An adaptive conjugate gradient algorithm for large-scale unconstrained optimization
Neculai Andrei

Research Institute for Informatics, Center for Advanced Modeling and Optimization,
8-10, Averescu Avenue, Bucharest 1, Romania.
	Abstract. An adaptive conjugate gradient algorithm is presented. The search direction is computed as the sum of the negative gradient and a vector determined by minimizing the quadratic approximation of objective function at the current point. Using a special approximation of the inverse Hessian of the objective function, which depends by a positive parameter, we get the search direction which satisfies both the sufficient descent condition and the Dai-Liao’s conjugacy condition. The parameter in the search direction is determined by minimizing the condition number of the matrix defining it. The global convergence of the algorithm is proved for uniformly convex functions. Using a set of 800 unconstrained optimization test problems we prove that our algorithm is significantly more efficient and more robust than CG-DESCENT algorithm. By solving five applications from the MINPACK-2 test problem collection, with
[image: image1.wmf]6

10

 variables, we show that the suggested adaptive conjugate gradient algorithm is top performer versus CG_DESCENT.

Keywords: Unconstrained optimization; Normal matrices; Condition number of a matrix; Adaptive conjugate gradient method; Numerical comparisons.
1. Introduction

For solving the large-scale unconstrained optimization problem

[image: image2.wmf]min{():},

n

fxx

Î

¡

 (1)

where
[image: image3.wmf]:

n

f

®

¡¡

 is continuously differentiable, we suggest the following algorithm

[image: image4.wmf]1

,

kkkk

xxd

a

+

=+

 (2)

where the step size
[image: image5.wmf]k

a

 is positive and the directions
[image: image6.wmf]k

d

 are computed using the updating formula:

[image: image7.wmf]111

,

kkk

dgu

+++

=-+

 (3)

where
[image: image8.wmf](),

kk

gfx

=Ñ

 and
[image: image9.wmf]1

n

k

u

+

Î

¡

 is a vector to be determined. Usually, in (2), the steplength
[image: image10.wmf]k

a

 is computed using the Wolfe line search conditions:

[image: image11.wmf]()()

T

kkkkkkk

fxdfxgd

ara

+£+

, (4)

[image: image12.wmf]1

,

TT

kkkk

gdgd

s

+

³

 (5)

where
[image: image13.wmf]01.

rs

<£<

Observe that (3) is a general updating formula for the search direction computation. If
[image: image14.wmf]1

0,

k

u

+

=

 then we get the steepest descent algorithm. If
[image: image15.wmf]21

111

(()),

kkk

uIfxg

-

+++

=-Ñ

 then the Newton method is obtained. Besides, if
[image: image16.wmf]1

111

(),

kkk

uIBg

-

+++

=-

 where
[image: image17.wmf]1

k

B

+

 is an approximation of the Hessian
[image: image18.wmf]2

1

(),

k

fx

+

Ñ

 then we find the quasi-Newton methods. On the other hand, if
[image: image19.wmf]1

,

kkk

ud

b

+

=

 where
[image: image20.wmf]k

b

 is a scalar and
[image: image21.wmf]00

,

dg

=-

 the family of conjugate gradient algorithms is generated.
In this paper we present an algorithm for solving (1) by suggesting a procedure for
[image: image22.wmf]1

k

u

+

 computation by minimizing the quadratic approximation of the function
[image: image23.wmf]f

 in
[image: image24.wmf]1

k

x

+

 and using of a symmetric and positive semidefinite approximation of the inverse Hessian which depend by a positive parameter. Using the idea of Perry [14], the search direction is represented as a quasi-Newton one. The parameter in the searching direction is obtained by minimizing the condition number of the matrix representing the search direction. Thus, we obtain an efficient and robust algorithm for solving large-scale unconstrained optimization problems with different structure and complexity.
In section 2 we present the algorithm and its properties. Section 3 is dedicated to prove the global convergence of the algorithm for uniformly convex functions. In section 4 we present the numerical comparisons of our algorithm versus the CG-DESCENT conjugate gradient algorithm [10, 11]. The computational results, for a set of 800 unconstrained optimization test problems, show that this new algorithm substantially outperforms CG-DESCENT, being way more efficient and more robust. Finally, using five applications from the MINPACK-2 test problem collection [4], with
[image: image25.wmf]6

10

-

 variables, we show that our algorithm is significantly better than CG_DESCENT.
 2. The algorithm
Let us consider that at the
[image: image26.wmf]k

-

iteration an inexact Wolfe line search is executed, that is the step-length
[image: image27.wmf]k

a

 satisfying (4) and (5) is computed. With these the following elements
[image: image28.wmf]1

kkk

sxx

+

=-

 and
[image: image29.wmf]1

kkk

ygg

+

=-

 can be computed. Now, let us take the quadratic approximate of function
[image: image30.wmf]f

 in
[image: image31.wmf]1

k

x

+

 as

[image: image32.wmf]1111

1

(),

2

TT

kkkk

dfgddBd

++++

F=++

 (6)

where
[image: image33.wmf]1

k

B

+

 is an approximation of the Hessian
[image: image34.wmf]2

1

()

k

fx

+

Ñ

 and
[image: image35.wmf]d

 is the direction to be determined. The search direction
[image: image36.wmf]1

k

d

+

 is computed as in (3), where
[image: image37.wmf]1

k

u

+

 is determined as solution of the following minimizing problem

[image: image38.wmf]1

11

min().

n

k

kk

u

d

+

++

Î

F

¡

 (7)

Introducing
[image: image39.wmf]1

k

d

+

 from (3) in the minimizing problem (7), then
[image: image40.wmf]1

k

u

+

 is obtained as

[image: image41.wmf]1

111

().

kkk

uIBg

-

+++

=-

 (8)

Clearly, using different approximations
[image: image42.wmf]1

k

B

+

 of the Hessian
[image: image43.wmf]2

1

()

k

fx

+

Ñ

 different search directions
[image: image44.wmf]1

k

d

+

 can be obtained. In this paper we consider the following expression of
[image: image45.wmf]1

1

k

B

-

+

:

[image: image46.wmf]2

1

1

,

TTT

k

kkkkkk

kk

TTT

kkkkkk

y

syysss

BI

ysysys

w

-

+

-

=-+

 (9)

where
[image: image47.wmf]k

w

 is a positive parameter which follows to be determined. Observe that
[image: image48.wmf]1

1

-

+

k

B

 is the sum of a skew symmetric matrix
[image: image49.wmf]k

T

k

T

k

k

T

k

k

s

y

s

y

y

s

I

/

)

(

-

-

 and a pure symmetric one
[image: image50.wmf].

)

/(

)

(

2

2

k

T

k

T

k

k

k

k

s

y

s

s

y

w

 More than this,
[image: image51.wmf]1

1

-

+

k

B

 is a positive semidefinite matrix.

Now, from (8) we get:

[image: image52.wmf]2

11

.

TTT

k

kkkkkk

kkk

TTT

kkkkkk

y

syysss

ug

ysysys

w

++

éù

-

êú

=-

êú

ëû

 (10)

Therefore, using (10) in (3) the search direction can be expressed as

[image: image53.wmf]111

,

kkk

dQg

+++

=-

 (11)
where

[image: image54.wmf]2

1

.

TTT

k

kkkkkk

kk

TTT

kkkkkk

y

syysss

QI

ysysys

w

+

-

=-+

 (12)
Observe that the search direction (11), where
[image: image55.wmf]1

k

Q

+

 is given by (12), obtained by using the approximation (9) of the inverse Hessian
[image: image56.wmf],

1

1

-

+

k

B

 is given by:

[image: image57.wmf].

1

1

2

1

1

1

k

k

T

k

k

T

k

k

k

T

k

k

T

k

k

T

k

k

k

k

T

k

k

T

k

k

k

y

s

y

g

s

s

s

y

g

s

s

y

y

s

y

g

y

g

d

+

+

+

+

+

-

÷

÷

ø

ö

ç

ç

è

æ

-

+

-

=

w

 (13)

Proposition 2.1. Consider
[image: image58.wmf]0

k

w

>

 and the step length
[image: image59.wmf]k

a

 in (2) is determined by the Wolfe line search conditions (4) and (5). Then the search direction (11), where
[image: image60.wmf]!

k

Q

+

 is given by (12), satisfies the descent condition
[image: image61.wmf]11

0.

T

kk

gd

++

£

Proof. By direct computation, since
[image: image62.wmf]0,

k

w

³

 we get:

[image: image63.wmf]2

2

2

1

111

2

()

0.

()

T

kkk

T

kkkk

T

kk

ygs

gdg

ys

w

+

+++

=--£

 (
Proposition 2.2. Consider
[image: image64.wmf]0

k

w

>

 and the step length
[image: image65.wmf]k

a

 in (2) is determined by the Wolfe line search conditions (4) and (5). Then the search direction (11), where
[image: image66.wmf]1

k

Q

+

 is given by (12), satisfies the Dai and Liao conjugacy condition
[image: image67.wmf]11

(),

TT

kkkkk

ydvsg

++

=-

 where
[image: image68.wmf]0.

k

v

³

Proof. By direct computation we have

[image: image69.wmf]2

111

(1)()(),

k

TTT

kkkkkkkk

T

kk

y

ydsgvsg

ys

w

+++

éù

êú

=-+º-

êú

ëû

where
[image: image70.wmf]2

(1).

k

kk

T

kk

y

v

ys

w

º+

 By Wolfe line search conditions (4) and (5) it follows that
[image: image71.wmf]0,

T

kk

ys

>

 therefore
[image: image72.wmf]0.

k

v

>

 (
It is worth saying that, even we have considered the approximation of the inverse Hessian given by (9) which is an un-symmetric matrix the search direction (13), obtained in this manner, satisfies both the descent condition and the Dai and Liao conjugacy condition [7]. Therefore, the search direction (13) leads us to a genuine conjugate gradient algorithm.
Now, to define the algorithm the only problem we face is to specify a suitable value for the parameter
[image: image73.wmf].

k

w

 Numerical performances of the quasi-Newton methods are strongly dependent by the condition number of the successive approximations of the inverse Hessian. A matrix with a large condition number is called an ill-conditioned matrix. Ill-conditioned matrices may produce instability in numerical computation with them. Therefore, in this paper we determine
[image: image74.wmf]k

w

 by minimizing the condition number of the matrix
[image: image75.wmf]1

k

Q

+

 given by (12).
By direct computation we can prove that
[image: image76.wmf]1111

.

TT

kkkk

QQQQ

++++

=

 Therefore, the matrix
[image: image77.wmf]1

k

Q

+

 is a normal matrix.

Theorem 2.1. Let
[image: image78.wmf]1

k

Q

+

 be defined by (12). Then
[image: image79.wmf]1

k

Q

+

 is a nonsingular matrix and its eigenvalues consist of 1 (
[image: image80.wmf]2

n

-

 multiplicity),
[image: image81.wmf]1

k

l

+

+

 and
[image: image82.wmf]1

,

k

l

-

+

 where

[image: image83.wmf]22

1

1

(2)44

2

kkkkkk

aaa

lww

+

+

éù

=++-+

ëû

 (14)

[image: image84.wmf]22

1

1

(2)44

2

kkkkkk

aaa

lww

-

+

éù

=+--+

ëû

 (15)

and

[image: image85.wmf]22

2

1.

()

kk

k

T

kk

ys

a

ys

=>

 (16)

Proof. From the fundamental formula of algebra

[image: image86.wmf]det()(1)(1)()(),

TTTTTT

Ipquvqpvupvqu

++=++-

where
[image: image87.wmf]2

(/())

,

T

kkkkkk

T

kk

yyyss

p

ys

w

+

=

[image: image88.wmf],

k

qs

=

[image: image89.wmf]k

us

=-

 and
[image: image90.wmf],

k

T

kk

y

v

ys

=

 it follows that
[image: image91.wmf]1

det()(1).

kkk

Qa

w

+

=+

 But,
[image: image92.wmf]1

k

a

>

 therefore
[image: image93.wmf]1

k

Q

+

 is a nonsingular matrix. Since for any
[image: image94.wmf]{,},

n

kk

spansyR

x

^

ÎÌ

[image: image95.wmf]1

,

k

Q

xx

+

=

 it follows that
[image: image96.wmf]1

k

Q

+

 has the eigenvalue
[image: image97.wmf]1

 of multiplicity
[image: image98.wmf]2,

n

-

 which correspond to the eigenvectors
[image: image99.wmf]{,}.

kk

spansy

x

^

Î

On the other hand, by direct computation
[image: image100.wmf]1

().

kkk

trQna

w

+

=+

 By the relationships between the determinant and the trace of a matrix and its eigenvalues, it follows that the other eigenvalues of
[image: image101.wmf]1

k

Q

+

 are the roots of the following quadratic polynomial

[image: image102.wmf]2

(2)(1)0.

kkkk

aa

lwlw

-+++=

 (17)

Clearly, the other two eigenvalues of the matrix
[image: image103.wmf]1

k

Q

+

 are determined from (17) as (14) and (15), respectively. Observe that
[image: image104.wmf]1

k

a

>

 follows from Wolfe conditions and the inequality

[image: image105.wmf]2

2

.

T

k

kk

T

kk

k

y

ys

ys

s

£

 (
In order to have both
[image: image106.wmf]1

k

l

+

+

 and
[image: image107.wmf]1

k

l

-

+

 as real eigenvalues, from (13) and (14) the following condition must be fulfilled
[image: image108.wmf]22

440,

kkk

aa

w

-+³

 out of which the following estimation of the parameter
[image: image109.wmf]k

w

 can be determined:

[image: image110.wmf]21

.

k

k

k

a

a

w

-

³

 (18)

Since
[image: image111.wmf]1,

k

a

>

 it follows that the estimation of
[image: image112.wmf]k

w

 given in (18) is well defined. From (17) we have

[image: image113.wmf]11

20,

kkkk

a

llw

+-

++

+=+>

 (19)

[image: image114.wmf]11

(1)0.

kkkk

a

llw

+-

++

=+>

 (20)

Therefore, from (19) and (20) we have that both
[image: image115.wmf]1

k

l

+

+

 and
[image: image116.wmf]1

k

l

-

+

 are positive eigenvalues. Since
[image: image117.wmf]22

440,

kkk

aa

w

-+³

 from (14) and (15) we have that
[image: image118.wmf]11

.

kk

ll

+-

++

³

 By direct computation, from (14), using (18) we get

[image: image119.wmf]1

111.

kk

a

l

+

+

³+->

 (21)

A simple analysis of equation (17) shows that 1 (the eigenvalue of
[image: image120.wmf]1

k

Q

+

) is not into the interval
[image: image121.wmf]11

[,].

kk

ll

-+

++

 Since both
[image: image122.wmf]1

k

l

+

+

 and
[image: image123.wmf]1

k

l

-

+

 are positive,
[image: image124.wmf]1

1

k

l

+

+

>

 and
[image: image125.wmf]11

,

kk

ll

+-

++

³

 it follows that
[image: image126.wmf]11

1.

kk

ll

-+

++

££

 Therefore, the maximum eigenvalue of
[image: image127.wmf]1

k

Q

+

 is
[image: image128.wmf]1

k

l

+

+

 and its minimum eigenvalue is 1. With these, the condition number of
[image: image129.wmf]1

,

k

Q

+

 EMBED Equation.DSMT4 [image: image130.wmf]21

(),

k

Q

k

+

 can be computed in the following proposition.

Proposition 2.3. The condition number of the normal and symmetric matrix
[image: image131.wmf]1

k

Q

+

 is

[image: image132.wmf]22

1

21

1

()(2)44.

12

k

kkkkkk

Qaaa

l

kww

+

+

+

éù

==++-+

ëû

 (22)

[image: image133.wmf]21

()

k

Q

k

+

 gets its minimum
[image: image134.wmf]11,

k

a

+-

 when
[image: image135.wmf]21

.

k

k

k

a

a

w

-

=

Proof. Observe that
[image: image136.wmf]1.

k

a

>

 By direct computation the minimum of (22) is obtained for
[image: image137.wmf](21)/,

kkk

aa

w

=-

 for which
[image: image138.wmf]21

()

k

Q

k

+

 arrives at its minimum
[image: image139.wmf]11.

k

a

+-

 (
We see that according to proposition 2.3 when
[image: image140.wmf](21)/

kkk

aa

w

=-

 the condition number of
[image: image141.wmf]1

k

Q

+

 defined by (12) arrives at the minimum value. Therefore, using (16) a suitable choice of the parameter
[image: image142.wmf]k

w

 is

[image: image143.wmf]22

2

22

()

2().

T

kkkk

T

kk

kk

ysys

ys

ys

w

-

=

 (23)

Since
[image: image144.wmf]1,

k

a

>

 it follows that
[image: image145.wmf]k

w

 in (23) is well defined. This choice of the parameter
[image: image146.wmf]k

w

 makes the condition number of
[image: image147.wmf]1

k

Q

+

 approach its minimum. Now, introducing (23) in (13), in our algorithm, the search direction is computed as

[image: image148.wmf]11

1111

()

,

TT

kkkkkk

kkkkkk

TT

kkkk

ytsgsg

dQggsy

ysys

++

++++

-

=-=-+-

 (24)

where, from (13)
[image: image149.wmf]2

/

T

kkkkk

tyys

w

º

 is computed as:

[image: image150.wmf]22

2

2

2()

.

T

kkkk

k

k

ysys

t

s

-

=

 (25)

Since
[image: image151.wmf],

1

>

k

a

 it follows that
[image: image152.wmf]k

t

 in (25) is well defined. However, the minimum of
[image: image153.wmf]21

()

k

Q

k

+

 obtained for
[image: image154.wmf],

/

1

2

k

k

k

a

a

-

=

w

 is given by
[image: image155.wmf]11.

k

a

+-

 Therefore, if
[image: image156.wmf]k

a

 is large, then the condition number of the matrix
[image: image157.wmf]1

k

Q

+

 will be large, i.e.
[image: image158.wmf]1

k

Q

+

 matrix is ill-conditioned. This motivates the parameter
[image: image159.wmf]k

t

 to be computed as:

[image: image160.wmf]22

2

21,if,

()

0,otherwise,

kkk

T

k

kkk

yys

t

sys

tt

ì

ï

-³

=

í

ï

î

 (26)

where
[image: image161.wmf]1

t

>

 is a positive constant. Therefore, our algorithm is an adaptive algorithm in which the quasi-Newton matrix associated to this method has a minimum condition number.

Using the idea of acceleration of the conjugate gradient algorithms presented in [1], and taking into consideration the above developments, the following algorithm can be presented.

ADCG Algorithm (Adaptive Conjugate Gradient Algorithm)

	Step 1.
	Select a starting point
[image: image162.wmf]0

n

xR

Î

 and compute:
[image: image163.wmf]0

(),

fx

[image: image164.wmf]00

().

gfx

=Ñ

 Select some positive values for
[image: image165.wmf]r

 and
[image: image166.wmf]s

 used in Wolfe line search conditions. Consider a positive value for the parameter
[image: image167.wmf].

t

 Set
[image: image168.wmf]00

dg

=-

 and
[image: image169.wmf]0.

k

=

	Step 2.
	Test a criterion for stopping the iterations. If this test is satisfied, then stop; otherwise continue with step 3.

	Step 3.
	Determine the steplength
[image: image170.wmf]k

a

 by using the Wolfe line search (4) and (5).

	Step 4.
	Compute
[image: image171.wmf],

kkk

zxd

a

=+

[image: image172.wmf]()

z

gfz

=Ñ

 and
[image: image173.wmf].

kkz

ygg

=-

	Step 5.
	Compute:
[image: image174.wmf]T

kkzk

agd

a

=

 and
[image: image175.wmf].

T

kkkk

byd

a

=-

	Step 6.
	Acceleration scheme. If
[image: image176.wmf]0,

k

b

>

 then compute
[image: image177.wmf]/

kkk

ab

x

=-

 and update the variables as
[image: image178.wmf]1

,

kkkkk

xxd

xa

+

=+

 otherwise update the variables as
[image: image179.wmf]1

.

kkkk

xxd

a

+

=+

	Step 7.
	Compute
[image: image180.wmf]k

t

 as in (25).

	Step 8.
	Compute the search direction as in (23).

	Step 9.
	Powell restart criterion. If
[image: image181.wmf]2

11

0.2,

T

kkk

ggg

++

>

 then set
[image: image182.wmf]11

.

kk

dg

++

=-

	Step 10.
	Consider
[image: image183.wmf]1

kk

=+

 and go to step 2. (

If function
[image: image184.wmf]f

 is bounded along the direction
[image: image185.wmf],

k

d

 then there exists a stepsize
[image: image186.wmf]k

a

 satisfying the Wolfe line search. In our algorithm when the Beale-Powell restart condition is satisfied, then we restart the algorithm with the negative gradient.

3. Global convergence analysis

Assume that:

(i) The level set
[image: image187.wmf]{

}

0

:()()

n

Sxfxfx

=Î£

¡

 is bounded.
(ii) In a neighbourhood
[image: image188.wmf]N

 of
[image: image189.wmf]S

 the function
[image: image190.wmf]f

 is continuously differentiable and its gradient is Lipschitz continuous, i.e. there exists a constant
[image: image191.wmf]0

L

>

 such that
[image: image192.wmf]()(),

fxfyLxy

Ñ-Ñ£-

 for all
[image: image193.wmf],.

xyN

Î

Under these assumptions on
[image: image194.wmf]f

 there exists a constant
[image: image195.wmf]0

G³

 such that
[image: image196.wmf]()

fx

Ñ£G

 for all
[image: image197.wmf].

xS

Î

 For any conjugate gradient method with strong Wolfe line search the following general result holds [13].

Proposition 3.1. Suppose that the above assumptions hold. Consider a conjugate gradient algorithm (1)-(2) in which, for all
[image: image198.wmf]0,

k

³

 the search direction
[image: image199.wmf]k

d

 is a descent direction and the steplength
[image: image200.wmf]k

a

 is determined by the Wolfe line search conditions. If

[image: image201.wmf]2

0

1

,

k

k

d

³

=¥

å

 (26)

then the algorithm converges in the sense that

[image: image202.wmf]liminf0.

k

k

g

®¥

=

 (27)

For uniformly convex functions we can prove that the norm of the direction
[image: image203.wmf]1

k

d

+

 computed as in (23) and (25) is bounded above. Therefore, by proposition 3.1 we can prove the following result.

Theorem 3.1. Suppose that the assumptions (i) and (ii) hold. Consider the algorithm ADCG and (23), where
[image: image204.wmf]k

t

 is given by (25),
[image: image205.wmf]k

d

 is a descent direction, and
[image: image206.wmf]k

a

 is computed by the strong Wolfe line search. Suppose that
[image: image207.wmf]f

 is a uniformly convex function on
[image: image208.wmf],

S

 i.e. there exists a constant
[image: image209.wmf]0

m

>

 such that

[image: image210.wmf]2

(()())()

T

fxfyxyxy

m

Ñ-Ñ-³-

 (28)

for all
[image: image211.wmf],.

xyN

Î

 Then

[image: image212.wmf]lim0.

k

k

g

®¥

=

 (29)

Proof. From Lipschitz continuity we have
[image: image213.wmf].

kk

yLs

£

 On the other hand, from uniform convexity it follows that
[image: image214.wmf]2

.

T

kkk

yss

m

³

 Now, from (25)

[image: image215.wmf]212121.

kk

k

kk

yLs

tL

ss

ttt

=-£-=-

On the other hand, from (23) we have

[image: image216.wmf]111

11

TTT

kkkkkk

kkkkkk

TTT

kkkkkk

ygsgsg

dgstsy

ysysys

+++

++

£+++

[image: image217.wmf]222

21

kkkkkk

kkk

yssssy

L

sss

t

mmm

GGG

£G++-+

 EMBED Equation.DSMT4 [image: image218.wmf]221,

L

L

t

mm

GG

£G++-

showing that (26) is true. By proposition 3.1 it follows that (27) is true, which for uniformly convex functions is equivalent to (29). (
4. Numerical results and comparisons

The ADCG algorithm was implemented in Fortran and compiled with f77 (default compiler settings) and run on a Workstation Intel Pentium 4 with 1.8 GHz. We selected a number of 80 large-scale unconstrained optimization test functions in generalized or extended form presented in [2]. For each test function we have considered 10 numerical experiments with the number of variables increasing as
[image: image219.wmf]1000,2000,,10000.

n

=

K

 The algorithm uses the Wolfe line search conditions with cubic interpolation,
[image: image220.wmf]0.0001,

r

=

[image: image221.wmf]0.8

s

=

 and the same stopping criterion
[image: image222.wmf]6

10,

k

g

-

¥

£

where
[image: image223.wmf].

¥

is the maximum absolute component of a vector. In ADCG algorithm, we set
[image: image224.wmf]20.

t

=

Since, it is generally accepted that the best conjugate gradient algorithm is CG-DESCENT [11], in the following we compare our algorithm ADCG versus CG-DESCENT. The algorithms we compare in these numerical experiments find local solutions. Therefore, the comparisons of algorithms are given in the following context. Let
[image: image225.wmf]1

ALG

i

f

and
[image: image226.wmf]2

ALG

i

f

 be the optimal value found by ALG1 and ALG2, for problem
[image: image227.wmf]1,,800,

i

=

K

 respectively. We say that, in the particular problem
[image: image228.wmf],

i

 the performance of ALG1 was better than the performance of ALG2 if:

[image: image229.wmf]123

10

ALGALG

ii

ff

-

-<

 (30)

and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the CPU time of ALG1 was less than the number of iterations, or the number of function-gradient evaluations, or the CPU time corresponding to ALG2, respectively.

Figure 1 shows the Dolan-Moré’s performance profiles subject to the CPU time metric. From Figure 1, comparing ADCG versus CG-DESCENT with Wolfe line search (version 1.4), subject to the number of iterations, we see that ADCG was better in 603 problems (i.e. it achieved the minimum number of iterations in 603 problems). CG-DESCENT was better in 89 problems and they achieved the same number of iterations in 62 problems, etc. Out of 800 problems we considered in this numerical study, only for 754 problems does the criterion (30) hold. Therefore, in comparison with CG-DESCENT, ADCG appears to generate the best search direction and the best step-length, on average. We see that this simple algorithm in which the corresponding quasi-Newton matrix is symmetric and has a minimum condition number substantially outperform the CG-DESCENT, being more efficient and more robust.

[image: image230.png]095

09

0385

038

075

07

065

06

#iter
#ig
cpu

CG-DESCENT

ADCG CG-DESCENT =

603 89 62
440 273 41
300 211 243

CPU time metric, 754 problems

4

5

8 10 12 4

16

Fig.1. ADCG versus CG-DESCENT. CPU time metric.

In the following we present comparisons between ADCG and CG-DESCENT conjugate gradient algorithms for solving some applications from the MINPACK-2 test problem collection [4]. In Table 1 we present these applications, as well as the values of their parameters.
Table 1.
Applications from the MINPACK-2 collection.
	A1
	Elastic–plastic torsion [8, pp. 41–55],
[image: image231.wmf]5

c

=

	A2
	Pressure distribution in a journal bearing [6],
[image: image232.wmf]10,

b

=

[image: image233.wmf]0.1

e

=

	A3
	Optimal design with composite materials [9],
[image: image234.wmf]0.008

l

=

	A4
	Steady-state combustion [3, pp. 292–299], [5],
[image: image235.wmf]5

l

=

	A5
	Minimal surfaces with Enneper conditions [12, pp. 80–85]

The infinite-dimensional version of these problems is transformed into a finite element approximation by triangulation. Thus a finite-dimensional minimization problem is obtained whose variables are the values of the piecewise linear function at the vertices of the triangulation. The discretization steps are
[image: image236.wmf]1,000

nx

=

 and
[image: image237.wmf]1,000,

ny

=

 thus obtaining minimization problems with 1,000,000 variables. A comparison between ADCG (Powell restart criterion,
[image: image238.wmf]6

()10,

k

fx

-

¥

Ñ£

[image: image239.wmf]0.0001,

r

=

 EMBED Equation.DSMT4 [image: image240.wmf]0.8

s

=

,
[image: image241.wmf]20

t

=

) and CG-DESCENT (version 1.4, Wolfe line search, default settings,
[image: image242.wmf]6

()10,

k

fx

-

¥

Ñ£

) for solving these applications is given in Table 2.

Table 2.
Performance of ADCG versus CG_DESCENT. 1,000,000 variables. CPU seconds

	
	ADCG
	CG-DESCENT

	
	#iter
	#fg
	cpu
	#iter
	#fg
	cpu

	A1
	1111
	2253
	324.25
	1145
	2291
	452.71

	A2
	2837
	5702
	941.35
	3368
	6737
	1464.76

	A3
	4180
	8401
	1845.23
	4841
	9684
	2988.53

	A4
	1413
	2864
	1297.53
	1806
	3613
	2363.45

	A5
	1220
	2475
	506.46
	1226
	2453
	686.52

	TOTAL
	10761
	21695
	4914.82
	12386
	24778
	7955.97

Form Table 2, we see that, subject to the CPU time metric, the ADCG algorithm is top performer and the difference is significant, about 3041.15 seconds for solving all these five applications.

The ADCG and CG_DESCENT algorithms (and codes) are different in many respects. Since both of them use the Wolfe line search (however, implemented in different manners), these codes mainly differ in their choice of the search direction. The search direction
[image: image243.wmf]1

k

d

+

 given by (23) and (25) used in ADCG is more elaborate: it is adaptive and it satisfies both the descent condition and the conjugacy condition in a restart environment.
5. Conclusions

An adaptive conjugate gradient algorithm has been presented. The idea of this paper is to compute the search direction as the sum of the negative gradient and an arbitrary vector which was determined by minimizing the quadratic approximation of objective function into the current point. The solution of this quadratic minimization problem is a function of the inverse Hessian. In this paper we introduce a special approximation of the inverse Hessian of the objective function which depends by a positive parameter. The search direction satisfies both the sufficient descent condition and the Dai-Liao’s conjugacy condition. Thus, the algorithm is a conjugate gradient one. Using the Perry technology, the search direction, obtained in this way, is expressed as a quasi-Newton one. The parameter in the search direction is determined in an adaptive manner, by minimizing the condition number of the matrix defining it. The steplength is computed using the classical Wolfe line search conditions. For uniformly convex functions, under classical assumptions, the algorithm is globally convergent. Thus, we get an accelerated adaptive conjugate gradient algorithm. Numerical experiments and comparisons with 800 unconstrained optimization problems of different dimensions proved that this adaptive conjugate gradient algorithm is way more efficient and more robust than CG-DESCENT algorithm. In an effort to see the performances of this adaptive conjugate gradient we solved five applications from MINPACK-2 collection showing that ADCG is obvious more efficient than CG-DESCENT.
References
[1] Andrei, N., Acceleration of conjugate gradient algorithms for unconstrained optimization. Applied Mathematics and Computation, 213 (2009) 361-369.
[2] Andrei, N., Another collection of large-scale unconstrained optimization test functions. ICI Technical Report, January 30, 2013.
[3] Aris, R., The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Oxford, 1975.
[4] Averick, B.M., Carter, R.G., Moré, J.J., Xue, G.L., The MINPACK-2 test problem collection, Mathematics and Computer Science Division, Argonne National Laboratory, Preprint MCS-P153-0692, June 1992.

[5] Bebernes, J., Eberly, D., Mathematical Problems from Combustion Theory, in: Applied Mathematical Sciences, vol. 83, Springer-Verlag, 1989.

[6] Cimatti, G., On a problem of the theory of lubrication governed by a variational inequality, Applied Mathematics and Optimization 3 (1977) 227–242.
[7] Dai, Y.H., Liao, L.Z., New conjugacy conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim. 43 (2001) 87-101.

[8] Glowinski, R., Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, Berlin, 1984.
[9] Goodman, J., Kohn, R., Reyna, L., Numerical study of a relaxed variational problem from optimal design, Computer Methods in Applied Mechanics and Engineering 57 (1986) 107–127.

[10] Hager, W.W., Zhang, H., A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM Journal on Optimization, 16, (2005) 170-192.

[11] Hager, W.W., Zhang, H., Algorithm 851: CG-DESCENT, a conjugate gradient method with guaranteed descent. ACM Trans. Math. Softw. 32 (2006) 113-137.
[12] Nitsche, J.C.C., Lectures On Minimal Surfaces, Vol. 1, Cambridge University Press, 1989.

[13] Nocedal, J., Conjugate gradient methods and nonlinear optimization. In: Adams, L., Nazareth, J.L., (Eds.) Linear and Nonlinear Conjugate Gradient Related Methods, SIAM (1996) 9-23.

[14] Perry, A., A modified conjugate gradient algorithm. Oper. Res. Techn. Notes 26 (1978) 1073-1078.
September 15, 2014

PAGE
5

_1471237005.unknown

_1471971817.unknown

_1472014520.unknown

_1472043601.unknown

_1472103620.unknown

_1488352764.unknown

_1488354639.unknown

_1488715708.unknown

_1489483614.unknown

_1489484316.unknown

_1489483171.unknown

_1488715273.unknown

_1488715319.unknown

_1488354293.unknown

_1488354620.unknown

_1488353899.unknown

_1472319573.unknown

_1488345706.unknown

_1488345918.unknown

_1488350413.unknown

_1488351257.unknown

_1488346055.unknown

_1488345772.unknown

_1472327070.unknown

_1472327136.unknown

_1472327280.unknown

_1472327281.unknown

_1472327146.unknown

_1472327101.unknown

_1472321083.unknown

_1472319961.unknown

_1472318981.unknown

_1472318995.unknown

_1472319012.unknown

_1472319241.unknown

_1472318986.unknown

_1472318541.unknown

_1472318586.unknown

_1472318957.unknown

_1472318563.unknown

_1472318511.unknown

_1472043622.unknown

_1472043794.unknown

_1472043822.unknown

_1472044056.unknown

_1472055119.unknown

_1472043807.unknown

_1472043700.unknown

_1472043603.unknown

_1472043604.unknown

_1472043602.unknown

_1472014741.unknown

_1472018985.unknown

_1472024869.unknown

_1472025166.unknown

_1472025310.unknown

_1472043599.unknown

_1472025389.unknown

_1472025267.unknown

_1472024950.unknown

_1472024499.unknown

_1472024583.unknown

_1472024823.unknown

_1472024574.unknown

_1472018995.unknown

_1472014940.unknown

_1472014941.unknown

_1472018956.unknown

_1472014824.unknown

_1472014849.unknown

_1472014869.unknown

_1472014747.unknown

_1472014624.unknown

_1472014697.unknown

_1472014714.unknown

_1472014660.unknown

_1472014564.unknown

_1472014593.unknown

_1472014534.unknown

_1472014244.unknown

_1472014302.unknown

_1472014339.unknown

_1472014509.unknown

_1472014312.unknown

_1472014268.unknown

_1472014283.unknown

_1472014262.unknown

_1472014133.unknown

_1472014185.unknown

_1472014230.unknown

_1472014152.unknown

_1472014028.unknown

_1472014122.unknown

_1471971888.unknown

_1472014018.unknown

_1471967918.unknown

_1471968924.unknown

_1471970132.unknown

_1471971562.unknown

_1471971797.unknown

_1471970148.unknown

_1471969933.unknown

_1471969999.unknown

_1471969161.unknown

_1471969832.unknown

_1471969853.unknown

_1471969545.unknown

_1471968995.unknown

_1471968539.unknown

_1471968710.unknown

_1471968830.unknown

_1471968571.unknown

_1471968248.unknown

_1471968295.unknown

_1471968386.unknown

_1471968416.unknown

_1471968275.unknown

_1471968154.unknown

_1471968167.unknown

_1471968147.unknown

_1471884728.unknown

_1471885035.unknown

_1471885690.unknown

_1471967844.unknown

_1471967899.unknown

_1471967808.unknown

_1471885594.unknown

_1471885649.unknown

_1471885366.unknown

_1471884846.unknown

_1471884877.unknown

_1471884886.unknown

_1471884858.unknown

_1471884775.unknown

_1471884805.unknown

_1471245486.unknown

_1471245582.unknown

_1471245683.unknown

_1471245703.unknown

_1471884653.unknown

_1471245693.unknown

_1471245621.unknown

_1471245511.unknown

_1471245521.unknown

_1471245568.unknown

_1471245499.unknown

_1471240804.unknown

_1471244370.unknown

_1471245475.unknown

_1471244427.unknown

_1471244331.unknown

_1471244349.unknown

_1471241229.unknown

_1471237188.unknown

_1471238497.unknown

_1471237171.unknown

_1471162088.unknown

_1471162822.unknown

_1471164201.unknown

_1471164570.unknown

_1471164789.unknown

_1471164937.unknown

_1471165494.unknown

_1471166201.unknown

_1471165316.unknown

_1471164894.unknown

_1471164603.unknown

_1471164657.unknown

_1471164586.unknown

_1471164493.unknown

_1471164550.unknown

_1471164462.unknown

_1471163298.unknown

_1471163354.unknown

_1471163413.unknown

_1471163319.unknown

_1471162865.unknown

_1471163280.unknown

_1471162837.unknown

_1471162418.unknown

_1471162582.unknown

_1471162793.unknown

_1471162794.unknown

_1471162792.unknown

_1471162488.unknown

_1471162525.unknown

_1471162469.unknown

_1471162233.unknown

_1471162288.unknown

_1471162308.unknown

_1471162264.unknown

_1471162115.unknown

_1471162131.unknown

_1471162097.unknown

_1471076245.unknown

_1471079309.unknown

_1471080818.unknown

_1471162044.unknown

_1471162057.unknown

_1471155912.unknown

_1471079577.unknown

_1471079628.unknown

_1471079550.unknown

_1471077437.unknown

_1471077934.unknown

_1471078072.unknown

_1471077833.unknown

_1471077391.unknown

_1471077419.unknown

_1471077123.unknown

_1471076954.unknown

_1471076984.unknown

_1471076543.unknown

_1471075378.unknown

_1471075684.unknown

_1471076062.unknown

_1471076231.unknown

_1471076044.unknown

_1471075598.unknown

_1471075607.unknown

_1471075409.unknown

_1471074768.unknown

_1471074792.unknown

_1471075181.unknown

_1471074779.unknown

_1471068928.unknown

_1471069190.unknown

_1471068766.unknown

_1471068863.unknown

_1471068909.unknown

_1471068708.unknown

_1448123014.unknown

