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	Abstract. An adaptive conjugate gradient algorithm is presented. The search direction is computed as the sum of the negative gradient and a vector determined by minimizing the quadratic approximation of objective function at the current point. Using a special approximation of the inverse Hessian of the objective function, which depends by a positive parameter, we get the search direction which satisfies both the sufficient descent condition and the Dai-Liao’s conjugacy condition. The parameter in the search direction is determined by minimizing the condition number of the matrix defining it. The global convergence of the algorithm is proved for uniformly convex functions. Using a set of 800 unconstrained optimization test problems we prove that our algorithm is significantly more efficient and more robust than CG-DESCENT algorithm. By solving five applications from the MINPACK-2 test problem collection, with 
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 variables, we show that the suggested adaptive conjugate gradient algorithm is top performer versus CG_DESCENT.
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1. Introduction

For solving the large-scale unconstrained optimization problem
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 is continuously differentiable, we suggest the following algorithm
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where the step size  
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 is positive and the directions 
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 are computed using the updating formula:
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where 
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 is a vector to be determined. Usually, in (2), the steplength 
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 is computed using the Wolfe line search conditions:
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where 
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Observe that (3) is a general updating formula for the search direction computation. If 
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 then we get the steepest descent algorithm. If 
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 then the Newton method is obtained. Besides, if 
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 is an approximation of the Hessian 
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 then we find the quasi-Newton methods. On the other hand, if 
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 is a scalar and 
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 the family of conjugate gradient algorithms is generated. 
In this paper we present an algorithm for solving (1) by suggesting a procedure for 
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 computation by minimizing the quadratic approximation of the function 
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 and using of a symmetric and positive semidefinite approximation of the inverse Hessian which depend by a positive parameter. Using the idea of Perry [14], the search direction is represented as a quasi-Newton one. The parameter in the searching direction is obtained by minimizing the condition number of the matrix representing the search direction. Thus, we obtain an efficient and robust algorithm for solving large-scale unconstrained optimization problems with different structure and complexity.
In section 2 we present the algorithm and its properties. Section 3 is dedicated to prove the global convergence of the algorithm for uniformly convex functions. In section 4 we present the numerical comparisons of our algorithm versus the CG-DESCENT conjugate gradient algorithm [10, 11]. The computational results, for a set of 800 unconstrained optimization test problems, show that this new algorithm substantially outperforms CG-DESCENT, being way more efficient and more robust. Finally, using five applications from the MINPACK-2 test problem collection [4], with 
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 variables, we show that our algorithm is significantly better than CG_DESCENT.
 2. The algorithm
Let us consider that at the 
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iteration an inexact Wolfe line search is executed, that is the step-length 
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 satisfying (4) and (5) is computed. With these the following elements 
[image: image28.wmf]1

kkk

sxx

+

=-

 and 
[image: image29.wmf]1

kkk

ygg

+

=-

 can be computed. Now, let us take the quadratic approximate of function 
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where 
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 is an approximation of the Hessian 
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 is the direction to be determined. The search direction 
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 is determined as solution of the following minimizing problem
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Introducing 
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 from (3) in the minimizing problem (7), then 
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Clearly, using different approximations 
[image: image42.wmf]1

k

B

+

 of the Hessian 
[image: image43.wmf]2

1

()

k

fx

+

Ñ

 different search directions 
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 can be obtained. In this paper we consider the following expression of 
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where 
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 is a positive parameter which follows to be determined. Observe that 
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 and a pure symmetric one 
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 More than this,
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 is a positive semidefinite matrix. 

Now, from (8) we get:
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Therefore, using (10) in (3) the search direction can be expressed as
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Observe that the search direction (11), where 
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 is given by (12), obtained by using the approximation (9) of the inverse Hessian 
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Proposition 2.1. Consider 
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 and the step length 
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 in (2) is determined by the Wolfe line search conditions (4) and (5). Then the search direction (11), where 
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Proof. By direct computation, since 
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Proposition 2.2. Consider 
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 in (2) is determined by the Wolfe line search conditions (4) and (5). Then the search direction (11), where 
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 is given by (12), satisfies the Dai and Liao conjugacy condition 
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Proof. By direct computation we have
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 By Wolfe line search conditions (4) and (5) it follows that 
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It is worth saying that, even we have considered the approximation of the inverse Hessian given by (9) which is an un-symmetric matrix the search direction (13), obtained in this manner, satisfies both the descent condition and the Dai and Liao conjugacy condition [7].  Therefore, the search direction (13) leads us to a genuine conjugate gradient algorithm. 
Now, to define the algorithm the only problem we face is to specify a suitable value for the parameter 
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 Numerical performances of the quasi-Newton methods are strongly dependent by the condition number of the successive approximations of the inverse Hessian. A matrix with a large condition number is called an ill-conditioned matrix. Ill-conditioned matrices may produce instability in numerical computation with them. Therefore, in this paper we determine 
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By direct computation we can prove that 
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 Therefore, the matrix 
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Theorem 2.1. Let 
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and 
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Proof. From the fundamental formula of algebra
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On the other hand, by direct computation 
[image: image100.wmf]1

().

kkk

trQna

w

+

=+

 By the relationships between the determinant and the trace of a matrix and its eigenvalues, it follows that the other eigenvalues of 
[image: image101.wmf]1

k

Q

+
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Clearly, the other two eigenvalues of the matrix 
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 are determined from (17) as (14) and (15), respectively. Observe that 
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In order to have both 
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Since 
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 it follows that the estimation of 
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 given in (18) is well defined. From (17) we have
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Therefore, from (19) and (20) we have that both 
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 By direct computation, from (14), using (18) we get
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A simple analysis of equation (17) shows that 1 (the eigenvalue of 
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[image: image127.wmf]1

k

Q

+

 is 
[image: image128.wmf]1

k

l

+

+

 and its minimum eigenvalue is 1. With these, the condition number of 
[image: image129.wmf]1

,

k

Q

+



 EMBED Equation.DSMT4  [image: image130.wmf]21

(),

k

Q

k

+

 can be computed in the following proposition.

Proposition 2.3. The condition number of the normal and symmetric matrix 
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Proof. Observe that 
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 By direct computation the minimum of (22) is obtained for 
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We see that according to proposition 2.3 when 
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 defined by (12) arrives at the minimum value. Therefore, using (16) a suitable choice of the parameter 
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Since 
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 in (23) is well defined. This choice of the parameter 
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 approach its minimum. Now, introducing (23) in (13), in our algorithm, the search direction is computed as 
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where, from (13) 
[image: image149.wmf]2

/

T

kkkkk

tyys

w

º

 is computed as:
                                                       
[image: image150.wmf]22

2

2

2()

.

T

kkkk

k

k

ysys

t

s

-

=

                                                 (25)

Since 
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 in (25) is well defined. However, the minimum of 
[image: image153.wmf]21

()

k

Q

k

+

 obtained for 
[image: image154.wmf],

/

1

2

k

k

k

a

a

-

=

w

 is given by 
[image: image155.wmf]11.

k

a

+-

 Therefore, if 
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 matrix is ill-conditioned. This motivates the parameter 
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where 
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 is a positive constant. Therefore, our algorithm is an adaptive algorithm in which the quasi-Newton matrix associated to this method has a minimum condition number. 

Using the idea of acceleration of the conjugate gradient algorithms presented in [1], and taking into consideration the above developments, the following algorithm can be presented.

ADCG Algorithm (Adaptive Conjugate Gradient Algorithm)

	Step 1.
	Select a starting point 
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 used in Wolfe line search conditions. Consider a positive value for the parameter 
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	Step 2.
	Test a criterion for stopping the iterations. If this test is satisfied, then stop; otherwise continue with step 3.

	Step 3.
	Determine the steplength 
[image: image170.wmf]k

a

 by using the Wolfe line search (4) and (5).

	Step 4.
	Compute 
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	Step 5.
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	Step 6.
	Acceleration scheme. If 
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	Step 7.
	Compute 
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 as in (25).

	Step 8.
	Compute the search direction as in (23).

	Step 9.
	Powell restart criterion. If 
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	Step 10.
	Consider 
[image: image183.wmf]1

kk

=+

 and go to step 2.   (


If function 
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 is bounded along the direction 
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 satisfying the Wolfe line search. In our algorithm when the Beale-Powell restart condition is satisfied, then we restart the algorithm with the negative gradient. 

3. Global convergence analysis

Assume that:

(i) The level set 
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(ii) In a neighbourhood 
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Under these assumptions on 
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 For any conjugate gradient method with strong Wolfe line search the following general result holds [13].

Proposition 3.1. Suppose that the above assumptions hold. Consider a conjugate gradient algorithm (1)-(2) in which, for all 
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then the algorithm converges in the sense that
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For uniformly convex functions we can prove that the norm of the direction 
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 computed as in (23) and (25) is bounded above. Therefore, by proposition 3.1 we can prove the following result.

Theorem 3.1. Suppose that the assumptions (i) and (ii) hold. Consider the algorithm ADCG and (23), where 
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Proof. From Lipschitz continuity we have 
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On the other hand, from (23) we have
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showing that (26) is true. By proposition 3.1 it follows that (27) is true, which for uniformly convex functions is equivalent to (29).                                                                                           (
4. Numerical results and comparisons

The ADCG algorithm was implemented in Fortran and compiled with f77 (default compiler settings) and run on a Workstation Intel Pentium 4 with 1.8 GHz. We selected a number of 80 large-scale unconstrained optimization test functions in generalized or extended form presented in [2]. For each test function we have considered 10 numerical experiments with the number of variables increasing as 
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 The algorithm uses the Wolfe line search conditions with cubic interpolation, 
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is the maximum absolute component of a vector. In ADCG algorithm, we set 
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Since, it is generally accepted that the best conjugate gradient algorithm is CG-DESCENT [11], in the following we compare our algorithm ADCG versus CG-DESCENT. The algorithms we compare in these numerical experiments find local solutions. Therefore, the comparisons of algorithms are given in the following context. Let 
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 respectively. We say that, in the particular problem 
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 the performance of ALG1 was better than the performance of ALG2 if: 
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and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the CPU time of ALG1 was less than the number of iterations, or the number of function-gradient evaluations, or the CPU time corresponding to ALG2, respectively. 

Figure 1 shows the Dolan-Moré’s performance profiles subject to the CPU time metric. From Figure 1, comparing ADCG versus CG-DESCENT with Wolfe line search (version 1.4), subject to the number of iterations, we see that ADCG was better in 603 problems (i.e. it achieved the minimum number of iterations in 603 problems). CG-DESCENT was better in 89 problems and they achieved the same number of iterations in 62 problems, etc. Out of 800 problems we considered in this numerical study, only for 754 problems does the criterion (30) hold. Therefore, in comparison with CG-DESCENT, ADCG appears to generate the best search direction and the best step-length, on average. We see that this simple algorithm in which the corresponding quasi-Newton matrix is symmetric and has a minimum condition number substantially outperform the CG-DESCENT, being more efficient and more robust.
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Fig.1. ADCG versus CG-DESCENT. CPU time metric.

In the following we present comparisons between ADCG and CG-DESCENT conjugate gradient algorithms for solving some applications from the MINPACK-2 test problem collection [4]. In Table 1 we present these applications, as well as the values of their parameters. 
Table 1. 
Applications from the MINPACK-2 collection.
	A1
	Elastic–plastic torsion [8, pp. 41–55], 
[image: image231.wmf]5

c

=



	A2
	Pressure distribution in a journal bearing [6], 
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	A3
	Optimal design with composite materials [9], 
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	A4
	Steady-state combustion [3, pp. 292–299], [5], 
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	A5
	Minimal surfaces with Enneper conditions [12, pp. 80–85]


The infinite-dimensional version of these problems is transformed into a finite element approximation by triangulation. Thus a finite-dimensional minimization problem is obtained whose variables are the values of the piecewise linear function at the vertices of the triangulation. The discretization steps are 
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 thus obtaining minimization problems with 1,000,000 variables. A comparison between ADCG (Powell restart criterion, 
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) and CG-DESCENT (version 1.4, Wolfe line search, default settings, 
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) for solving these applications is given in Table 2. 

Table 2. 
Performance of ADCG versus CG_DESCENT. 1,000,000 variables. CPU seconds 

	
	ADCG
	CG-DESCENT

	
	#iter
	#fg
	cpu
	#iter
	#fg
	cpu

	A1
	1111
	2253
	324.25
	1145
	2291
	452.71

	A2
	2837
	5702
	941.35
	3368
	6737
	1464.76

	A3
	4180
	8401
	1845.23
	4841
	9684
	2988.53

	A4
	1413
	2864
	1297.53
	1806
	3613
	2363.45

	A5
	1220
	2475
	506.46
	1226
	2453
	686.52

	TOTAL
	10761
	21695
	4914.82
	12386
	24778
	7955.97


Form Table 2, we see that, subject to the CPU time metric, the ADCG algorithm is top performer and the difference is significant, about 3041.15 seconds for solving all these five applications.

The ADCG and CG_DESCENT algorithms (and codes) are different in many respects. Since both of them use the Wolfe line search (however, implemented in different manners), these codes mainly differ in their choice of the search direction. The search direction 
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 given by (23) and (25) used in ADCG is more elaborate: it is adaptive and it satisfies both the descent condition and the conjugacy condition in a restart environment. 
5. Conclusions

An adaptive conjugate gradient algorithm has been presented. The idea of this paper is to compute the search direction as the sum of the negative gradient and an arbitrary vector which was determined by minimizing the quadratic approximation of objective function into the current point. The solution of this quadratic minimization problem is a function of the inverse Hessian. In this paper we introduce a special approximation of the inverse Hessian of the objective function which depends by a positive parameter. The search direction satisfies both the sufficient descent condition and the Dai-Liao’s conjugacy condition. Thus, the algorithm is a conjugate gradient one. Using the Perry technology, the search direction, obtained in this way, is expressed as a quasi-Newton one. The parameter in the search direction is determined in an adaptive manner, by minimizing the condition number of the matrix defining it. The steplength is computed using the classical Wolfe line search conditions. For uniformly convex functions, under classical assumptions, the algorithm is globally convergent. Thus, we get an accelerated adaptive conjugate gradient algorithm. Numerical experiments and comparisons with 800 unconstrained optimization problems of different dimensions proved that this adaptive conjugate gradient algorithm is way more efficient and more robust than CG-DESCENT algorithm. In an effort to see the performances of this adaptive conjugate gradient we solved five applications from MINPACK-2 collection showing that ADCG is obvious more efficient than CG-DESCENT.
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