NONLINEAR
CONJUGATE GRADIENT METHODS FOR
UNCONSTRAINED
OPTIMIZATION
Nonlinear
Conjugate Gradient Methods for Unconstrained Optimization
Springer Optimization and Its Applications, Volume 158
Springer Science+Business Media New York 2020
ISBN: 978-3-030-42940-2
e-book ISBN: 978-3-030-42950-8
ISSN: 1931-6828
DOI: 10.1007/978-3-030-42950-8
Springer New York Heidelberg Dordrecht London
498 + XXIIIV pages.


NECULAI ANDREI
NONLINEAR CONJUGATE GRADIENT METHODS FOR
UNCONSTRAINED OPTIMIZATION
Preface
- Contents
- List of Figures
- List of Tables
- List of Algorithms
- 1. Introduction:
Overview of Unconstrained Optimization
- 2. Linear
Conjugate Gradient Algorithm
- 3. General
Convergence Results for Nonlinear Conjugate Gradient Methods
- 4. Standard
Conjugate Gradient Methods
- 5. Acceleration
of Conjugate Gradient Algorithms
- 6. Hybrid and
Parameterized Conjugate Gradient Methods
- 7. Conjugate
Gradient Methods as Modifications of the Standard Schemes
- 8. Conjugate
Gradient Methods Memoryless BFGS Preconditioned
- 9. Three-term
Conjugate Gradient Methods
- 10. Preconditioning
of the Nonlinear Conjugate Gradient Algorithms
- 11. Other
Conjugate Gradient Methods
- 12. Discussions,
Conclusions, and Large-Scale OPtimization
- Appendix A:
Mathematical Review
- Appendix B: UOP:
A Collection of 80 Unconstrained Optimization Test Problems
- References
- Author Index
- Subject Index
Neculai Andrei, November 11, 2020