments the maximum deviation is of 17.82/750=0.0237 seconds per problem. Observe that the average of the total CPU time corresponding to these 6 numerical experiments is 1707.86/6=284.64 seconds. The largest deviation is of 295.08 – 284.64 = 10.44 seconds. Therefore, in all these 6 numerical experiments the maximum deviation is of 10.44/750=0.0139 seconds per problem. Practically, DESCON is very little sensitive to the variation of \(w \).

We now present comparisons between DESCON and CG_DESCENT conjugate gradient algorithms for solving some applications from MINPACK-2 test problem collection [9]. In Table 3 we present these applications, as well as the values of their parameters. The infinite-dimensional version of these problems is transformed into a finite element approximation by triangulation. Thus a finite-dimensional minimization problem is obtained whose variables are the values of the piecewise linear function at the vertices of the triangulation. The discretization steps are \(nx = 1000 \) and \(ny = 1000 \), thus obtaining minimization problems with 1,000,000 variables.
Table 3. Applications from MINPACK-2 collection.

<table>
<thead>
<tr>
<th></th>
<th>Elastic-Plastic Torsion [23, pp. 41-55], c = 5.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Pressure Distribution in a Journal Bearing [13], b = 10, ε = 0.1.</td>
</tr>
<tr>
<td>A2</td>
<td>Optimal Design with Composite Materials [24], χ = 0.008.</td>
</tr>
<tr>
<td>A3</td>
<td>Steady-State Combustion [8, pp. 292-299], [10], λ = 5.</td>
</tr>
<tr>
<td>A4</td>
<td>Minimal Surfaces with Enneper conditions [31, pp. 80-85].</td>
</tr>
</tbody>
</table>

A comparison between DESCON (v = 0.05, w = 0.875, Powell restart criterion, \(\| \nabla f(x_k) \|_\infty \leq 10^{-6} \), \(\rho = 10^{-4} \) and CG_DESCENT (Wolfe line search, default settings, \(\| \nabla f(x_k) \|_\infty \leq 10^{-6} \)) for solving these applications is given in Table 4.

Table 4. Performance of DESCON and CG_DESCENT.

<table>
<thead>
<tr>
<th></th>
<th>DESCON</th>
<th></th>
<th></th>
<th>CG_DESCENT</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#iter</td>
<td>#fg</td>
<td>cpu</td>
<td>#iter</td>
<td>#fg</td>
<td>cpu</td>
</tr>
<tr>
<td>A1</td>
<td>1118</td>
<td>2267</td>
<td>787.89</td>
<td>1145</td>
<td>2291</td>
<td>1087.83</td>
</tr>
<tr>
<td>A2</td>
<td>2837</td>
<td>5702</td>
<td>2120.75</td>
<td>3368</td>
<td>6737</td>
<td>3369.77</td>
</tr>
<tr>
<td>A3</td>
<td>4712</td>
<td>9462</td>
<td>5679.96</td>
<td>4841</td>
<td>9684</td>
<td>8058.66</td>
</tr>
<tr>
<td>A4</td>
<td>1413</td>
<td>2864</td>
<td>2349.64</td>
<td>1806</td>
<td>3613</td>
<td>4213.00</td>
</tr>
<tr>
<td>A5</td>
<td>1279</td>
<td>2580</td>
<td>1368.08</td>
<td>1226</td>
<td>2453</td>
<td>1773.95</td>
</tr>
<tr>
<td>TOTAL</td>
<td>11359</td>
<td>22875</td>
<td>12306.32</td>
<td>12386</td>
<td>24778</td>
<td>18503.21</td>
</tr>
</tbody>
</table>

Form Table 4 we see that subject to the CPU time metric the DESCON algorithm is top performer again, and the difference is significant, about 6196.89 seconds for solving all these 5 applications.

The DESCON and CG_DESCENT algorithms (and codes) are different in many respects. Since both of them use the Wolfe line search (however, implemented in different manners), these codes mainly differ in their choice of the search direction. DESCON appears to generate a better search direction, on average. The direction \(d_{k+1} \) used in DESCON is more elaborate, it satisfies both the sufficient descent condition and the conjugacy condition in a restart environment. Although the update formulae (2.2), (2.3) and (2.6)-(2.11) are more complicated, this computational scheme proved to be more efficient and more robust in numerical experiments and applications.

As a final remark observe that the DESCON algorithm can be implemented in different versions. For example, in step 8 for \(\theta_k \) and \(\beta_k \) computation, one version can use (2.12) and (3.29) respectively. However, this version doesn’t prove to be superior in numerical experiments. Subject to CPU time metric DESCON using (2.12) and (2.13) was fastest in 115 problems. On the other hand, DESCON using (2.12) and (3.29) was fastest only in 100 problems. Another version can implement a truncation mechanism suggested by Hager and Zhang [25] as \(\beta_k^* = \max \{ \beta_k, \eta_k \} \), where \(\eta_k = -1/(\| d_k \| \min \{0.1, \| g_k \| \}) \). In this case, subject to CPU time metric, DESCON using (2.12) and (2.13) was fastest in 113 problems. On the other hand, DESCON using (2.12) and \(\beta_k^* \), where \(\beta_k \) is computed by (2.13), was fastest in 107 problems. In another set of comparisons DESCON using (2.12) and (2.13) was fastest in 91 problems versus DESCON using (2.12) and \(\beta_k^* \), where \(\beta_k \) is computed by (3.29), was fastest in 86 problems. Observe that DESCON with (2.12) and (2.13) is top performer.

6. Conclusions

For solving large scale unconstrained optimization problems we have presented an accelerated conjugate gradient algorithm that for all \(k \geq 0 \) both the descent and the
conjugacy conditions are guaranteed. In our algorithm the search direction is selected as a linear combination of $-g_{k+1}$ and s_k, where the coefficients in this linear combination are selected in such a way that both the descent and the conjugacy condition are satisfied at every iteration. The algorithm introduces the modified Wolfe line search, where in the second Wolfe condition the parameter σ is modified at every iteration. Besides, the step length is modified by an acceleration scheme which proved to be very efficient in reducing the values of the minimizing function along the iterations.

For a test set consisting of 750 problems with dimensions ranging between 1000 and 10,000, the CPU time performance profiles of DESCON was higher than those of HS, PRP, DY, hDY, CG_DESCENT with Wolfe line search and limited memory quasi-Newton method L-BFGS. A number of 5 applications from MINPACK2 test problem collection, with 10^6 variables, illustrate the performances of DESCON versus CG_DESCENT. At present, from the above test problems and applications we have the computational evidence that DESCON is the fastest and the most robust conjugate gradient algorithm.

References

November 29, 2010