Conjugate Gradient Algorithms Closest to Self-Scaling Memoryless BFGS Method based on clustering the eigenvalues of the self-scaling memoryless BFGS iteration matrix or on minimizing the Byrd-Nocedal measure function with Different Wolfe Line Searches for Unconstrained Optimization

Neculai Andrei¹
Center for Advanced Modeling and optimization,
Academy of Romanian Scientists
E-mail: nandrei@ici.ro

Technical Report No.2/2019
April 18, 2019
Bucharest, Romania

Abstract Three new procedures for computation the scaling parameter in the self-scaling memoryless Broyden-Fletcher-Goldfarb-Shanno search direction closest to the Perry and Shanno search direction are presented. The first two are based on clustering the eigenvalues of the self-scaling memoryless Broyden-Fletcher-Goldfarb-Shanno iteration matrix by using the determinant or the trace of this matrix. The third one is based on minimizing the measure function of Byrd and Nocedal (SIAM J Numer Anal 26:727-739, 1989). For all these three algorithms the sufficient descent condition is established. The stepsize is computed using three line search procedures based on: the standard Wolfe line search (SIAM Rev 11:226-235, 1969, SIAM Rev 13:185-188, 1971), the approximate Wolfe line search of Hager and Zhang (SIAM J Optim 16:170-192, 2005) or the improved Wolfe line search of Dai and Kou (SIAM J Optim 23:296-320, 2013). Under the improved Wolfe line search the global convergence of these algorithms is established. By using 80 unconstrained optimization test problems, with different structures and complexities, it is proved that the performances of the self-scaling memoryless algorithms with the approximate or the improved Wolfe line searches are better than the performances of the same algorithms with the standard Wolfe line search. For all procedures for the stepsize computation using the standard, the approximate, or the improved Wolfe line search, the performances of the self-scaling memoryless algorithms based on the determinant or on the trace of the iteration matrix are similar. Using the standard, the approximate or the improved Wolfe line search, the performances of the self-scaling memoryless algorithms based on the determinant or on the trace of the iteration matrix or on minimizing the measure function are better that those of CG-DESCENT with Wolfe or with the approximate Wolfe line search of Hager and Zhang (SIAM J Optim 16:170-192, 2005). For all three procedures for stepsize computation using the standard, the approximate or the improved Wolfe line search, the self-scaling memoryless algorithm based on minimizing the measure function of Byrd and Nocedal is top performer versus the same algorithms based

¹ Dr. Neculai Andrei is full member of Academy of Romanian Scientists.

The numerical results presented in this Technical Report are obtained with CG3x8.for package which is a modification of the CG-DESCENT (version 1.4) package implementing a conjugate gradient algorithm. CG3x8 implements three line searches: standard Wolfe, approximate Wolfe and improved Wolfe, with eight conjugate gradient methods: Hager and Zhang, Minim DETERMINANT (same as Dai and Kou), Minim TRACE, Minim measure function FI of Byrd and Nocedal, Hestenes and Stiefel, Dai and Yuan, Polak, Ribiere and Polyak, Combination trace & log(det).
on the determinant or on the trace of the iteration matrix.

Mathematics Subject Classification (2000) 49M37, 90C30

1 Introduction

For solving large-scale unconstrained optimization problems the best very well known methods are the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) [1-4] and the nonlinear conjugate gradient. The relationship between these two methods was given by Perry [5] and Shanno [6], who introduced the self-scaling memoryless BFGS method. For convex quadratic functions, if the line search is exact and if for the initial approximation to the Hessian matrix the identity matrix is used, then both the BFGS and the self-scaling memoryless BFGS will generate the same iterations as the conjugate gradient methods. For general nonlinear functions Shanno [6] proved that the conjugate gradient methods are precisely the BFGS quasi-Newton method, where the approximation to the inverse Hessian is restarted as the identity matrix at every step. Based on the self-scaling memoryless BFGS method by Perry and Shanno, Hager and Zhang [7, 8] and Dai and Kou [9] introduced two new conjugate gradient algorithms, called CG-DESCENT and CGOPT, respectively. Intensive numerical experiments proved that these two conjugate gradient methods are more efficient and more robust than the self-scaling memoryless BFGS method.

More exactly, if at every step the approximation to the inverse Hessian is restarted as a scaled identity matrix with a parameter, then the Perry-Shanno search direction is obtained which is dependent by the scaling parameter. Using an aggressive modification of the Perry-Shanno search direction by deleting its last term and selecting for the scaling parameter the value suggested by Oren and Spedicato [10], then the CG-DESCENT conjugate gradient is obtained. Some other conjugate gradient methods were suggested by considering other values for the scaling parameter, as those given by Oren [11], or Oren and Luenberger [12] or Al-Baali [13]. However, in this class of conjugate gradient algorithms, CG-DESCENT proved to be the best. Another approach, developed by Dai and Kou [9] was to seek the conjugate gradient direction that is closest to the Perry-Shanno search direction. Thus, Dai and Kou introduced a general family of conjugate gradient algorithms with a scaling parameter. If for this scaling parameter the value suggested by Oren and Luenberger is selected, than the CGOPT conjugate gradient algorithm is obtained. It is worth saying that the value of the scaling parameter suggested by Oren and Spedicato and used to get CG-DESCENT conjugate gradient algorithm is obtained by minimizing the condition number of $H_k^{-1}H_{k+1}$, where H_k is the approximation to the inverse Hessian. On the other hand, the value of the scaling parameter given by Oren and Luenberger and used to get CGOPT conjugate gradient algorithm is obtained by reducing the condition number of the matrix $H_k^{-1/2}V^2 f(x_k)H_k^{1/2}$. Observe that these values for the scaling parameters are obtained by using the singular values of the corresponding matrices.

In this paper we present another approach to determine the value of the scaling parameter in the search direction which is closest to the Perry and Shanno’s. In this approach we suggest three procedures for computing the scaling parameter based on the clustering the spectrum of the iteration matrix corresponding to the search direction, or based on the measure function of Byrd and Nocedal [14]. In the first procedure, the value of the scaling parameter is determined by using the determinant of the self-scaling memoryless BFGS iteration matrix. The second one is based
on the trace of the same matrix. Finally, in the third procedure the value of the scaling parameter is obtained by minimizing the measure function of Byrd and Nocedal. It is proved that the first procedure based on the determinant of the iteration matrix leads to the CGOPT conjugate gradient of Dai and Kou. The others are new.

As it is known, in conjugate gradient algorithms the procedure for the stepsize computation is crucial. It is common to see that in conjugate gradient algorithms the search directions tend to be poorly scaled and as a consequence the line search procedure must perform more function and gradient evaluations in order to obtain a suitable stepsize. In other words, in conjugate gradient algorithm the stepsizes differ from 1 in a very unpredictable way [15]. They can be larger or smaller than 1 depending on how the problem is scaled. This is in very sharp contrast to the Newton or quasi-Newton methods, including the limited memory methods, which accept the unit stepsize most of the time along the iterations, and therefore usually they require only few function evaluations per search direction. Subject to the stepsize computation, in order to get more efficient and robust conjugate gradient algorithms two new procedures based on the Wolfe conditions have been developed. The first is the approximate Wolfe line search introduced by Hager and Zhang in CG-DESCENT [7, 8]. The second one is the improved Wolfe line search given by Dai and Kou in CGOPT [9].

The structure of the paper is as follows. For completeness, in Section 2 we present the Dai-Kou family of self-scaling memoryless BFGS quasi-Newton methods [9]. Both the CG-DESCENT and the CGOPT algorithms are particularized from the search direction closest to the Perry and Shanno self-scaling memoryless BFGS search direction. The main contribution of this paper is given in Section 3, where three new procedures for computing the scaling parameter in the search direction closest to the Perry and Shanno’s are developed. The first two are based on clustering the eigenvalues of the self-scaling memoryless BFGS iteration matrix, and the third one is based on minimizing the measure function of Byrd and Nocedal. In Section 4 some comments on the approximate Wolfe line search and on the improved Wolfe line search are described. Both for strongly convex functions or for general nonlinear functions, the convergence of the self-scaling memoryless BFGS algorithms with the improved Wolfe line search is proved under the classical assumptions. Section 5 is devoted to present the numerical results with these algorithms on a set of 80 large-scale unconstrained optimization test functions, of different structures and complexities, under the standard Wolfe line search, the approximate Wolfe line search by Hager and Zhang [7] and the improved Wolfe line search by Dai and Kou [9], respectively. The numerical comparisons among these algorithms showed that for all procedures for stepsize computation, the performances of the suggested algorithms based on clustering the eigenvalues of the self-scaling memoryless BFGS iteration matrix \(H_{k+1}\) using the determinant or the trace of \(H_{k+1}\) are similar. For the standard, the approximate or the improved Wolfe line searches, the self-scaling memoryless BFGS algorithms based on minimizing the measure function of Byrd and Nocedal is more efficient and more robust versus the algorithms based on the determinant or on the trace of \(H_{k+1}\). Under the standard, the approximate or the improved Wolfe line search, the performances of the suggested algorithms based on the determinant or on the trace of the iteration matrix \(H_{k+1}\), or based on minimizing the measure function defined by Byrd and Nocedal, are substantially better that those of CG-DESCENT with Wolfe or with the approximate Wolfe line search.

2 The Dai-Kou Family of Self-Scaling Memoryless Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton Methods
Let us consider the unconstrained optimization problem

$$\min_{x \in \mathbb{R}^n} f(x),$$

where $f : \mathbb{R}^n \to \mathbb{R}$ is a real valued, twice differentiable function f of n variables with known gradient $g(x) = \nabla f(x)$. Suppose that f satisfies the following assumption.

Assumption 2.1: f is bounded below and its gradient g is Lipschitz continuous, namely there exists a constant $L > 0$ such that $\|g(x) - g(y)\| \leq L \|x - y\|$, for any $x, y \in \mathbb{R}^n$, where $\|$ stands for the Euclidian norm.

As we know, given the initial point x_0, the iterations of the quasi-Newton methods are generated in the following form

$$x_{k+1} = x_k + \alpha_k d_k, \quad k = 0, 1, \ldots,$$

where $d_k \in \mathbb{R}^n$ is the search direction along which the values of function f are reduced, and $\alpha_k \in \mathbb{R}$ is the stepsize determined by a line search procedure. Often, for determination of the stepsize, the standard Wolfe line search conditions [16, 17] are used:

$$f(x_k + \alpha_k d_k) \leq f(x_k) + \rho \alpha_k g_k^T d_k,$$

$$g(x_k + \alpha_k d_k)^T d_k \geq \sigma g_k^T d_k,$$

where $0 < \rho < \sigma < 1$. The search directions in the quasi-Newton methods are computed as

$$d_k = -\tilde{H}_k g_k,$$

where $\tilde{H}_k \in \mathbb{R}^{n \times n}$ is an approximation to the inverse Hessian of the minimizing function. At the iteration k, the approximation \tilde{H}_k to the inverse Hessian is updated to achieve \tilde{H}_{k+1} as a new approximation to the inverse Hessian in such a way that \tilde{H}_{k+1} satisfies a particular equation, namely the secant equation, which includes the second order information. The most used equation is the standard secant equation

$$\tilde{H}_{k+1} y_k = s_k,$$

where $s_k = x_{k+1} - x_k$ and $y_k = g_{k+1} - g_k$.

Given the initial approximation \tilde{H}_0 to the inverse Hessian, as an arbitrary symmetric and positive definite matrix, the most known quasi-Newton updating formula is the BFGS update

$$\tilde{H}_{k+1} = \tilde{H}_k - \frac{s_k y_k^T \tilde{H}_k + \tilde{H}_k y_k s_k^T}{y_k^T s_k} + \left(1 + \frac{y_k^T \tilde{H}_k y_k}{y_k^T s_k}\right) \frac{s_k s_k^T}{y_k^T s_k}.$$
The self-scaling memoryless BFGS method of Perry [5] and Shanno [6] is obtained by updating the scaled identity matrix \((1/\tau_k)I\) by the BFGS updating formula (7), i.e. by considering in (7) \(\bar{H}_k = (1/\tau_k)I\), where \(I\) is the \(n \times n\) identity matrix and \(\tau_k\) is a scaling parameter. Therefore, the search direction in the self-scaling memoryless BFGS method is computed as

\[
d_{k+1} = -H_{k+1}g_{k+1},
\]

where

\[
H_{k+1} = \frac{1}{\tau_k} \left(I - \frac{y_k g_{k+1}^T + y_k s_k^T}{y_k^T s_k} \right) + \left(1 + \frac{1}{\tau_k} y_k^T s_k \right) \frac{s_k s_k^T}{y_k^T s_k},
\]

and \(\tau_k\) is the scaling parameter. Now, substituting (9) in (8), the self-scaling memoryless BFGS search direction of Perry and Shanno (with a multiplier difference) is obtained as

\[
d_{k+1}^{PS} = -g_{k+1} + \left[\frac{y_{k+1}^T y_k}{y_k^T d_k} \right] \left(\tau_k + \frac{\|y_k\|^2}{y_k^T s_k} \right) s_k + \left(\frac{g_{k+1}^T s_k}{y_k^T s_k} \right) s_k y_k.
\]

Thus, subject to the parameter \(\tau_k\), a family of the Perry-Shanno self-scaling memoryless BFGS quasi-Newton methods is obtained. To this end the following particularizations of the search direction \(d_{k+1}^{PS}\) may be considered.

1) Having in view that \(s_k = \alpha_k d_k\), the deletion of the last term in (10) gives the following search direction

\[
d_{k+1} = -g_{k+1} + \left[\frac{y_{k+1}^T y_k}{y_k^T d_k} \right] \left(\tau_k + \frac{\|y_k\|^2}{y_k^T s_k} \right) s_k d_k.
\]

Now, if \(\tau_k\) is selected as the value given by Oren and Spedicato [10]

\[
\tau_{OS}^k = \frac{\|y_k\|^2}{y_k^T s_k},
\]

then (11) reduces to the very well known conjugate gradient algorithm CG-DESCENT proposed by Hager and Zhang [7]:

\[
d_{k+1} = -g_{k+1} + \beta_k^{CG-DESCENT} d_k,
\]

where

\[
\beta_k^{CG-DESCENT} = \frac{g_{k+1}^T y_k}{y_k^T d_k} - 2 \frac{\|y_k\|^2}{y_k^T s_k} \frac{g_{k+1}^T s_k}{y_k^T d_k}.
\]

To establish the global convergence, for general nonlinear functions, the conjugate gradient parameter (14) is truncated as
\[
\beta_k^{\text{CG-DESCENT}} = \max \left\{ \frac{g_{k+1}^T y_k}{y_k^T d_k}, -2 \frac{y_k^T g_{k+1}^T s_k}{y_k^T s_k y_k^T d_k}, -\frac{1}{\|d_k\|\min\{\eta, \|s_k\|\}} \right\},
\]
(15)

where \(\eta > 0 \) is a constant (\(\eta = 0.0001 \)) (see [7]).

The numerical experiments showed that CG-DESCENT is more efficient and more robust than the self-scaling memoryless BFGS method given by (10) [9].

Some other proposals for the parameter \(\tau_k \) in (11) were given by Oren and Luenberger [12] as

\[\tau_k^{\text{OL}} = \frac{y_k^T s_k}{\|s_k\|}\]
(16)

and by Al-Baali [13]

\[\tau_k^{\text{B1}} = \min \left\{ 1, \frac{\|y_k\|^2}{y_k^T s_k} \right\} \quad \text{and} \quad \tau_k^{\text{B2}} = \min \left\{ 1, \frac{y_k^T s_k}{\|s_k\|} \right\}.\]
(17)

For a general nonlinear convex objective function, Nocedal and Yuan [18] proved the global convergence of the self-scaling BFGS method with \(\tau_k \) given by (16) and with Wolfe line search. They also presented results indicating that the unscaled BFGS method in general is superior to the self-scaling BFGS with \(\tau_k \) given by (16). Also, the proposals (17) for \(\tau_k \), analyzed by Al-Baali, ensure global convergence of the self-scaling BFGS method which is competitive with the unscaled BFGS method.

2) Observe that (10) is a three-term conjugate gradient algorithm. A more reasonable way to deal with the last term in (10) was suggested by Dai and Kou [9] who proposed to seek the search direction as a vector on the manifold \(S_{k+1} = \{-g_{k+1} + \beta d_k : \beta \in \mathbb{R}\} \) that is closest to \(d_{k+1}^{PS} \). The search direction in \(S_{k+1} \) closest to \(d_{k+1}^{PS} \) is obtained as solution of the following minimization problem

\[d_{k+1} = \arg \min \left\{ \|d - d_{k+1}^{PS}\|_2 : d \in S_{k+1} \right\};\]
(18)

which is

\[d_{k+1} = -g_{k+1} + \beta_k(\tau_k)d_k,\]
(19)

where

\[\beta_k(\tau_k) = \frac{g_{k+1}^T y_k}{y_k^T d_k} - \left(\tau_k + \frac{\|y_k\|^2}{y_k^T s_k} - \frac{y_k^T s_k}{\|s_k\|^2} \right) \frac{g_{k+1}^T s_k}{y_k^T d_k}.\]
(20)

In order to avoid the non-convergence of the algorithm, similarly to Gilbert and Nocedal [19], who proved the global convergence of the PRP methods for general nonlinear functions by restricting \(\beta_k \geq 0 \), (20) is truncated, being replaced by
\[\beta_k^+ (\tau_k) = \max \left\{ \beta_k (\tau_k), \eta \frac{g_{k+1}^T d_k}{\|d_k\|^2} \right\}, \]
where \(\eta \in [0,1) \) is a parameter. \((\eta = 0.5) \) Thus, the family of Dai-Kou self-scaling memoryless BFGS quasi-Newton methods is obtained. The following result shows that the search direction given by (19) and (20) satisfies the Dai and Liao conjugacy condition [20].

Proposition 2.1 The search direction (19), where the parameter \(\beta_k (\tau_k) \) is determined by (20) satisfies the Dai and Liao conjugacy condition \(d_{k+1}^T y_k = -t_k (g_{k+1}^T s_k) \), where

\[t_k = \tau_k + \frac{y_k^T y_k}{y_k^T s_k} - \frac{s_k^T y_k}{\|s_k\|^2} \]

for any \(k \geq 0 \).

Proof From (19) and (20) by direct computation we get

\[d_{k+1}^T y_k = -d_{k+1}^T g_{k+1} = -t_k (g_{k+1}^T s_k) \]

Proposition 2.1 is a generalization of the result of Shanno [6] who proved that the conjugate gradient methods are precisely the BFGS quasi-Newton method, where the approximation to the inverse Hessian is restarted as the identity matrix at every step. In our case, at every step the approximation to the inverse Hessian is restarted as a scaled identity matrix. Therefore, (2), (19) and (20) is a conjugate gradient algorithm.

It is worth mentioning that if \(\tau_k \) in (20) is selected as \(\tau_k^{OL} \), then the CGOPT conjugate gradient algorithm of Dai and Kou [9] is obtained, where in this case the search direction is computed as

\[d_{k+1} = -g_{k+1} + \beta_k^{CGOPT} d_k, \]

where

\[\beta_k^{CGOPT} = \frac{g_{k+1}^T y_k}{y_k^T d_k} - \frac{1}{y_k^T s_k} \frac{g_{k+1}^T s_k}{y_k^T d_k}. \]

Observe that the difference between the conjugate gradient parameters of CG-DESCENT given by (14) and of the CGOPT given by (23) is the absence of the constant factor 2 in the second term of the parameter from (23). Again, the numerical experiments showed that CGOPT performs more efficiently than the self-scaling memoryless BFGS method given by (10) [9]. Observe that if the line search is exact, i.e. \(g_{k+1}^T s_k = 0 \), then the second term in (20), (or in (14), or (23)) is missing and the search direction reduces to that of Hestenes and Stiefel [21].

Dai and Kou [9, Lemma 2.1] proved that if \(y_k^T d_k > 0 \), then the search direction given by (19) and (20) satisfies
\[
g^T_{k+1}d_{k+1} \leq -\min \left\{ \tau_k \left(\frac{\|s_k\|^2}{y_k^Ts_k} \right) \left(\frac{3}{4} \right) \|g_{k+1}\|^2 \right\}.
\]

(24)

More general, if function \(f \) is continuously differentiable and bounded below, and its gradient \(g \) is Lipschitz continuous, then Dai and Kou [9, Lemma 2.2] proved that the search direction (19) where \(\tau_k \) in (20) is chosen to be any of \(\tau_{kOS}^O \), \(\tau_{kOL}^O \), \(\tau_{kB1}^B \) or \(\tau_{kB2}^B \) and \(y_k^Ts_k > 0 \), then \(g^T_{k+1}d_{k+1} \leq -c\|g_{k+1}\|^2 \), for some positive constant \(c > 0 \).

Dai and Kou [9] implemented the algorithm (2), (19) and (20) endowed with two ingredients which improve its performances. The first ingredient is an improved Wolfe line search, which avoid the numerical drawback of the first Wolfe line search condition and guarantee the global convergence of the algorithm. The second one is an adaptive restart of the algorithm along the negative gradient based on how the minimizing function is close to some quadratic function. The numerical experiments with this family of self-scaling memoryless BFGS methods, given by Dai and Kou [9], where the parameter \(\tau_k \) in (20) is chosen as \(\tau_{kOS}^O \), \(\tau_{kOL}^O \), \(\tau_{kB1}^B \) or \(\tau_{kB2}^B \), proved that the selection \(\tau_{kOL}^O \) of \(\tau_k \) is the most efficient one. With this selection of the parameter \(\tau_k \) Dai and Kou [9] showed that the algorithm (2), (19) and (20) with improved Wolfe line search is more efficient and more robust than CG-DESCENT.

3 New Conjugate Gradient Algorithms based on Self-Scaling Memoryless Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton Algorithms

The Dai-Kou family of the self-scaling memoryless BFGS quasi-Newton methods, given by (2) and (19) with (20), depends by the scaling parameter \(\tau_k \). In this section we present three different ways to choose the scaling parameter \(\tau_k \). For the very beginning observe that \(H_{k+1} \) given by (9) is symmetric and positive definite. Therefore it has \(n \) positive eigenvalues. If \(y_k^Ts_k > 0 \), which always is satisfied when the setsize is determined by the Wolfe line search, then there exists a set of mutually orthogonal unit vectors \(\{u_{k+i}^{i=0\ldots n-2}\} \) such that

\[
s_k^Tu_{k+i} = y_k^Tu_{k+i} = 0, \quad i = 1, \ldots, n-2,
\]

which leads to

\[
H_{k+1}u_{k+i} = \frac{1}{\tau_k}u_{k+i}, \quad i = 1, \ldots, n-2.
\]

Thus, the vectors \(u_{k+i} \), \(i = 1, \ldots, n-2 \), are the eigenvectors of \(H_{k+1} \) correspondent to the eigenvalues \(1/\tau_k \). Therefore, \(H_{k+1} \) given by (9) has \(n-2 \) eigenvalues all equal to \(1/\tau_k \). Let \(\lambda_k^{n-1} \) and \(\lambda_k^n \) be the two remaining eigenvalues of \(H_{k+1} \).

As we know, in a small neighborhood of the current point, the nonlinear objective function \(f \) in the unconstrained optimization problem (1) behaves like a quadratic one for which the results from the linear conjugate gradient can be applied. For faster convergence of linear conjugate gradient algorithms some approaches can be considered as follows: the presence of isolated smallest and/or largest eigenvalues of the matrix \(H_{k+1} \) as well as gaps inside the eigenvalues.
spectrum [22], clustering of the eigenvalues about one point [23] or about several points [24], or preconditioning [25]. If the matrix has a number of certain distinct eigenvalues contained in m disjoint intervals of very small length, then the linear conjugate gradient method will produce a very small residual after m iterations [26]. This is an important property of linear conjugate gradient method and we try to use it in nonlinear case. Therefore, we consider the extension of the method of clustering the eigenvalues of the matrix defining the search direction from linear conjugate gradient algorithm to nonlinear case. For this we need to compute the determinant and the trace of the self-scaling memoryless BFGS matrix H_{k+1}. After some simple algebraic manipulation from (9) we get

$$\det(H_{k+1}) = \frac{1}{\tau_k^{n-1}} \frac{\|s_k\|^2}{y_k^T s_k}$$

and

$$tr(H_{k+1}) = \frac{n-2}{\tau_k} + \left(1 + \frac{1}{\tau_k} \frac{\|y_k\|^2}{y_k^T s_k}\right) \frac{\|s_k\|^2}{y_k^T s_k}.$$

The extension of the clustering the eigenvalues from the linear case to the nonlinear one can be achieved in the following two ways.

1) The first extension of the clustering the eigenvalues from the linear case to the nonlinear one is based on the determinant of the self-scaling memoryless BFGS matrix H_{k+1} given by (9). The idea of this variant of the self-scaling memoryless BFGS algorithm is to determine τ_k by clustering the eigenvalues of H_{k+1} in a point. Since H_{k+1} has $n-2$ eigenvalues all equal to $1/\tau_k$, then imposing that the remaining eigenvalues to have the same value, i.e. $\lambda_k^{n-1} = \lambda_k^n = 1/\tau_k$, from the equality

$$\det(H_{k+1}) = \frac{1}{\tau_k^n},$$

where $\det(H_{k+1})$ is given by (25), we get

$$\tau_k = \frac{y_k^T s_k}{\|s_k\|^2}.$$

From (23) we see that this choice of τ_k, based on determinant, is exactly the choice proposed by Dai and Kou in their CGOPT algorithm [9], using the Oren and Luenberger choice [12]:

$$\frac{y_k^T s_k}{y_k^T B_k s_k},$$

with $B_k = H_k^{-1}$ for the BFGS method, where H_k is the identity matrix. Substituting (27) into (20) leads to the conjugate gradient parameter

$$\beta_{DE} = \frac{y_k^T y_k}{y_k^T s_k} \frac{\|s_k\|^2}{y_k^T s_k} \frac{s_k^T y_k}{y_k^T s_k}.$$

$$\beta_{DE} = \frac{y_k^T y_k}{y_k^T s_k} \frac{\|s_k\|^2}{y_k^T s_k} \frac{s_k^T y_k}{y_k^T s_k}.$$
and from (21) the truncated form is obtained as

$$
\beta_k^{DE} = \max \left\{ \frac{g_{k+1}^T y_k}{y_k^T d_k}, \frac{\|y_k\|^2}{\|y_k^T s_k\|^2}, \frac{g_{k+1}^T s_k}{y_k^T d_k}, \eta \frac{g_{k+1}^T d_k}{\|d_k\|^2} \right\},
$$

(29)

based on determinant. Observe that $\beta_k^{DE} = \beta_k^{CGOPT}$, i.e. the algorithm obtained by clustering the eigenvalues of the iteration matrix H_{k+1} is exactly the CGOPT algorithm of Dai and Kou. The formula (28) differs from (14) only with a constant coefficient in the second term of the Hager and Zhang method.

In the following we show that for strongly (uniformly) convex functions f the search directions (8) and (9), where τ_k is computed as in (27), satisfy the sufficient descent condition $g_k^T d_k \leq -\|g_k\|^2$ for any $k \geq 0$, where c is a positive constant. Recall that a differential function f is said to be strongly convex on a nonempty open convex set S if there exists a positive constant μ such that

$$(g(x) - g(y))^T (x - y) \geq \mu\|x - y\|^2, \text{ for any } x, y \in S,$$

where $g(x) = \nabla f(x)$.

Theorem 3.1 Suppose that the Assumption 2.1 holds. For the method (2), (8) and (9), if f is a strongly convex function on the level set $S = \{x \in \mathbb{R}^n : f(x) \leq f(x_0)\}$, and the stepsize α_k is determined by the Wolfe line search (3) and (4), then the search directions (8) and (9), where the parameter τ_k is computed as in (27), satisfy the sufficient descent condition $g_k^T d_k \leq -\|g_k\|^2$ for any $k \geq 0$, where c is a positive constant.

Proof As we know H_{k+1} given by (9) has $n - 2$ eigenvalues all equal to $1/\tau_k$, as well as λ_k^{n-1} and λ_k^n. Since $tr(H_{k+1})$ is equal to the summation of the eigenvalues of H_{k+1} and $\det(H_{k+1})$ is equal to the product of them, from (26) and (25) it is easy to see that

$$
\lambda_k^{n-1} + \lambda_k^n = \left(1 + \frac{1}{\tau_k} \frac{\|y_k\|^2}{y_k^T s_k} \right) \frac{\|s_k\|^2}{y_k^T s_k}
$$

(30)

and

$$
\lambda_k^{n-1} \lambda_k^n = \frac{1}{\tau_k} \frac{\|s_k\|^2}{y_k^T s_k}.
$$

(31)

Now, from the Assumption 2.1 we have $\|y_k\| \leq L\|s_k\|$. On the other hand, from the strong convexity of function f on S we have $\gamma_k^T s_k \geq \mu\|s_k\|^2$. Assume that $\lambda_k^n \leq \lambda_k^{n-1}$. With these, from (31) and (30) we get
\[
\lambda_k^n = \frac{1}{\tau_k} \frac{\|s_k\|^2}{y_k^T s_k} \geq \frac{1}{\tau_k} \frac{\|s_k\|^2}{y_k^T s_k (\lambda_k^{n-1} + \lambda_k^n)} = \frac{y_k^T s_k}{\tau_k (y_k^T s_k) + \|y_k\|^2}.
\]

(32)

But, from (27)
\[
\tau_k (y_k^T s_k) = \frac{(y_k^T s_k)^2}{\|s_k\|^2} \leq L^2 \|s_k\|^2.
\]

Therefore,
\[
\lambda_k^n \geq \frac{\|s_k\|^2}{L^2 \|s_k\|^2} = \frac{\mu}{2L^2}.
\]

(33)

Now, from (8) and (33), for all \(k \geq 0 \), we have
\[
d_{k+1}^T g_{k+1} = -g_k^T H_{k+1} g_{k+1} \leq -\lambda_k^n \|g_{k+1}\|^2 \leq -\frac{\mu}{2L^2} \|g_{k+1}\|^2,
\]
i.e. the search direction (8), where \(\tau_k \) is determined as in (27) satisfy the sufficient descent condition \(g_k^T d_k \leq -\|g_k\|^2 \) with \(c = \frac{\mu}{(2L^2)} \).

2) The second extension of the clustering the eigenvalues from the linear case to nonlinear one is based on the trace of the self-scaling memoryless BFGS matrix \(H_{k+1} \). Again, the idea of this variant of the self-scaling memoryless BFGS algorithm is to determine \(\tau_k \) by clustering the eigenvalues of \(H_{k+1} \) in a point, but this time using trace of \(H_{k+1} \). Since \(H_{k+1} \) has \(n-2 \) eigenvalues, all equal to \(1/\tau_k \), then imposing that the remaining eigenvalues to have the same value, i.e. \(\lambda_k^{n-1} = \lambda_k^n = 1/\tau_k \), from the equality
\[
tr(H_{k+1}) = \frac{n}{\tau_k}
\]
where \(tr(H_{k+1}) \) is given by (26) we get
\[
\tau_k = \left(2 - \frac{\|y_k\|^2}{(y_k^T s_k)^2} \right) \frac{y_k^T s_k}{\|s_k\|^2}.
\]

(34)

Now, substituting (34) into (20) leads to the conjugate gradient parameter
\[
\beta_{k}^{TR} = \frac{g_{k+1}^T y_k}{y_k^T d_k} \frac{y_k^T s_k}{\|s_k\|^2} \frac{g_{k+1}^T s_k}{y_k^T d_k},
\]

(35)

and from (21) the truncated form is obtained as
\[
\beta_k^{\text{TR}} = \max \left\{ \frac{g_k^T y_k}{y_k^T d_k} - \frac{y_k^T s_k}{\|s_k\|^2} g_k^T s_k, \eta g_k^T d_k \right\}, \quad (36)
\]

based on trace of \(H_{k+1} \).

Theorem 3.2 Suppose that the Assumption 2.1 holds. For the method (2), (8) and (9), if \(f \) is a strongly convex function on the level set \(S = \{ x \in \mathbb{R}^n : f(x) \leq f(x_0) \} \), and the stepsize \(\alpha_k \) is determined by the Wolfe line search (3) and (4), then the search directions (8) and (9), where the parameter \(\tau_k \) is computed as in (34), satisfy the sufficient descent condition \(g_k^T d_k \leq -c\|g_k\|^2 \) for any \(k \geq 0 \), where \(c \) is a positive constant.

Proof The scaling parameter \(\tau_k \) from (34) can be written as

\[
\tau_k = 2 \frac{y_k^T s_k}{\|y_k\|^2} \frac{\|y_k\|^2}{y_k^T s_k}.
\]

From (32) it is easy to see that

\[
\lambda_k^n \geq \frac{\mu\|s_k\|^2}{3L^2\|s_k\|^2 + L^2\|s_k\|^2} = \frac{\mu}{4L^2}.
\]

Now, from (8) and (37), for all \(k \geq 0 \), we have

\[
d_{k+1}^T g_{k+1} = -g_{k+1}^T H_{k+1} g_{k+1} \leq -\lambda_k^n \|g_{k+1}\|^2 \leq -\frac{\mu}{4L^2} \|g_{k+1}\|^2,
\]

i.e. the search directions (8), where \(\tau_k \) is determined as in (34) satisfy the sufficient descent condition \(g_k^T d_k \leq -c\|g_k\|^2 \) with \(c = \mu l/(4L^2) \).

3) Another possibility to determine a value for the scaling parameter \(\tau_k \) in the self-scaling memoryless BFGS method, we consider in this paper, is to minimize a combination of the determinant and the trace of the iteration matrix \(H_{k+1} \) given by (9). Byrd and Nocedal [14] introduced such a combination of \(\det(H_{k+1}) \) and \(\text{tr}(H_{k+1}) \) as the function:

\[
\phi(H_{k+1}) = \text{tr}(H_{k+1}) - \ln(\det(H_{k+1})), \quad (38)
\]

where \(\ln(.) \) denotes the natural logarithm, known as the measure function. Since \(H_{k+1} \) is positive definite, it follows that \(\phi(H_{k+1}) \) is well defined. Fletcher [27] observed that the BFGS formula can be derived by a variational argument using function \(\phi \). This is an elegant and efficient tool for analyzing the global behavior of quasi-Newton methods and now we intend to use it to generate new and efficient algorithms for unconstrained optimization. Observe that function \(\phi \) works simultaneously with trace and determinant, thus simplifying the analysis of the quasi-Newton methods. In fact, this function is a measure of matrices involving all the eigenvalues of the iteration matrix, not only the smallest and the largest as it is traditionally used in the analysis.
of the quasi-Newton methods based on the condition number of matrices (see [28–32]). Observe that this function is strictly convex on the set of symmetric and positive definite matrices and it is minimized by \(H_{k+1} = I \). Besides, it becomes unbounded as \(H_{k+1} \) becomes singular or infinite and therefore it works as a barrier function that keeps \(H_{k+1} \) positive definite.

Therefore, the idea of this variant of the self-scaling memoryless BFGS algorithm is to determine \(\tau_k \) by minimizing the measure function \(\varphi(H_{k+1}) \) of Byrd and Nocedal, defined in (38). From (25) and (26) we have

\[
\varphi(H_{k+1}) = \frac{n-2}{\tau_k} + \frac{\| s_k \|^2}{y_k^T s_k} + \frac{1}{\tau_k} \frac{\| y_k \|^2 \| s_k \|^2}{(y_k^T s_k)^2} + (n-1) \ln(\tau_k) - \ln \left(\frac{\| s_k \|^2}{y_k^T s_k} \right). \tag{39}
\]

It is easy to see that the solution of the problem \(\min \varphi(H_{k+1}) \), where \(\varphi(H_{k+1}) \) is given by (39), is the solution of the equation

\[
\frac{\partial \varphi(H_{k+1})}{\partial \tau_k} = -\frac{n-2}{\tau_k^2} - \frac{1}{\tau_k^2} \frac{\| y_k \|^2 \| s_k \|^2}{(y_k^T s_k)^2} + (n-1) \frac{1}{\tau_k} = 0,
\]

which is

\[
\tau_k = \frac{n-2}{n-1} + \frac{1}{n-1} \frac{\| y_k \|^2 \| s_k \|^2}{(y_k^T s_k)^2} > 0. \tag{40}
\]

The measure function \(\varphi(H_{k+1}) \) of Byrd and Nocedal is a special combination of the determinant and of the trace of the iteration matrix \(H_{k+1} \). Observe that the determinant in \(\varphi(H_{k+1}) \) is under the natural logarithm. Since \(H_{k+1} \) is positive definite, it follows that \(tr(H_{k+1}) > 0 \). It is quite possible that along the iterations \(\ln(\det(H_{k+1})) < 0 \), this being more harmful for minimization of \(\varphi(H_{k+1}) \). Therefore a variant of the algorithm based on minimizing the measure function \(\varphi(H_{k+1}) \) is to update the value of the parameter \(\tau_k \) using (40) only when \(\det(H_{k+1}) > 1 \), otherwise \(\tau_k \) remains to be updated by (34).

Hence, to minimize the measure function \(\varphi(H_{k+1}) \) we consider the following procedure. From (25) compute \(\det(H_{k+1}) \) with \(\tau_k \) given by (34). With this value of \(\det(H_{k+1}) \) compute:

\[
\bar{\tau}_k = \begin{cases}
2 - \frac{\| y_k \|^2 \| s_k \|^2}{(y_k^T s_k)^2} & \text{if } \det(H_{k+1}) \leq 1, \\
\frac{n-2}{n-1} + \frac{1}{n-1} \frac{\| y_k \|^2 \| s_k \|^2}{(y_k^T s_k)^2} & \text{if } \det(H_{k+1}) > 1.
\end{cases} \tag{41}
\]

Now, considering \(\tau_k = \bar{\tau}_k \) into (20) we get

\[
\beta_k^{Fl} = \frac{g_{k+1}^T y_k}{y_k^T d_k} \left(\bar{\tau}_k + \frac{\| y_k \|^2 \| s_k \|^2}{(y_k^T s_k)^2} \right) \frac{g_{k+1}^T y_k}{y_k^T d_k} \tag{42}
\]
and its truncated value

$$\beta_k^{FI^+} = \max \left\{ \frac{g_k^T y_k}{y_k^T d_k} - \left(r_k + \frac{\|y_k\|^2}{y_k^T s_k} \right) \frac{g_k^T s_k}{y_k^T d_k} \right\}, \quad (43)$$

based on minimizing the measure function of Byrd and Nocedal. Besides, based on the insights gained from the example given by Powell [33], we constrain $\beta_k^{FI^+}$ parameter to be positive, i.e.

$$\beta_k^{FI^+} = \max \{ \beta_k^{FI^+}, 0 \}. \quad (44)$$

Theorem 3.3 Suppose that the Assumption 2.1 holds. For the method (2), (8) and (9), if f is a strongly convex function on the level set $S = \{ x \in \mathbb{R}^n : f(x) \leq f(x_0) \}$, and the stepsize α_k is determined by the Wolfe line search (3) and (4), then the search directions (8) and (9), where the parameter τ_k is computed as in (40), satisfy the sufficient descent condition $g_k^T d_k \leq -c \|g_k\|^2$ for any $k \geq 0$, where c is a positive constant.

Proof Having in view that $\|y_k\| \leq L \|s_k\|$ and $y_k^T s_k \geq \mu \|s_k\|^2$, following the same procedure as in previous theorems, from (40) the quantity $\tau_k(y_k^T s_k)$ in (32) can be estimated as

$$\tau_k(y_k^T s_k) = \frac{n-2}{n-1} (y_k^T s_k) + \frac{1}{n-1} \frac{\|y_k\|^2 \|s_k\|^2}{y_k^T s_k} \leq y_k^T s_k + \frac{\|y_k\|^2 \|s_k\|^2}{y_k^T s_k} \leq \|y_k\| \|s_k\| + \frac{\|y_k\|^2 \|s_k\|^2}{\mu \|s_k\|^2} \leq \left(L + \frac{L^2}{\mu} \right) \|s_k\|^2. \quad (45)$$

Therefore, from (32), using (45) we get

$$\lambda_k^n \geq \frac{y_k^T s_k}{\tau_k(y_k^T s_k) + \|y_k\|^2} \geq \frac{\mu^2}{L^2 + \mu (L + L^2)} \cdot \quad (46)$$

Now, from (8) and (46), for all $k \geq 0$, we have

$$d_{k+1}^T g_{k+1} = -g_{k+1}^T H_{k+1} g_{k+1} \leq -\lambda_k^n \|g_{k+1}\|^2 \leq \frac{\mu^2}{L^2 + \mu (L + L^2)} \|g_{k+1}\|^2,$$

i.e. the search directions (8), where τ_k is determined as in (40) satisfy the sufficient descent condition $g_k^T d_k \leq -c \|g_k\|^2$ with $c = \mu^2 / (L^2 + \mu (L + L^2))$.

With these developments the following general self-scaling memoryless BFGS quasi-Newton algorithm may be presented.
Algorithm CGSSML (Conjugate Gradient Self-Scaling MemoryLess BFGS algorithm)

1. **Initialization.** Choose an initial point \(x_0 \in \mathbb{R}^n \). Choose the constants \(\sigma, \rho \) with \(0 < \rho < \sigma < 1 \) and \(\varepsilon > 0 \) sufficiently small. Compute \(g_0 = \nabla f(x_0) \). Set \(d_0 = -g_0 \) and \(k = 0 \)

2. **Test a criterion for stopping the iterations.** For example, if \(\| g_k \|_\infty < \varepsilon \), then stop the iterations.

3. **Compute the stepsize** \(\alpha_k > 0 \) using the Wolfe line search conditions, or some modifications of them.

4. **Update the variables** \(x_{k+1} = x_k + \alpha_k d_k \) and compute \(f_{k+1} \) and \(g_{k+1} \).

5. **Compute the scaling parameter** \(\tau_k \) using clustering the eigenvalues of the iteration matrix, or by minimizing the measure function of Byrd and Nocedal.

6. **Update the parameter** \(\beta_k \) according the values of parameter \(\tau_k \).

7. **Update the search direction** \(d_{k+1} = -g_{k+1} + \beta_k d_k \).

8. **Restart criterion.** If \(g_{k+1}^T g_k > 0.2 \| g_{k+1} \|^2 \), then set \(d_{k+1} = -g_{k+1} \).

9. Set \(k = k + 1 \) and go to step 2.

For computing the stepsize \(\alpha_k \) in step 3 of the algorithm, the Wolfe line search (3) and (4) or the approximate Wolfe line search of Hager and Zhang [7, 8], or the improved Wolfe line search of Dai and Kou [9] may be implemented, as it is described in the next section. Observe that in step 5 the parameter \(\tau_k \) may be computed using the clustering the eigenvalues of \(H_{k+1} \) by the determinant of \(H_{k+1} \) (27), or by the trace of \(H_{k+1} \) (34), or by minimizing the measure function of Byrd and Nocedal (41). In our algorithm, when the Powell restart condition is satisfied (step 8), then we restart the algorithm with the negative gradient \(-g_{k+1} \). Some other restarting procedures may be implemented in CGSSML, like \(d_{k+1}^T g_k \geq 10^{-3} \| g_{k+1} \| \| g_{k+1} \| \) of Birgin and Martínez [34], or the adaptive restarting strategy of Dai and Kou [9], but we are interesting to see the performances of CGSSML implementing the Powell restarting technique.

4 Line Search in CGSSML and Convergence Analysis

As it is known the stepsize is crucial in the efficiency of any line search algorithm like CGSSML. Usually, the Wolfe line search (3) and (4) are implemented in line search algorithms. However, in order to improve the performances of the line search algorithms the approximate Wolfe and the improved Wolfe line searches were introduced.

Hager and Zhang [7, 8] introduced the **approximate Wolfe line search**:

\[
\sigma d_k^T g_k \leq d_k^T g_{k+1} \leq (2\rho - 1)d_k^T g_k,
\]

where \(0 < \rho < 1/2 \) and \(\rho < \sigma < 1 \). This approximate line search is implemented in the CG-DESCENT algorithm. The first inequality in (47) is the same as (4). When \(f \) is quadratic, the second inequality in (47) is equivalent to (3). As shown by Hager and Zhang [7], the first Wolfe condition (3) limits the accuracy of a conjugate gradient method to the order of the square root of the machine precision, while with the approximate Wolfe line search we can achieve accuracy to the order of the machine precision. In practical computations, the first Wolfe condition (3) may never be satisfied because of the numerical errors, even for tinny values for \(\rho \). In order to avoid
the numerical drawback of the Wolfe line search, Hager and Zhang [7] introduced a combination of the original Wolfe conditions and the approximate Wolfe conditions (47). Their line search is working very well in numerical computations, but cannot guarantee the global convergence of the algorithm in theory. Details on the global convergence of the CG-DESCENT algorithm with the approximate Wolfe line search are given by Hager and Zhang [7, 8].

In order to overcome the deficiencies of the approximate Wolfe line search, Dai and Kou [9] introduced the so called improved Wolfe line search: given a constant parameter \(\varepsilon > 0 \), a positive sequence \(\{\eta_k\} \) satisfying \(\sum_{k=1}^{\infty} \eta_k < \infty \) as well as the parameters \(\rho \) and \(\sigma \) satisfying \(0 < \rho < \sigma < 1 \), Dai and Kou proposed the following modified Wolfe condition

\[
f(x_k + \alpha^k d_k) \leq f(x_k) + \min \left\{ \varepsilon \left| g_k^T d_k \right|, \rho \alpha^k g_k^T d_k + \eta_k \right\}.
\]

(48)

The line search satisfying (48) and (4) is called the improved Wolfe line search. If \(f \) is continuously differentiable and bounded below, the gradient \(g \) is Lipschitz continuous and \(d_k \) is a descent direction (i.e. \(g_k^T d_k < 0 \)), then there must exist a suitable stepsize satisfying (4) and (48), since they are weaker than the standard Wolfe conditions.

Under the improved Wolfe line search the search direction satisfies the Zoutendijk condition [35]. This condition has a crucial role in proving the convergence of the CGSSML algorithm with improved Wolfe line search.

Proposition 4.1 Suppose that the Assumption 2.1 holds. Consider the method (2) where the search direction \(d_k \) satisfies the descent condition \(g_k^T d_k < 0 \) and the stepsize \(\alpha_k \) satisfies the improved Wolfe line search conditions (4) and (48). Then

\[
\sum_{k \geq 1} \frac{(g_k^T d_k)^2}{\|d_k\|^2} < \infty.
\]

(49)

Proof Like in [9] from the Lipschitz continuity and (4) we can write

\[
L \alpha_k \|d_k\|^2 \geq (g_{k+1} - g_k)^T d_k \geq (\sigma - 1) g_k^T d_k.
\]

Therefore

\[
\alpha_k \geq \frac{\sigma - 1}{L} \frac{g_k^T d_k}{\|d_k\|^2}.
\]

(50)

From (48) we have

\[
f_{k+1} \leq f_k + \min \left\{ \varepsilon \left| g_k^T d_k \right|, \rho \alpha^k g_k^T d_k + \eta_k \right\} \leq f_k + \rho \alpha^k g_k^T d_k + \eta_k.
\]

Now, from (50) we get

\[
f_k - f_{k+1} + \eta_k \geq c \frac{(g_k^T d_k)^2}{\|d_k\|^2},
\]

(51)
where \(c = \rho (1 - \sigma) / L \). Since \(f \) is bounded below, summing (51) over \(k \) and having in view that the sequence \(\{ \eta_k \} \) satisfies \(\sum_{k \geq 1} \eta_k < \infty \) it follows that (49) holds.

For strongly convex functions, the following theorem proves the global convergence of the algorithm (2), (19) and (20), where the scaling parameter \(\tau_k \) is chosen as in (27), (34) or (40), under the improved Wolfe line search.

Theorem 4.1 Suppose that the Assumption 2.1 holds. Consider the algorithm (2) in which the search direction is defined by (19) and (20), where \(\tau_k \) is chosen to be in (27), (34) or (40) and the stepsize \(\alpha_k \) is determined by the improved Wolfe line search (4) and (48). If the function \(f \) is strongly convex, then the algorithm CGSSML is globally convergent, i.e. \(\lim_{k \to \infty} \| g_k \| = 0 \).

Proof From the Assumption 2.1 and the strong convexity of function \(f \) it follows that \(\| y_k \| \leq L \| s_k \| \) and \(\gamma_k^T s_k \geq \mu \| s_k \|^2 \). Therefore, for any \(\tau_k \) given by (27), (34) and (40), there exists a positive constant \(c_\gamma \) such that \(|\tau_k| \leq c_\gamma \). From (19) and (20) we have

\[
\| d_{k+1} \| \leq \| g_{k+1} \| + \frac{\| s_{k+1}^T y_k \|}{\| y_k \| \| d_k \|} \| d_k \| + \| \tau_k \| + \frac{\| y_k \|}{\gamma_k^T s_k} \| s_k \|^2 \leq \| g_{k+1} \| + \frac{\| s_{k+1} \|}{\mu \| s_k \|} \| s_k \| + \left(\gamma_k + \frac{\| \gamma_k \|}{\mu \| s_k \|} \| s_k \| \right) \| g_{k+1} \| \| s_k \| \\
\leq \left(1 + \frac{\gamma_k^2 + 2L \| s_k \|^2}{\mu^2} \right) \| g_{k+1} \|. \tag{52}
\]

On the other hand, since from the Theorems 3.1-3.3 for any \(\tau_k \) given by (27), (34) or (40) the search direction (19) and (20) satisfies the sufficient descent condition, it follows that

\[
\sum_{k \geq 1} \frac{\| g_k \|^2}{\| d_k \|^2} < \infty. \tag{53}
\]

By (52) and (53) we get

\[
\sum_{k \geq 1} \| g_k \|^2 < \infty,
\]

which implies that \(\lim_{k \to \infty} \| g_k \| = 0 \).

For general nonlinear functions, the global convergence of the algorithm (2) with (19) and (20), where the scaling parameter \(\tau_k \) is chosen as in (27), (34) or (40) under the improved Wolfe line search follows the methodology given by Gilbert and Nocedal [19]. Dai and Kou [9] proved that if function \(f \) satisfies the Assumption 2.1 and there exists \(\gamma > 0 \) such that \(\| g_k \| \geq \gamma \) for any \(k \geq 1 \), then for the family of conjugate gradient algorithms given by (2), in which the search
direction d_{k+1} is computed as in (19) and (20), and the stepsize α_k is determined by the improved Wolfe line search (4) and (48), then $d_k \neq 0$ and

$$\sum_{k \geq 2} \|u_k - u_{k-1}\|^2 < \infty,$$

(54)

where $u_k = d_k / \|d_k\|$.

This result, similar to Lemma 4.1 in [19], is used for proving the global convergence of the CGSSML algorithm with improved Wolfe line search. For this in the following proposition we prove that $\beta_k(\tau_k)$ in (20) has Property (*) defined in [19] (see also [36]).

Proposition 4.2 Suppose that the Assumption 2.1 holds. Consider the family of conjugate gradient algorithms given by (2) in which the search direction d_{k+1} is computed as in (19) and (20) and the stepsize α_k is determined by the improved Wolfe line search (4) and (48). If the sequence $\{x_k\}$ generated by the algorithm CGSSML is bounded and if τ_k is chosen as in (27), (34) or (40), then $\beta_k(\tau_k)$ in (20) has Property (*).

Proof The proof follows by contradiction, like in [9]. Suppose that $\|g_k\| \geq \gamma$ for any $k \geq 1$. From continuity of the gradient and the boundedness of $\{x_k\}$ it follows that there exists a positive constant $\overline{\gamma}$ such that

$$\|x_k\| \leq \overline{\gamma}, \quad \|g_k\| \leq \overline{\gamma}, \text{ for any } k \geq 1.$$

(55)

From (4) it follows that

$$g_k^T d_k \geq \sigma g_k^T d_k.$$

(56)

From Theorems 3.1 – 3.3 it follows that for any values of τ_k given by (27), or (34), or (40) we have $g_k^T d_k \leq -c\|g_k\|^2$, where c is a constant. Therefore, from (56) we get

$$d_k^T y_k = d_k^T g_{k+1} - d_k^T g_k \geq -(1-\sigma)d_k^T g_k \geq c(1-\sigma)\gamma^2.$$

(57)

Now, from (56) and since $g_k^T d_k < 0$, it follows that

$$\frac{\sigma}{\sigma - 1} \leq \frac{g_{k+1}^T d_k}{d_k^T y_k} \leq 1.$$

(58)

As it was proved in Theorems 3.1 – 3.3, it is easy to see that for any values of τ_k given by (27), or (34), or (40) there exists a positive constant c_τ such that

$$\left|\tau_k (y_k^T s_k)\right| \leq c_\tau \|s_k\|^2,$$

(59)

for any $k \geq 1$.

It is easy to see that $\beta_k(\tau_k)$ from (20) can be written as

...
\[
\beta_k(\tau_k) = \frac{g_{k+1}^T y_k}{d_k^T y_k} \left(1 - \frac{(d_k^T y_k)^2}{\|d_k\|^2 \|y_k\|^2}\right) \frac{\|y_k\|^2}{d_k^T y_k} \frac{g_{k+1}^T d_k}{d_k^T y_k} - \frac{\tau_k (y_k^T s_k) g_{k+1}^T d_k}{d_k^T y_k}.
\]
(60)

Observe that \(\|y_k\| \leq L \|s_k\|\) and \(0 \leq (d_k^T y_k)^2 \leq \|d_k\|^2 \|y_k\|^2\), for any \(k \geq 1\). Since by (55), \(\|x_k - x_{k+1}\| \leq \|x_{k+1}\| + \|x_k\| \leq 2\overline{f}\), using (57), (59) and (60) we get that there exists a constant \(c_\beta > 0\) such that for any \(k \geq 1\),
\[
|\beta_k(\tau_k)| \leq c_\beta \|s_k\|.
\]
(61)

Now, like in [19] define \(b = 2c_\beta \overline{f}\) and \(\lambda = 1/(2c_\beta^2 \overline{f})\). From (61) and (55) it follows that for all \(k \geq 1\) we have that
\[
|\beta_k(\tau_k)| \leq b,
\]
(62)

and
\[
\|y_k\| \leq \lambda \Rightarrow |\beta_k(\tau_k)| \leq \frac{1}{b}.
\]
(63)

Therefore, (62) and (63) show that \(\beta_k(\tau_k)\) defined by (20) has Property (*) (see [19]).

Theorem 4.2 Suppose that the Assumption 2.1 holds. Consider the algorithm (2) in which the search direction is defined by (19) and (20), where \(\tau_k\) is chosen to be as in (27), (34) or (40) and the stepsize \(\alpha_k\) is determined by the improved Wolfe line search (4) and (48). If the sequence \(\{x_k\}\) generated by the algorithm CGSSML is bounded, then the algorithm is global convergent, i.e. \(\liminf_{k \to \infty} \|g_k\| = 0\).

Proof By contradiction suppose that \(\|g_k\| \geq \gamma\) for any \(k \geq 1\). Since \(-g_k^T d_k \geq c \|g_k\|^2\) for some positive constant \(c > 0\) and for any \(k \geq 1\), from Zoutendijk condition (49) it follows that
\[
\|d_k\| \to +\infty.
\]
(64)

From the continuity of the gradient, it follows that there exists a positive constant \(\overline{f}\) such that \(\|g_k\| \leq \overline{f}\), for any \(k \geq 1\). By (21), (64) means that \(\beta_k(\tau_k)\) can only be less than \(\eta \frac{g_{k+1}^T d_k}{\|d_k\|^2}\) for finite times, since otherwise, we have that
\[
\|d_{k+1}\| = -g_{k+1} + \frac{\eta g_{k+1}^T d_k}{\|d_k\|^2} d_k \leq (1 + \eta) \|g_{k+1}\| \leq (1 + \eta)\overline{f}
\]
for infinite \(k\)’s and therefore we get a contradiction with (64). Hence, we can suppose that along the iterations \(\beta_k(\tau_k) = \beta_k(\tau_k)\) for sufficiently large \(k\). With this, from (54) and Lemma 4.2 in [19] and the boundedness of the sequence \(\{x_k\}\), we get a contradiction similarly to the proof of Theorem 4.3 in [19]. This contradiction shows that \(\lim_{k \to \infty} \|g_k\| = 0\).
\[\blacksquare\]
5 Numerical Results and Comparisons

In this section we report some numerical results of the CGSSML algorithm for solving large-scale unconstrained optimization problems. Algorithm CGSSML was implemented by modifying the CG-DESCENT code (Fortran version 1.4) of Hager and Zhang [8] in order to incorporate the self-scaling memoryless BFGS algorithms in which the conjugate gradient parameter β_k in the search direction is computed by clustering the eigenvalues of the iteration matrix H_{k+1} or by minimizing the measure function of Byrd and Nocedal, presented in Section 3, and respectively with the standard Wolfe or with the approximate Wolfe or with the improved Wolfe line searches, discussed in Section 4.

Remark: Notice that, the algorithm CGSSML can be implemented by modifying the most recent C version 6.8 of CG-DESCENT code of Hager and Zhang [37], i.e. the preconditioned CG-DESCENT, where a limited memory conjugate gradient algorithm is used: L-CG-DESCENT. However, in this paper we do not implement CGSSML into the frame of L-CG-DESCENT because our interest here is to see the performances of β_k^{DE}, β_k^{TR} and β_k^{FI} subject to different line search conditions, for solving large-scale unconstrained optimization problems, without any ingredients like: preconditioning, limited memory or adaptive restart of the algorithm.

The algorithms compared in this section are as follows: DESW, DEAW and DEIW, i.e. CGSSML algorithm with β_k^{DE} given by (29) and with the standard Wolfe line search (3) and (4), with the approximate Wolfe line search of Hager and Zhang given by (47), with the improved Wolfe line search of Dai and Kou (48) and (4), respectively. TRSW, TRAW and TRIW, i.e. CGSSML algorithm with β_k^{TR} given by (36) and with the standard Wolfe line search (3) and (4), with the approximate Wolfe line search of Hager and Zhang given by (47), with the improved Wolfe line search of Dai and Kou (48) and (4), respectively. FISW, FIAW and FI IW, i.e. CGSSML algorithm with β_k^{FI} given by (44) and with the standard Wolfe line search (3) and (4), with the approximate Wolfe line search of Hager and Zhang given by (47), with the improved Wolfe line search of Dai and Kou (48) and (4), respectively. The code is compiled with f77 (default compiler settings) on a Workstation Intel Pentium 4 with 1.8 GHz. We selected a number of 80 large-scale unconstrained optimization test functions in generalized or extended form [38]. In this collection, some problems are quadratic and some of them are highly nonlinear. The problems are presented in extended (separable) or generalized (chained) form. The Hessian for the problems in extended form has a block-diagonal structure. On the other hand, the Hessian for the problems in generalized form has a banded structure with small bandwidth, often being tri- or penta-diagonal. For some other optimization problems from this set, the corresponding Hessian has a sparse structure or it is a dense (full) matrix. The vast majority of the optimization problems included in our collection described in [38] is taken from CUTEr collection [39]. For each test function, we have taken 10 numerical experiments with the number of variables $n = 1000, 2000, \ldots, 10,000$. The parameters in the standard Wolfe line searches are $\rho = 0.0001$ and $\sigma = 0.8$. All the algorithms use the same stopping criterion $\|g_k\|_\infty \leq 10^{-6}$, where $\|\cdot\|_\infty$ is the maximum absolute component of a vector, or when the number of iterations exceeds 2000 iterations. The rest of parameters are the same defined in CG-DESCENT by Hager and Zhang [8] and Algorithm 4.1 of Dai and Kou [9]. In all algorithms, we considered in our numerical experiments, the Powell restart criterion, described in step 8 of the CGSSML algorithm, is used.
The algorithms which we compare in these numerical experiments find local solutions. Therefore, the comparisons of the algorithms are given in the following context. Let \(f_i^{\text{ALG}1} \) and \(f_i^{\text{ALG}2} \) be the optimal value found by ALG1 and ALG2 for problem \(i = 1, \ldots, 80 \), respectively. We say that, in the particular problem \(i \), the performance of ALG1 was better than the performance of ALG2 if:

\[
|f_i^{\text{ALG}1} - f_i^{\text{ALG}2}| < 10^{-3}
\]

(65)

and if the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the CPU time of ALG1 was less than the number of iterations, or the number of function-gradient evaluations, or the CPU time corresponding to ALG2, respectively. The performances of the algorithms are displayed by the Dolan and Moré performance profiles [40].

It is worth emphasizing that in our numerical experiments we compare algorithms included in CGSSML versus CG-DESCENT version 1.4. The idea was to see the performances of the algorithms using \(\beta_k^{DE^+} \) given by (29), \(\beta_k^{TR^+} \) given by (36), \(\beta_k^{FT^+} \) given by (44) and \(\beta_k^{CG-DESCENT^+} \) given by (15) without any other ingredients included in the limited memory conjugate gradient algorithm proposed by Hager and Zhang [37], or in the CGOPT by Dai and Kou [9]. Our interests were to see the power the conjugate gradient parameters \(\beta_k^{DE^+} \), \(\beta_k^{TR^+} \), \(\beta_k^{FT^+} \), and \(\beta_k^{CG-DESCENT^+} \) with different line searches for solving large-scale unconstrained optimization problems.

In the first set of numerical experiments we compare the performance of CGSSML algorithms with standard Wolfe line search, namely DESW versus TRSW, DESW versus FISW and TRSW versus FISW for solving the set of problems considered in this numerical study. Figure 1 shows the Dolan and Moré CPU performance profiles of these algorithms. When comparing DESW versus TRSW subject to the CPU time metric we see that DESW is top performer. Comparing DESW versus TRSW (see Fig. 1), subject to the number of iterations, we see that DESW was better in 250 problems (i.e. it achieved the minimum number of iterations in 250 problems). TRSW was better in 143 problems and they achieved the same number of iterations in 370 problems, etc. Out of 800 problems, only for 763 problems does the criterion (65) holds. Observe that DESW and TRSW have similar performances, DESW being slightly more efficient and more robust. It seems that from the viewpoint of clustering of the eigenvalues of \(H_{k+1} \) using the determinant or the trace of the iteration matrix leads to algorithms with similar performances. From Figure 1 we see that FISW is top performer versus DESW and versus TRSW. This is because the FISW algorithm is based on an ad hoc procedure for minimizing a special combination of the determinant and of the trace of the iteration matrix \(H_{k+1} \).

In the second set of numerical experiments we compare DESW, TRSW and FISW versus CG-DESCENT (version 1.4) with truncated conjugate gradient parameter (15) and with standard Wolfe line search (3) and (4). CG-DESCENT was devised in order to ensure sufficient descent,
independent of the accuracy of the line search. In CG-DESCENT the search direction (13), where the conjugate gradient parameter is computed as in (14), satisfies the sufficient descent condition $g_k^T d_k \leq - (7/8) \|g_k\|^2$, provided that $y_k^T d_k \neq 0$. The search directions in CG-DESCENT do not satisfy the conjugacy condition. When iterates jam the expression $\|y_k\|^2 (g_{k+1}^T s_k) / (y_k^T s_k)^2$ in (14) becomes negligible. If the minimizing function f is quadratic and the line search is exact, then CG-DESCENT reduces to the Hestenes and Stiefel algorithm [21]. Figure 2 presents the Dolan and Moré performance profiles of these algorithms. Form Figure 2 we see that DESW, TRSW and FISW are top performers versus CG-DESCENT and the differences are significant. Since all these algorithms use the same line search based on Wolfe conditions (3) and (4), it follows that DESW, TRSW and FISW generates a better search direction. Notice that the difference between DESW and CG-DESCENT is only in a constant coefficient of the second term of the Hager and Zhang method. Besides, the truncation mechanisms in these algorithms are different and this explains the differences between these algorithms.

In the third set of numerical experiments we compare the performance of CGSSSML algorithms with approximate Wolfe line search, namely DEAW versus TRAW, DEAW versus FIAW and TRAW versus FIAW for solving the set of problems we considered in this numerical study. Figure 3 presents the Dolan and Moré performance profiles of these algorithms. From Figure 3 we see that both DEAW and TRAW have similar performances. However, FIAW is top performer versus both DEAW and TRAW.

In the fourth set of numerical experiment we compare DEAW, TRAW and FIAW versus CG-DESCENT with truncated conjugate gradient parameter (15) and with approximate Wolfe line search (47) (CG-DESCENTa). The CG-DESCENTa algorithm of Hager and Zhang [7, 8] implements advanced features of line search including: an approximation to the Wolfe line search
condition that can be evaluated with a greater accuracy, a special secant procedure that leads to a rapid and accurate reduction in the width of the interval bracketing the stepsize, and a quadratic step that retains the \(n \)-step quadratic convergence property of the algorithm [41]. Figure 4 shows the performances of these algorithms. Observe that all DEAW, TRAW and FIAW are top performers versus CG-DESCENTa. The greatest difference is between FIAW and CG-DESCENTa.

![Fig. 4 Performance profiles of DEAW, TRAW and FIAW versus CG-DESCENTa](image)

In the fifth set of numerical experiments we compare the performance of CGSSML algorithms with improved Wolfe line search, namely DEIW versus TRIW, DEIW versus FIIW and TRIW versus FIIW for solving the set of problems considered in this numerical study. Figure 5 presents the performances of these algorithms. Both DEIW and TRIW have similar performances. Observe that FIIW is slightly top performer versus DEIW and TRIW. However, they have similar performances, at least for this set of unconstrained optimization problems considered in this paper.

![Fig. 5 Performance profiles of DEIW versus TRIW, of DEIW versus FIIW and of TRIW versus FIIW](image)

In the sixth set of numerical experiments we compare DEIW, TRIW and FIIW versus CG-DESCENT with truncated conjugate gradient parameter (15) and with Wolfe line search (3) and (4). Figure 6 shows the performances of these algorithms. We see that DEIW, TRIW and FIIW are more efficient and more robust than CG-DESCENT with Wolfe line search. We see that using the determinant, the trace or the measure function of Byrd and Nocedal, we get conjugate gradient algorithms more efficient and more robust. All these methods are based on clustering the eigenvalues of the iteration matrix \(H_{k+1} \) given by (9) with corresponding values for \(\tau_k \).
In the next set of numerical experiments we compare the performance of the CGSSML algorithms based on determinant or on trace or on minimizing the measure function of Byrd and Nocedal with different line searches. Figure 7 presents the performances of DESW versus DEAW, of DESW versus DEIW and of DEAW versus DEIW. We see that both the CGSSML algorithms based on determinant with the approximate Wolfe and with the improved Wolfe line search are more robust than the algorithm with standard Wolfe line search. The CGSSML algorithms based on determinant with approximate Wolfe and with the improved Wolfe line searches have similar performances, subject to the CPU time metric.

Figure 8 shows the performances of TRSW versus TRAW, of TRSW versus TRIW and of TRAW versus TRIW. We see that both the CGSSML algorithms based on trace with the approximate Wolfe and with the improved Wolfe line search are more robust than the algorithm with standard Wolfe line search. Again the CGSSML algorithms based on trace with the approximate Wolfe and with the improved Wolfe line searches have similar performances, TRIW being slightly more efficient. In other words, the improved Wolfe line search is more efficient versus the approximate Wolfe line search, at least for this set of optimization problems.
Figure 9 shows the performances of FISW versus FIAW, of FISW versus FIIW and of FIAW versus FIIW. We see that the CGSSML algorithms based on minimizing the measure function of Byrd and Nocedal endowed with approximate Wolfe line search or with improved Wolfe line search are more robust than the algorithms with standard Wolfe line search. Besides, we have computational evidence that the algorithms minimizing the measure function with approximate Wolfe line search and with improved Wolfe line search have similar performances, FIAW being slightly more efficient.

Some remarks are in order.

1) Both the approximate Wolfe line search and the improved Wolfe line search are important ingredients for the efficiency and robustness of the self-scaling memoryless BFGS algorithms with clustering the eigenvalues. The performances of the CGSSML algorithms with approximate or improved line searches are better than the performances of the same algorithms with the standard Wolfe line search.

2) No matter how the stepsize is computed, using the standard, the approximate or the improved Wolfe line search, the performances of the CGSSML algorithms based on the determinant or on the trace of the iteration matrix H_{k+1}, or based on minimizing the measure function $\varphi(H_{k+1})$ defined by Byrd and Nocedal, are better than those of CG-DESCENT with Wolfe or with the approximate Wolfe line search.

3) For all procedures for stepsize computation using the standard, the approximate, or the improved Wolfe line search, the performances of the CGSSML algorithms based on the determinant or on the trace of the iteration matrix H_{k+1} are similar.

4) For the standard, the approximate or the improved Wolfe line searches, the self-scaling memoryless BFGS algorithms based on minimizing the measure function of Byrd and Nocedal is more efficient and more robust versus the algorithms based on the determinant or on the trace of H_{k+1}.

Both the CG-DESCENT and CGOPT are self-scaling memoryless BFGS algorithms obtained by using the singular values of some associated matrices. In our approach we followed the idea to cluster the eigenvalues of the iteration matrix, based on the determinant or on the trace of this matrix, or to minimize the measure function associated to all the eigenvalues of the iteration matrix. We conclude that the self-scaling memoryless BFGS algorithms based on minimizing the measure function of Byrd and Nocedal, which is a combination of the determinant and of the trace of the iteration matrix, are top performers versus the same algorithms based on the determinant or on the trace of the iteration matrix.
6 Conclusions

In this paper we have presented new procedures for selecting the parameter in the family of conjugate gradient algorithms of Dai and Kou [9], in which the search direction is closest to the Perry and Shanno self-scaling memoryless BFGS search direction. Three procedures have been developed. Two of them are based on clustering the eigenvalues of the self-scaling memoryless BFGS matrix H_{k+1} using the determinant or using the trace of H_{k+1}. The third one is based on minimizing the measure function of Byrd and Nocedal. The algorithm based on clustering the eigenvalues of H_{k+1} using the determinant is the same as CGOPT established by Dai and Kou [9]. The sufficient descent condition was established for all three members of the family. For stepsize computation, all these algorithms are endowed with the standard, the approximate and the improved Wolfe line search. In our numerical experiment we implemented the Powell restarting criterion. Our intensive numerical experiments showed that the algorithms using the clustering the eigenvalues of H_{k+1} based on determinant or on the trace of this matrix have similar performances. All the self-scaling memoryless BFGS algorithms endowed with the standard, or the approximate, or the improved Wolfe line search, are top performers versus the CG-DESCENT algorithm of Hager and Zhang. Besides, the self-scaling memoryless BFGS algorithm based on minimizing the measure function of Byrd and Nocedal is superior to the self-scaling memoryless BFGS algorithms based on the determinant or on the trace of the iteration matrix H_{k+1}, including here the CGOPT algorithm by Dai and Kou.

As an extension of the ideas presented in this paper, instead of minimizing the measure function $\varphi(H_{k+1})$ of Byrd and Nocedal, to determine a value for the parameter τ_k in (20) we may consider minimizing another measures function given by Dennis and Wolkowicz [42]

$$\omega(H_{k+1}) = \frac{\text{tr}(H_{k+1})}{n(\text{det}(H_{k+1}))^{1/n}}.$$ \hspace{1cm} (66)

Another possibility is to consider the self-scaling memoryless Broyden family of methods which include two parameters. We mention the possibility to implement in step 8 of CGSSML the adaptive restart criterion of Dai and Kou [9]. Finally, another extension is to implement CGSSML by modifying the most recent C version 6.8 of CG-DESCENT code of Hager and Zhang [37].

References

April 18, 2019

-----oooOooo-----
APPENDIX (Fortran program CG3x8.FOR)
c---
c January 17, 2019
c c Main program.
c c All subroutines are included.
c c The program is a modification of the CG-DESCENT of Hager and Zhang (2005)
c to include different formulae for parameter beta computation under the
three line search conditions: standard Wolfe, Approximate Wolfe and
Improved Wolfe.
c c---
c The program is that of Hager and Zhang (CG-DESCENT), where
the formula for beta computation is modified as:
c c ibeta Algorithm
 c --------------------------
c 1 Hager and Zhang (2005)
c 2 Minim DETERMINANT (Andrei, Thechnical Report No.2/2019)
c 3 Minim TRACE (Andrei, Thechnical Report No.2/2019)
c 4 Minim F1 - measure function of Byrd and Nocedal
c (Andrei, Thechnical Report No.2/2019)
c 5 Hestenes - Stiefel
 c 6 Dai - Yuan
 c 7 Polak-Ribiere-Polyak
c 8 Minim of combination of DETERMINANT and TRACE (Andrei, Thechnical
c Report No.2/2019)
 c c The algorithms are described in:
c c N. Andrei, A Conjugate Gradient Algorithms Closest to Self-Scaling
c Memoryless BFGS Method based on minimizing the Byrd-Nocedal measure
c function with Different Wolfe Line Searches for Unconstrained Optimization.
c Technical Report No.2/2019,
c April 18, 2019.
c 28 pages.
 c The program implements optimization of 80 unconstrained optimization test
 problems
described in:
c c N. Andrei, UOP - A collection of 80 unconstrained optimization test
C problems.
c Technical Report No. 7/2018, November 17,
c Research Institute for Informatics, Bucharest, Romania. (2018)
 c The functions are implemented in Fortran.
c The subroutine CG_VALUE contains the Fortran expressions of the minimizing
C functions.
c The subroutine CG_GRAD contains the Fortran expressions of the gradient of
C the minimizing functions.
c The subroutine INIPOINT contains the initial point for starting the
C optimization.
c The parameters are defined in the subroutine CG_DESCENT. (See subroutine C CG_INIT.)
c c c
parameter (maxsize = 100000)

 real*8 x (maxsize), d (maxsize), g (maxsize),
 & xtemp (maxsize), gtemp (maxsize), gnorm, f, timp

real*8 tol

logical AWolfe,IWolfe,SWolfe

integer n, status, iter, nfunc, ngrad,ibeta
integer*4 gh,gm,gs,gc, ght,gmt,gst,gct, timpexp
integer*2 iyear, imonth, iday
character*70 numef, fnumef(200)

external cg_value, cg_grad

c Input file
 open(unit=7,file='fun80.txt',status='old')

c Output files
 open(unit=8,file='fisw.out',status='unknown')
 open(unit=9,file='fisw.rez',status='unknown')

---Select the line search procedure

 SWolfe = .true.
 AWolfe = .false.
 IWolfe = .false.

*---

--- Select beta parameter

 ibeta = 1: Hager and Zhang
 ibeta = 2: Minim DETERMINANT (same as Dai and Kou)
 ibeta = 3: Minim TRACE
 ibeta = 4: Minim measure function FI (Byrd-Nocedal)
 ibeta = 5: Hestenes and Stiefel
 ibeta = 6: Dai and Yuan
 ibeta = 7: Polak, Ribiere and Polyak
 ibeta = 8: Combination trace & log(det)

 ibeta = 8

--- Range of numerical experiments

 nexpini = 1
 nexpini = 80

--- Stop rule

 StopRule = F: \|g\|_{\infty} \leq tol

 tol = 0.000001d0
write(8,90)
format(1x,52('*'))
write(8,91)
format(1x,' FCG - Fast Conjugate Gradient Project '*)
write(8,92)
call getdat(iyear, imonth, iday)
write(8,1) imonth, iday, iyear
format(1x,' Date: Month:',i2, ' Day:',i2, ' Year: ',i4,15x,'*')

if(SWolfe) write(8,111)
format(1x,' Standard Wolfe line search '*)
if(IWolfe) write(8,112)
format(1x,' Improved Wolfe line search '*)
if(AWolfe) write(8,113)
format(1x,' Approximate Wolfe line search '*)

if(ibeta .eq. 1) write(8,211)
format(1x,' Hager-Zhang conjugate gradient algorithm '*)
if(ibeta .eq. 2) write(8,212)
format(1x,' MINIM DETERMINANT conjugate gradient algorithm '*)
if(ibeta .eq. 3) write(8,213)
format(1x,' MINIM TRACE conjugate gradient algorithm '*)
if(ibeta .eq. 4) write(8,214)
format(1x,' MINIM FI conjugate gradient algorithm '*)
if(ibeta .eq. 5) write(8,215)
format(1x,' Hestenes-Stiefel conjugate gradient algorithm '*)
if(ibeta .eq. 6) write(8,216)
format(1x,' Dai-Yuan conjugate gradient algorithm '*)
if(ibeta .eq. 7) write(8,217)
format(1x,' Polak-Ribiere-Polyak conjugate gradient algorithm '*)
if(ibeta .eq. 8) write(8,218)
format(1x,' Min TRACE & DET conjugate gradient algorithm '*)
write(8,90)
do i=1,80
read(7,21) numef
fnumef(i)=numef
format(a70)
end do

Start experiments

do nexp = nexpini, nexptot
 itert = 0
 nfunct= 0
 ngradt= 0
 timp = 0
 numef = fnumef(nexp)
call printbeta(ibeta, SWolfe,AWolfe,IWolfe, numef,nexp)
write(8,19)
format(9x,'n',5x,'iter',4x,'nfunc',4x,'ngrad',2x,'time(c)',
* 15x,'f',18x,'gnorm',9x,'s')
write(8,20)
format(1x,94(' - '))

do n = 1000, 10000, 1000

c Call INIPOINT (initial guess)

call inipoint (n,x, nexp)

c Call CG_DESCENT for optimization

call gettim(gh,gm,gs,gc)

call cg_descent (tol, x, n, cg_value, cg_grad,
& status, gnorm,
& f,iter, nfunc, ngrad, d, g, xtemp, gtemp,
& SWolfe, IWolfe, AWolfe, ibeta, nexp)

call gettim(ght,gmt,gst,gct)

call exetim(gh,gm,gs,gc, ght, gmt, gst, gct)

*
timpexp = ght*360000 + gmt*6000 + gst*100 + gct

itert = itert + iter
nfunc = nfunc + nfunc
ngradt = ngradt + ngrad

timp = timp + float(timpexp)

-- *.out
write(8,51) n, iter, nfunc, ngrad, timpexp, f, gnorm,status
51 format(3x,i7,3x,i6,3x,i6,3x,i6,3x,i6,3x,i6,5x,e20.13,2x,e20.13,1x,i1)
write(*,851) n, iter, nfunc, ngrad, timpexp, f, gnorm
851 format(1x,i6,2x,i4,2x,i5,2x,i5,2x,i5,2x,i5,2x,i5,2x,i5,2x,e20.13,2x,e20.13)

-- *.rez
if(n .eq. 1000) then
 write(9,611)nexp, n,iter, nfunc, timpexp,f, gnorm
611 format(i2,i6,2x,i6,2x,i6,2x,i6,2x,i6,2x,i6,2x,i6,2x,i6,2x,5x,e20.13,2x,e20.13)
else
 write(9,61) n,iter, nfunc, timpexp,f, gnorm
61 format(2x,i6,2x,i6,2x,i6,2x,i6,2x,i6,2x,i6,2x,i6,2x,i6,2x,5x,e20.13,2x,e20.13)
end if

--
end do

write(8,20)
write(8,71) itert, nfunc, ngradt, timp/100.d0
write(*,71) itert, nfunc, ngradt, timp/100.d0
71 format(6x,'TOTAL',2x,i6,3x,i6,3x,i6,2x,i6,2x,f7.2,' (seconds) ')

end do

--
End do nexp

write(9,1)imonth, iday, iyear
stop
end
* Subroutine for execution time computation.
*
* subroutine exetim(tih,tim,tis,tic,tfh,tfm,tfs,tfc)
 *
 integer*4 tih,tim,tis,tic
 integer*4 tfh,tfm,tfs,tfc
 *
 integer*4 ch,cm,cs
 data ch,cm,cs/360000,6000,100/
 *
 ti=tih*ch+tim*cm+tis*cs+tic
 tf=tfh*ch+tfm*cm+tfs*cs+tfc
 tf=tf-ti
 tfh=tf/ch
 tf=tf-tfh*ch
 tfm=tf/cm
 tf=rf-tfm*cm
 tfs=tf/cs
 tfc=tf-tfs*cs
 *
 return
end
*

subroutine printbeta(ibeta, SWolfe,AWolfe,IWolfe,numef,nexp)
integer ibeta,nexp
character*70 numef
logical SWolfe, AWolfe, IWolfe

c---ibeta=1
 if(ibeta .eq. 1) then
 if(SWolfe) then
 write(8,11) nexp, numef
 write(*,11) nexp, numef
 format(/,2x,i3,2x,'Hager-Zhang. Standard WLS. Function:',a40,/)
 end if
 if(IWolfe) then
 write(8,12) nexp, numef
 write(*,12) nexp, numef
 format(/,2x,i3,2x,'Hager-Zhang. Improved WLS. Function:',a40,/)
 end if
 if(AWolfe) then
 write(8,13) nexp, numef
 write(*,13) nexp, numef
 format(/,2x,i3,2x,'Hager-Zhang. Approximate WLS. Function:',a40,/)
 end if
 end if
ibeta=2
if(ibeta .eq. 2) then
 if(SWolfe) then
 write(8,21) nexp, numef
 write(*,21) nexp, numef
 format(/,2x,i3,2x,'min DET. Standard WLS. Function:',a40,/)
 end if
 if(IWolfe) then
 write(8,22) nexp, numef
 write(*,22) nexp, numef
 format(/,2x,i3,2x,'min DET. Improved WLS. Function:',a40,/)
 end if
 if(AWolfe) then
 write(8,23) nexp, numef
 write(*,23) nexp, numef
 format(/,2x,i3,2x,'min DET. Approximate WLS. Function:',a40,/)
 end if
end if

ibeta=3
if(ibeta .eq. 3) then
 if(SWolfe) then
 write(8,31) nexp, numef
 write(*,31) nexp, numef
 format(/,2x,i3,2x,'min TRACE. Standard WLS.','
 ' Function:',a40,/)
 end if
 if(IWolfe) then
 write(8,32) nexp, numef
 write(*,32) nexp, numef
 format(/,2x,i3,2x,'min TRACE. Improved WLS.','
 ' Function:',a40,/)
 end if
 if(AWolfe) then
 write(8,33) nexp, numef
 write(*,33) nexp, numef
 format(/,2x,i3,2x,'min TRACE. Approximate WLS.','
 ' Function:',a40,/)
 end if
end if

ibeta=4
if(ibeta .eq. 4) then
 if(SWolfe) then
 write(8,41) nexp, numef
 write(*,41) nexp, numef
 format(/,2x,i3,2x,'Min FI (Byrd-Nocedal). Standard WLS. ','
 ' Function:',a40,/)
 end if
 if(IWolfe) then
 write(8,42) nexp, numef
 write(*,42) nexp, numef
 format(/,2x,i3,2x,'Min FI (Byrd-Nocedal). Improved WLS. ','
 ' Function:',a40,/)
 end if
 if(AWolfe) then
 write(8,43) nexp, numef
 write(*,43) nexp, numef
 format(/,2x,i3,2x,'Min FI (Byrd-Nocedal). Approximate WLS. ','

* ' Function:',a40,/
end if
end if

ibeta=5
if(ibeta .eq. 5) then
if(SWolfe) then
write(8,51) nexp, numef
write(*,51) nexp, numef
51 format(/,2x,i3,2x,'Hestenes-Stiefel. Standard WLS.',
* ' Function:',a40,/
end if
if(IWolfe) then
write(8,52) nexp, numef
write(*,52) nexp, numef
52 format(/,2x,i3,2x,'Hestenes-Stiefel. Improved WLS.',
* ' Function:',a40,/
end if
if(AWolfe) then
write(8,53) nexp, numef
write(*,53) nexp, numef
53 format(/,2x,i3,2x,'Hestenes-Stiefel. Approximate WLS.',
* ' Function:',a40,/
end if
end if

ibeta=6
if(ibeta .eq. 6) then
if(SWolfe) then
write(8,61) nexp, numef
write(*,61) nexp, numef
61 format(/,2x,i3,2x,'Dai-Yuan. Standard WLS.',
* ' Function:',a40,/
end if
if(IWolfe) then
write(8,62) nexp, numef
write(*,62) nexp, numef
62 format(/,2x,i3,2x,'Dai-Yuan. Improved WLS.',
* ' Function:',a40,/
end if
if(AWolfe) then
write(8,63) nexp, numef
write(*,63) nexp, numef
63 format(/,2x,i3,2x,'Dai-Yuan. Approximate WLS.',
* ' Function:',a40,/
end if
end if

ibeta=7
if(ibeta .eq. 7) then
if(SWolfe) then
write(8,71) nexp, numef
write(*,71) nexp, numef
71 format(/,2x,i3,2x,'Polak-Ribiere-Polyak. Standard WLS.',
* ' Function:',a40,/
end if
if(IWolfe) then
write(8,72) nexp, numef
write(*,72) nexp, numef
72 format(/,2x,i3,2x,'Polak-Ribiere-Polyak. Improved WLS.',
* ' Function:',a40,/)
end if
if(AWolfe) then
 write(8,73) nexp, numef
 write(*,73) nexp, numef
73 format(/,2x,i3,2x,'Polak-Ribiere-Polyak. Approximate WLS.',
* ' Function:',a40,/)
end if
end if

C--
ibeta=8
if(ibeta .eq. 8) then
 if(SWolfe) then
 write(8,81) nexp, numef
 write(*,81) nexp, numef
81 format(/,2x,i3,2x,'TRACE & DETERMINANT (det<1). Standard WLS.',
* ' Function:',a40,/)
 end if
 if(IWolfe) then
 write(8,82) nexp, numef
 write(*,82) nexp, numef
82 format(/,2x,i3,2x,'TRACE & DETERMINANT (det<1). Improved WLS.',
* ' Function:',a40,/)
 end if
 if(AWolfe) then
 write(8,83) nexp, numef
 write(*,83) nexp, numef
83 format(/,2x,i3,2x,'TRACE & DETERMINANT (det<1). Approximate WLS.',
* ' Function:',a40,/)
 end if
end if
return
end

C--

A conjugate gradient method with guaranteed descent
January 15, 2004
William W. Hager and Hongchao Zhang
hager@math.ufl.edu hzhang@math.ufl.edu
Department of Mathematics
University of Florida
Gainesville, Florida 32611 USA
352-392-0281 x 244

Copyright by William W. Hager

http://www.math.ufl.edu/~hager/papers/cg_descent.ps
http://www.math.ufl.edu/~hager/papers/cg_compare.ps
http://www.math.ufl.edu/~hager/papers/cg_manual.ps

INPUT:
(double) grad_tol-- StopRule = F: ||g||_infty <= grad_tol[default]
(double) x--starting guess (length n)
DIMENSION x(1) D (1), g (1), xtemp (1), gtemp (1),
& delta, sigma, epsilon, theta, gamma, rho, tol,
& eta, fpert, f0, wolfe_hi, wolfe_lo,
& awolfe_hi, QuadCutOff, zero, feps,
& psi0, psi1, psi2,
& grad_tol, delta2, eta_sq, gtgprev, z1, z2,
& f, ftemp, gnorm, xnorm, gnorm2, dnorm2, denom,
& t, t1, t2, t3, t4, dphi, dphi0, alpha, taiphi,
& yk, yk2, dkyk, beta, ddkk, etta, gkgk, tauu,
& a8, y(100000), tzh, deth, bn

integer nrestart, nexpand, nsecant, maxit,
& n, n5, n6, nf, ng, info,
& iter, status, nfunc, ngrad, ibeta,
& i, j, i1, i2, i3, i4, dim

logical QuadOK, QuadStep, PrintLevel, PrintFinal,
& StopRule, ERule, AWolfe, Step, cg_tol, IWolfe, SWolfe

external cg_value, cg_grad

common /cgparms/delta, sigma, epsilon, theta, gamma, rho, tol,
& eta, fpert, f0, wolfe_hi, wolfe_lo,
& awolfe_hi, QuadCutOff, zero, feps,
& psi0, psi1, psi2,
& n, n5, n6, nf, ng, info,
& nrestart, nexpand, nsecant, maxit,
& QuadStep, PrintLevel, PrintFinal, StopRule,
& ERule, Step, QuadOK

c initialize the parameters

call cg_init (grad_tol, dim)

delta2 = 2*delta - 1
etasq = eta*eta
iter = 0

z1 = 1.d0/(float(n)-1.d0) ! For FI only
z2 = (float(n)-2.d0)/(float(n)-1.d0) !

c initial function and gradient evaluations, initial direction

call cg_value (f, x, n, nexp)

nf = nf + 1

call cg_grad (g, x, n, nexp) ! g = gradient(x0) d(0)=-g(0)

ng = ng + 1
f0 = f + f

gnorm = zero
xnorm = zero

gnorm2 = zero
do i = 1, n5

xnorm = dmax1 (xnorm, dabs (x(i)))
t = g(i)
d(i) = -t

gnorm = dmax1 (gnorm, dabs(t))
gnorm2 = gnorm2 + t*t
enddo
do i = n6, n, 5

xnorm = dmax1 (xnorm, dabs (x(i)))
t = g(i)

gnorm = dmax1 (gnorm, dabs (t))
d(i) = -t

j = i + 1

38
\[d(j) = -t_l \]
\[\text{gnorm} = \text{dmax1} (\text{gnorm}, \text{dabs} (t_l)) \]
\[x\text{norm} = \text{dmax1} (x\text{norm}, \text{dabs} (x(j))) \]
\[j = i + 2 \]
\[t_2 = g(j) \]
\[d(j) = -t_2 \]
\[\text{gnorm} = \text{dmax1} (\text{gnorm}, \text{dabs} (t_2)) \]
\[x\text{norm} = \text{dmax1} (x\text{norm}, \text{dabs} (x(j))) \]
\[j = i + 3 \]
\[t_3 = g(j) \]
\[d(j) = -t_3 \]
\[\text{gnorm} = \text{dmax1} (\text{gnorm}, \text{dabs} (t_3)) \]
\[x\text{norm} = \text{dmax1} (x\text{norm}, \text{dabs} (x(j))) \]
\[j = i + 4 \]
\[t_4 = g(j) \]
\[d(j) = -t_4 \]
\[\text{gnorm} = \text{dmax1} (\text{gnorm}, \text{dabs} (t_4)) \]
\[x\text{norm} = \text{dmax1} (x\text{norm}, \text{dabs} (x(j))) \]
\[\text{gnorm2} = \text{gnorm2} + t*t + t_1*t_1 + t_2*t_2 + t_3*t_3 + t_4*t_4 \]
\[\text{enddo} \]

c \text{\text{gnorm2} = g(k)T*g(k) (=gtg)}

\[
\text{if (PrintLevel) then}
\begin{align*}
\text{write ('*, 10) iter, f, gnorm} \\
10 & \text{format ('iter: ', i5, ' f= ', e14.6, ' gnorm= ', e14.6)}
\end{align*}
\text{endif}
\]
\[
\text{if (cg_tol (f, gnorm)) goto 100}
\]
\[
\text{dphi0 = -gnorm2} \quad ! \text{dphi0 = d(0)T*g(0) = g(0)T*g(0)}
\]
\[
\text{if (Step) then}
\begin{align*}
\text{alpha} &= \text{gnorm} \\
\text{else}
\begin{align*}
\text{alpha} &= \text{psi0*xnorm/gnorm} \\
\text{if (xnorm .eq. zero) then}
\begin{align*}
\text{if (f .ne. zero) then}
\begin{align*}
\text{alpha} &= \text{psi0*dabs (f)/gnorm2} \\
\text{else}
\begin{align*}
\text{alpha} &= 1.d0
\end{align*}
\end{align*}
\end{align*}
\end{align*}
\end{align*}
\]
\[
\text{endfend}
\]

c \text{start the conjugate gradient iteration}

c\text{alpha starts as old step, ends as initial step for next iteration}
\text{QuadOK = .true. means that a quadratic step was taken}

c==

d \text{do iter = 1, maxit}
\begin{align*}
\text{etta} &= 1.d0/\text{float(iter)/float(iter)} \\
\text{etta is used in improved Wofe I}
\end{align*}
\[
\text{QuadOK} = .\text{false.}
\]
\[
\text{alpha} = \text{psi2*alpha}
\]
\[
\text{if (QuadStep) then}
\begin{align*}
\text{if (f .ne. zero) then}
\end{align*}
\]

39
\[t = \text{dabs}\left(\frac{f-f_0}{f}\right) \]

else
\[t = 1.0 \]
endif

if (\(t > \text{QuadCutOff} \)) then
 \(talpha = \text{psil} \times \alpha \)
 call \text{cg_step}(xtemp, x, d, talpha)
 call \text{cg_value}(ftemp, xtemp, n, nexp)
 \(nf = nf + 1 \)
 if (ftemp \(> f \)) then
 \(\text{denom} = 2.0d0 \left((ftemp-f)/talpha \right) \)
 if (denom \(> 0 \)) then
 \(\text{QuadOK} = \text{true} \)
 \(\alpha = -dphi0 \times talpha / \text{denom} \)
 endif
 endif
endif

f0 = f

if (\text{PrintLevel}) then
 write (*, 20) \text{QuadOK}, \alpha, f0, dphi0
20 format ('QuadOK:', l2, ' initial a:', e14.6, ' f0:', e14.6, ' dphi', e14.6)
endif

c Parameters in Wolfe and approximate Wolfe conditions, and in update

if (\text{ERule}) then
 fpert = f + epsilon
else
 fpert = f + epsilon \times \text{dabs}(f)
endif

wolfe_hi = delta \times dphi0
wolfe_lo = sigma \times dphi0
awolfe_hi = delta_2 \times dphi0

call \text{cg_line}(\alpha, f, dphi, dphi0, x, xtemp, d, gtemp, \& \text{cg_value}, \text{cg_grad}, \text{SWolfe}, \text{IWolfe}, \text{AWolfe}, etta, nexp)

do i=1,n
 y(i) = gtemp(i) - g(i)
end do

gnorm8 = \text{cg_dot}(g,g)

c

c
if (\text{info} \geq 0) goto 100

c Test for convergence to within machine epsilon
c (set feps to zero to remove this test)
c
if (-\alpha \times dphi0 \leq \text{feps} \times \text{dabs}(f)) then
 info = 1
 goto 100
endif

c compute beta, yk2, gnorm, gnorm2, dnorm2, update x and g,
gtgprev = cg_dot(g,g) ! For PR only

if (mod (iter, nrestart) .ne. 0) then ! Powell restart test
 gnorm = zero
dnorm2 = zero
yk2 = zero
ykgk = zero
do i = 1, n5
 x (i) = xtemp (i)
t = gtemp (i)
yk = t - g (i)
yk2 = yk2 + yk**2
ykgk = ykgk + yk*t
g (i) = t
gnorm = dmax1 (gnorm, dabs (t))
dnorm2 = dnorm2 + d (i)**2
endo

do i = n6, n, 5
 x (i) = xtemp (i)
t = gtemp (i)
yk = t - g (i)
yk2 = yk2 + yk**2
ykgk = ykgk + yk*t
i1 = i + 1
 x (i1) = xtemp (i1)
t1 = gtemp (i1)
i2 = i + 2
 x (i2) = xtemp (i2)
t2 = gtemp (i2)
i3 = i + 3
 x (i3) = xtemp (i3)
t3 = gtemp (i3)
i4 = i + 4
 x (i4) = xtemp (i4)
t4 = gtemp (i4)
yk2 = yk2 + (t1-g (i1))**2 + (t2-g (i2))**2
 & + (t3-g (i3))**2 + (t4-g (i4))**2
 & ykgk = ykgk + (t1-g (i1))*t1 + (t2-g (i2))*t2
 & + (t3-g (i3))*t3 + (t4-g (i4))*t4
 & g (i) = t
gnorm = dmax1 (gnorm, dabs (t))
g (i1) = t1
gnorm = dmax1 (gnorm, dabs (t1))
g (i2) = t2
gnorm = dmax1 (gnorm, dabs (t2))
g (i3) = t3
gnorm = dmax1 (gnorm, dabs (t3))
g (i4) = t4
gnorm = dmax1 (gnorm, dabs (t4))
dnorm2 = dnorm2 + d (i)**2 + d (i1)**2 + d (i2)**2
 & + d (i3)**2 + d (i4)**2
endo

if (cg_tol (f, gnorm)) goto 100

dkyk = dphi - dphi0
c BETA computation:
==================

HAGER - ZHANG

if (ibeta .eq. 1) then
 beta = (yk - 2.d0*dphi*yk2/dkyk)/dkyk
 beta = dmax1 (beta,
 & -1.d0/dsqrt (dmin1 (eta_sq, gnorm2)*dnorm2))
end if

--

Minim DETERMINANT (same as CGOPT by Dai and Kou)

if (ibeta .eq. 2) then
 ddkk = cg_dot(d,d)
tauu = dkyk/ddkk
 beta = ykgk/dkyk -(tauu+yk2/dkyk-dkyk/ddkk)*dphi/dkyk
 beta = dmax1(beta , 0.5d0*dphi/ddkk)
end if

Minim TRACE

if (ibeta .eq. 3) then
 ddkk = cg_dot(d,d)
a8 = (yk2*ddkk)/(dkyk*dkyk)
tauu = (2.d0 - a8)*dkyk/ddkk

 beta = ykgk/dkyk - tauu*dphi/dkyk -
 yk2*dphi/(dkyk*dkyk) + dphi/ddkk
 beta = dmax1(beta , 0.5d0*dphi/ddkk)
end if

Minim measure function FI (Byrd-Nocedal)

if (ibeta .eq. 4) then
 ddkk = cg_dot(d,d)
a8 = (yk2*ddkk)/(dkyk*dkyk)
tauu = z2 + z1*a8

 beta = ykgk/dkyk - tauu*dphi/dkyk -
 yk2*dphi/(dkyk*dkyk) + dphi/ddkk
 beta = dmax1(beta , 0.5d0*dphi/ddkk)
end if

--

HESTENES-STIEFEL

if (ibeta .eq. 5) then
 beta = ykgk/dkyk
 beta = dmax1(0.d0 , beta)
end if
c DAI-YUAN
 if (ibeta .eq. 6) then
 gkgk = cg_dot(g, g)
beta = gkgk/dkyk
 beta = dmax1(beta , 0.d0)
 end if

 c POLAK-RIBIERE-POLYAK
 if (ibeta .eq. 7) then
 beta = ykgk/gtgprev
 beta = dmax1(beta , 0.d0)
 end if

c Minim TRACE & LOG(DET)
 if (ibeta .eq. 8) then
 ddkk = cg_dot(d, d)
a8 = (yk2*ddkk)/(dkyk*dkyk)
tauu = z2 + z1*a8

c Compute log(Det)
 deth = ddkk/(dkyk*(tauu**(n-1)))
 if (deth .le. 1.d0) then
 tauu = dkyk/ddkk
 ! min DET
 end if
 tauu = (2.d0 - a8)*dkyk/ddkk
 ! min TRACE

 beta = ykgk/dkyk - tauu*dphi/dkyk -
 & yk2*dphi/(dkyk*dkyk) + dphi/ddkk
 beta = dmax1(beta , 0.5d0*dphi/ddkk)
 else
 tauu = z2 + z1*a8
 ! min fi (Byrd-Nocedal)
 beta = ykgk/dkyk - tauu*dphi/dkyk -
 & yk2*dphi/(dkyk*dkyk) + dphi/ddkk
 beta = dmax1(beta , 0.5d0*dphi/ddkk)
 end if

 if (beta .lt. 0.d0) then
 beta = 0.d0
 end if

 end if

 c End BETA computation

c update search direction: (Normal direction)

 gnorm2 = zero

 do i = 1, n5
 t = g (i)
d (i) = -t + beta*d (i)
gnorm2 = gnorm2 + t*t
 enddo
do i = n6, n, 5
 d (i) = -g (i) + beta*d (i)
 il = i + 1
 d (il) = -g (il) + beta*d (il)
 i2 = i + 2
 d (i2) = -g (i2) + beta*d (i2)
 i3 = i + 3
 d (i3) = -g (i3) + beta*d (i3)
 i4 = i + 4
 d (i4) = -g (i4) + beta*d (i4)

 gnorm2 = gnorm2 + g (i)**2 + g (i1)**2 + g (i2)**2 + g (i3)**2 + g (i4)**2
 & + g (i1)**2 + g (i2)**2
enddo

dphi0 = -gnorm2 + beta*dphi
else

 search direction \(\mathbf{d} = -\mathbf{g} \) (Restart)

 if (PrintLevel) then
 write (*, *) "RESTART CG"
 endif

 gnorm = zero
 gnorm2 = zero
 do i = 1, n5
 x (i) = xtemp (i)
 t = gtemp (i)
 g (i) = t
 d (i) = -t
 gnorm = dmax1 (gnorm, dabs(t))
 gnorm2 = gnorm2 + t*t
 enddo

 do i = n6, n, 5
 x (i) = xtemp (i)
 t = gtemp (i)
 g (i) = t
 d (i) = -t
 gnorm = dmax1 (gnorm, dabs(t))
 j = i + 1
 x (j) = xtemp (j)
 t1 = gtemp (j)
 g (j) = t1
 d (j) = -t1
 gnorm = dmax1 (gnorm, dabs(t1))
 j = i + 2
 x (j) = xtemp (j)
 t2 = gtemp (j)
 g (j) = t2
 d (j) = -t2
 gnorm = dmax1 (gnorm, dabs(t2))
 j = i + 3
 x (j) = xtemp (j)
 t3 = gtemp (j)
 g (j) = t3
 d (j) = -t3
 gnorm = dmax1 (gnorm, dabs(t3))
 j = i + 4
 x (j) = xtemp (j)
 t4 = gtemp (j)
 g (j) = t4
 d (j) = -t4
gnorm = dmax1 (gnorm, dabs(t4))
gnorm2 = gnorm2 + t*t + t1*t1 + t2*t2 + t3*t3 + t4*t4
enddo
if (cg_tol (f, gnorm)) goto 100
dphi0 = -gnorm2
endif
if (PrintLevel) then
write (*, 10) iter, f, gnorm
endif
if (dphi0 .gt. zero) then
info = 5
goto 100
endif
enddo

info = 2

100 nfunc = nf
ngrad = ng
status = info
if (info .gt. 2) then
 gnorm = zero
 do i = 1, n
 x (i) = xtemp (i)
 g (i) = gtemp (i)
 gnorm = dmax1 (gnorm, dabs(g (i)))
 enddo
endif
if (PrintFinal) then
write (6, *)
& 'nexp=',nexp,' n=', n, ' Termination status:', status
if (status .eq. 0) then
 write (6, 200)
else if (status .eq. 1) then
 write (6, 210)
else if (status .eq. 2) then
 write (6, 220) maxit
 write (6, 300)
 write (6, 400) grad_tol
else if (status .eq. 3) then
 write (6, 230)
 write (6, 300)
 write (6, 430)
 write (6, 410)
else if (status .eq. 4) then
 write (6, 240)
 write (6, 400) grad_tol
else if (status .eq. 5) then
 write (6, 250)
else if (status .eq. 6) then
 write (6, 260)
 write (6, 300)
 write (6, 400) grad_tol
 write (6, 410)
 write (6, 420)
else if (status .eq. 7) then
 write (6, 260)
 write (6, 400) grad_tol
else if (status .eq. 8) then
 write (6, 260)
 write (6, 300)
 write (6, 400) grad_tol
 write (6, 410)

45
write (6, 420)
endif
write (6, 500) gnorm
write (6, *) 'function value:', f
write (6, *) 'cg iterations:', iter
write (6, *) 'function evaluations:', nfunc
write (6, *) 'gradient evaluations:', ngrad
endif
return
200 format (' Convergence tolerance for gradient satisfied')
210 format (' Terminating since change in function value <= feps*|f|')
220 format (' Total number of iterations exceed max allow:', i10)
240 format (' Line search fails, too many secant steps')
250 format (' Search direction not a descent direction')
260 format (' Line search fails')
300 format (' Possible causes of this error message:')
400 format (' - your tolerance (grad_tol = ', d10.4,
 & ') is too strict')
420 format (' - your gradient routine has an error')
430 format (' - the parameter epsilon in cg.parm is too small')
450 format (' - your cost function has an error')
500 format (' absolute largest component of gradient: ', d10.4)
end

PARAMETERS:

delta, range (0, .5), used in the Wolfe conditions
sigma, range [delta, 1), used in the Wolfe conditions
espsilon, range [0, infty), determines when to test approximate Wolfe
theta, range (0,1), used in interval update rules
gamma, range (0,1), determines when to perform bisection step
rho, range (1, infty), growth factor when finding initial interval
eta, range (0, infty), used in lower bound for beta
psi0, range (0, 1), factor used in very initial starting guess
psi1, range (0, 1), factor previous step multiplied by in QuadStep
psi2, range (1, infty), factor previous step is multiplied by for startup
QuadCutOff, lower bound on rel change in f before QuadStep
restart_fac, range (0, infty) restart cg when iter = n*restart
maxit_fac, range (0, infty) terminate in maxit = maxit_fac*n iterations
feps, stop when -alpha*dphi0 (est. change in value) <= feps*|f|
(weps = 0 removes this test, example: feps = eps*1.e-5
where eps is machine epsilon)
tol, range (0, infty), convergence tolerance
nexpand, range [0, infty), number of grow/shrink allowed in bracket
nsecant, range [0, infty), maximum number of secant steps
QuadStep, .true. (use quadratic step) .false. (no quadratic step)
PrintLevel, .false. (no printout) .true. (print intermediate results)
PrintFinal, .false. (no printout) .true. (print messages, final error)
StopRule, .false. (max abs grad <= tol) .true. (... <= tol*(1+|f|))
ERule, .false. (eps_k = epsilon|f|) .true. (eps_k = epsilon)
AWolfe, .false. (use standard Wolfe only)
Step, .false. (program computing starting step at iteration 0)
 .true. (user provides starting step in gnorm argument of
cg_descent
info, same as status

DEFAULT PARAMETER VALUES:
c
 delta : 0.1
c sigma : 0.9
epsilon: 1.e-6
theta : 0.5
gamma : 0.66
rho : 5.0
restart: 1.0
eta : 0.01
psi0 : 0.01
psi1 : 0.1
psi2 : 2.0
QuadCutOff: 1.d-12
tol : grad_tol
maxit : 500*n
nrestart: n
nexpand: 50
nsecant: 50
QuadStep: .true.
PrintLevel: .false.
PrintFinal: .true.
StopRule: .false.
Step: .false.
info : 0
feps : 0.0

subroutine cg_init (grad_tol, dim)
 double precision delta, sigma, epsilon, theta, gamma, rho, tol,
& eta, fpert, f0, wolfe_hi, wolfe_lo,
& awolfe_hi, QuadCutOff, zero, feps,
& psi0, psi1, psi2,
& grad_tol, restart_fac, maxit_fac
 integer nrestart, nexpand, nsecant, maxit,
& n, n5, n6, nf, ng, info,
& dim
 logical QuadOK, QuadStep, PrintLevel, PrintFinal,
& StopRule, ERule, AWolfe, IWolfe, SWolfe, Step
common /cgparms/delta, sigma, epsilon, theta, gamma, rho, tol,
& eta, fpert, f0, wolfe_hi, wolfe_lo,
& awolfe_hi, QuadCutOff, zero, feps,
& psi0, psi1, psi2,
& n, n5, n6, nf, ng, info,
& nrestart, nexpand, nsecant, maxit,
& QuadStep, PrintLevel, PrintFinal, StopRule,
& ERule, Step, QuadOK

 n = dim
 tol = grad_tol

delta = 0.1
sigma = 0.9
epsilon= 1.e-6
theta = 0.5
gamma = 0.66
rho = 5.0
restart= 1.0
restart_fac=1.d0
eta = 0.01
psi0 = 0.01
psi1 = 0.1
psi2 = 2.0
QuadCutOff= 1.d-12
tol = grad_tol
maxit = 500*n
maxit_fac = 15
nexpand= 50
nsecant= 50
QuadStep= .true.
PrintLevel= .false.
PrintFinal= .false.
StopRule= .false.
ERule= .false.
Step= .false.
feps = 0.0

nrestart = n*restart_fac
maxit = n*maxit_fac
maxit=2000
zero = 0.d0
info = 0
n5 = mod (n, 5)
n6 = n5 + 1
nf = 0
ng = 0
return
eend

CG_WOLFE

c check whether the Wolfe or the approximate Wolfe conditions
c are satisfied

logical function cg_Wolfe(alpha,f,dphi,SWolfe,IWolfe,AWolfe,etta)
 double precision delta, sigma, epsilon, theta, gamma, rho, tol,
& eta, fpert, f0, wolfe_hi, wolfe_lo,
& awolfe_hi, QuadCutOff, zero, feps,
& psi0, psi1, psi2,
& alpha, f, dphi, etta
 integer nrestart, nexpand, nsecant, maxit,
& n, n5, n6, nf, ng, info
 logical QuadOK, QuadStep, PrintLevel, PrintFinal,
& StopRule, ERule, Step, SWolfe, IWolfe, AWolfe
 common /cgparms/delta, sigma, epsilon, theta, gamma, rho, tol,
& eta, fpert, f0, wolfe_hi, wolfe_lo,
& awolfe_hi, QuadCutOff, zero, feps,
& psi0, psi1, psi2,
& n, n5, n6, nf, ng, info,
& nrestart, nexpand, nsecant, maxit,
& QuadStep, PrintLevel, PrintFinal, StopRule,
& ERule, Step, QuadOK
if (dphi .ge. wolfe_lo) then

 c test original Wolfe conditions

 if(SWolfe) then
 if (f-f0 .le. alpha*wolfe_hi) then ! Wolfe line search
 cg_Wolfe = .true.
 return
 end if
 end if
 c test improved Wolfe

 if(IWolfe) then
 if(f-f0 .le. dmin1(epsilon*dabs(wolfe_hi/delta),
 & 0.0001d0*alpha*wolfe_hi/delta+etta)) then
 ! Improved Wolfe
 cg_Wolfe = .true.
 return
 end if
 end if
 c test approximate Wolfe conditions

 if (AWolfe) then ! Approximate Wolfe line search
 if ((f .le. fpert) .and. (dphi .le. awolfe_hi)) then
 cg_Wolfe = .true.
 return
 endif
 endif

 cg_Wolfe = .false.
 return
end

 c

 CG_TOL

 c---

 c check for convergence of the cg iterations

 logical function cg_tol (f, gnorm)

 double precision delta, sigma, epsilon, theta, gamma, rho, tol,
 & eta, fpert, f0, wolfe_hi, wolfe_lo,
 & awolfe_hi, QuadCutOff, zero, feps,
 & psi0, psil, psi2,
 & f, gnorm

 integer nrestart, nexpand, nsecant, maxit,
 & n, n5, n6, nf, ng, info

 logical QuadOK, QuadStep, PrintLevel, PrintFinal,
 & StopRule, ERule, AWolfe, Step

 common /cgparms/delta, sigma, epsilon, theta, gamma, rho, tol,
 & eta, fpert, f0, wolfe_hi, wolfe_lo,
 & awolfe_hi, QuadCutOff, zero, feps,
 & psi0, psil, psi2,
& n, n5, n6, nf, ng, info,
& nrestart, nexpand, nsecant, maxit,
& QuadStep, PrintLevel, PrintFinal, StopRule,
& ERule, Step, QuadOK
if (StopRule) then
 if (gnorm .le. tol*(1.0 + dabs (f))) then
 cg_tol = .true.
 return
 endif
else
 if (gnorm .le. tol) then
 cg_tol = .true.
 return
 endif
endif
cg_tol = .false.
return
end

C CG_DOT
C--
C
C compute dot product of x and y

double precision funct
function cg_dot (x, y)

double precision delta, sigma, epsilon, theta, gamma, rho, tol,
& eta, fpert, f0, wolfe_hi, wolfe_lo,
& awolfe_hi, QuadCutOff, zero, feps,
& psi0, psi1, psi2,
& x (1), y(1), t
integer nrestart, nexpand, nsecant, maxit,
& n, n5, n6, nf, ng, info, i

logical QuadOK, QuadStep, PrintLevel, PrintFinal,
& StopRule, ERule, AWolfe, Step

common /cgparms/delta, sigma, epsilon, theta, gamma, rho, tol,
& eta, fpert, f0, wolfe_hi, wolfe_lo,
& awolfe_hi, QuadCutOff, zero, feps,
& psi0, psi1, psi2,
& n, n5, n6, nf, ng, info,
& nrestart, nexpand, nsecant, maxit,
& QuadStep, PrintLevel, PrintFinal, StopRule,
& ERule, Step, QuadOK

t = zero
do i = 1, n5
 t = t + x (i)*y (i)
enddo
do i = n6, n, 5
 t = t + x (i)*y(i) + x (i+1)*y (i+1) + x (i+2)*y (i+2)
& + x (i+3)*y (i+3) + x (i+4)*y (i+4)
enddo

cg_dot = t
return
end
c CG_STEP
c---
c c compute xtemp = x + alpha d
c
subroutine cg_step (xtemp, x, d, alpha)
 integer nrestart, nexpand, nsecant, maxit,
 & n, n5, n6, nf, ng, info, i, j
 logical QuadOK, QuadStep, PrintLevel, PrintFinal,
 & StopRule, ERule, AWolfe, Step
 common /cgparms/delta, sigma, epsilon, theta, gamma, rho, tol,
 & eta, fper, f0, wolfe_hi, wolfe_lo,
 & awolfe_hi, QuadCutOff, zero, feps,
 & psi0, psi1, psi2,
 & xtemp (1), x (1), d (1), alpha
 double precision delta, sigma, epsilon, theta, gamma, rho, tol,
 & eta, fper, f0, wolfe_hi, wolfe_lo,
 & awolfe_hi, QuadCutOff, zero, feps,
 & psi0, psi1, psi2,
 & x (1), xtemp (1), d (1), alpha
 do i = 1, n5
 xtemp (i) = x(i) + alpha*d(i)
 enddo
 do i = n6, n, 5
 xtemp (i) = x (i) + alpha*d (i)
 j = i + 1
 xtemp (j) = x (j) + alpha*d (j)
 j = i + 2
 xtemp (j) = x (j) + alpha*d (j)
 j = i + 3
 xtemp (j) = x (j) + alpha*d (j)
 j = i + 4
 xtemp (j) = x (j) + alpha*d (j)
 enddo
 return
 end

 common /cgparms/delta, sigma, epsilon, theta, gamma, rho, tol,
 & eta, fper, f0, wolfe_hi, wolfe_lo,
 & awolfe_hi, QuadCutOff, zero, feps,
 & psi0, psi1, psi2,
 & x (1), xtemp (1), d (1), gtemp (1)

 subroutine cg_line (alpha, phi, dphi, dphi0, x, xtemp, d, gtemp,
 & cg_value, cg_grad,SWolfe,IWolfe,AWolfe,etta,nexp)
 double precision delta, sigma, epsilon, theta, gamma, rho, tol,
 & eta, fper, f0, wolfe_hi, wolfe_lo,
 & awolfe_hi, QuadCutOff, zero, feps,
 & psi0, psi1, psi2,
 & x (1), xtemp (1), d (1), gtemp (1),
& a, dphia, b, dphib, alpha, phi, dphi, c,
& a0, da0, b0, db0, width, fquad, dphi0,
& cg_dot, etta

integer nrestart, nexpand, nsecant, maxit,
& n, n5, n6, nf, ng, info,
& ngrow, nshrink, cg_update, iter, flag

logical QuadOK, QuadStep, PrintLevel, PrintFinal,
& StopRule, ERule, Step, cg_Wolfe,
& SWolfe, IWolfe, AWolfe

external cg_value, cg_grad

common /cgparms/delta, sigma, epsilon, theta, gamma, rho, tol,
& eta, fpert, f0, wolfe_hi, wolfe_lo,
& awolfe_hi, QuadCutOff, zero, feps,
& psi0, psi1, psi2,
& n, n5, n6, nf, ng, info,
& nrestart, nexpand, nsecant, maxit,
& QuadStep, PrintLevel, PrintFinal, StopRule,
& ERule, Step, QuadOK

call cg_step (xtemp, x, d, alpha)
call cg_grad (gtemp, xtemp, n, nexp)
 ng = ng + 1
dphi = cg_dot (gtemp, d)
c
Find initial interval [a,b] such that dphia < 0, dphib >= 0,
and phia <= phi0 + tolf*dabs (phi0)
c
 a = zero
dphia = dphi0
 ngrow = 0
 nshrink = 0
do while (dphi .lt. zero)
call cg_value (phi, xtemp, n, nexp)
 nf = nf + 1
c
if quadstep in effect and quadratic conditions hold, check wolfe condition
c
 if (QuadOK) then
 if (ngrow .eq. 0) fquad = dmin1 (phi, f0)
 if (phi .le. fquad) then
 if (PrintLevel) then
 write (*, 10) alpha, phi, fquad
 endif
 if(cg_Wolfe(alpha, phi, dphi, SWolfe, IWolfe, AWolfe, etta)) return
 endif
 endif
 if (phi .le. fpert) then
 a = alpha
dphia = dphi
 else
 b = alpha
do while (.true.)
 alpha = .5d0*(a+b)
 nshrink = nshrink + 1
if (nshrink .gt. nexpand) then
 info = 6
 return
endif

call cg_step (xtemp, x, d, alpha)
call cg_grad (gtemp, xtemp, n, nexp)
ng = ng + 1
dphi = cg_dot (gtemp, d)
if (dphi .ge. zero) goto 100
call cg_value (phi, xtemp, n, nexp)
 nf = nf + 1
 if (PrintLevel) then
 write (6, 20) a, b, alpha, phi, dphi
 20 format ('contract, a:', e14.6,
 ' b:', e14.6, ' alpha:', e14.6,
 ' phi:', e14.6, ' dphi:', e14.6)
 endif
 if (QuadOK .and. (phi .le. fquad)) then
 if(cg_Wolfe (alpha, phi, dphi,SWolfe,IWolfe,AWolfe,etta)) return
 endif
 if (phi .le. fpert) then
 a = alpha
dphia = dphi
 else
 b = alpha
 endif
enddo

100 continue

b = alpha
dphib = dphi
if (QuadOK) then
 call cg_value (phi, xtemp, n, nexp)
 nf = nf + 1
 if (ngrow + nshrink .eq. 0) fquad = dmin1 (phi, f0)
 if (phi .le. fquad) then
 if(cg_Wolfe(alpha, phi, dphi,SWolfe,IWolfe,AWolfe,etta)) return
 endif
endif

do iter = 1, nsecant
 if (PrintLevel) then
 write (*, 40) a, b, dphia, dphib
 40 format ('secant, a:', e14.6, ' b:', e14.6,
&
endif
width = gamma*(b-a)
if (-dphia .le. dphib) then
 alpha = a - (a-b)*(dphia/(dphia-dphib))
else
 alpha = b - (a-b)*(dphib/(dphia-dphib))
endif

c = alpha
a0 = a
b0 = b
da0 = dphia
db0 = dphib
flag = cg_update (a, dphia, b, dphib, alpha, phi,
&
 dphi, x, xtemp, d, gtemp, cg_value, cg_grad,
&
 SWolfe,IWolfe,AWolfe,etta,nexp)
if (flag .gt. 0) then
 return
else if (flag .eq. 0) then
 if (c .eq. a) then
 if (dphi .gt. da0) then
 alpha = c - (c-a0)*(dphi/(dphi-da0))
 else
 alpha = a
 endif
 else
 if (dphi .lt. db0) then
 alpha = c - (c-b0)*(dphi/(dphi-db0))
 else
 alpha = b
 endif
 endif
 if ((alpha .gt. a) .and. (alpha .lt. b)) then
 if (PrintLevel) write (*, *) "2nd secant"
 flag = cg_update (a, dphia, b, dphib, alpha, phi,
 &
 dphi, x, xtemp, d, gtemp, cg_value, cg_grad,
 &
 SWolfe,IWolfe,AWolfe,etta,nexp)
 if (flag .gt. 0) return
 endif
endif

c
bisection iteration

c
if ((b-a) .ge. width) then
 alpha = .5d0*(b+a)
 if (PrintLevel) write (*, *) "bisection"
 flag = cg_update (a, dphia, b, dphib, alpha, phi,
 &
 dphi, x, xtemp, d, gtemp, cg_value, cg_grad,
 &
 SWolfe,IWolfe,AWolfe,etta,nexp)
 if (flag .gt. 0) return
else
 if (b .le. a) then
 info = 7
 return
 endif
endif
end do
info = 4
return
end
update returns 1 if Wolfe condition is satisfied or too many iterations
returns 0 if the interval updated successfully
returns -1 if search done

integer function cg_update (a, dphia, b, dphib, alpha, phi,
& dphi, x, xtemp, d, gtemp, cg_value, cg_grad,
& SWolfe, IWolfe, AWolfe, etta, nexp)

double precision delta, sigma, epsilon, theta, gamma, rho, tol,
& awolfe_hi, QuadCutOff, zero, feps,
& psi0, psi1, psi2,
& a, dphia, b, dphib, alpha, phi, dphi,
& x (1), xtemp (1), d (1), gtemp (1),
& cg_dot, etta

integer nrestart, nexpand, nsecant, maxit,
& n, n5, n6, nf, ng, info,
& nshrink

logical QuadOK, QuadStep, PrintLevel, PrintFinal,
& StopRule, ERule, Step, cg_Wolfe,
& SWolfe, IWolfe, AWolfe

external cg_value, cg_grad

common /cgparms/delta, sigma, epsilon, theta, gamma, rho, tol,
& eta, fpert, f0, wolfe_hi, wolfe_lo,
& awolfe_hi, QuadCutOff, zero, feps,
& psi0, psi1, psi2,
& n, n5, n6, nf, ng, info,
& nrestart, nexpand, nsecant, maxit,
& QuadStep, PrintLevel, PrintFinal, StopRule,
& ERule, Step, QuadOK

call cg_step (xtemp, x, d, alpha)
call cg_value (phi, xtemp, n, nexp)
 nf = nf + 1
call cg_grad (gtemp, xtemp, n, nexp)
 ng = ng + 1
dphi = cg_dot (gtemp, d)
if (PrintLevel) then
 write (*, 10) alpha, phi, dphi
10 format ('update alpha:', e14.6, ' phi:', e14.6,
& ' dphi:', e14.6)
endif
cg_update = 0
if(cg_Wolfe (alpha, phi, dphi, SWolfe, IWolfe, AWolfe, etta)) then
cg_update = 1
goto 110
endif
if (dphi .ge. zero) then
 b = alpha
dphib = dphi
goto 110
else
 if (phi .le. fpert) then
 a = alpha
dphia = dphi
 endif
endif
goto 110
endif
endif
nshrink = 0
b = alpha
do while (.true.)
 alpha = .5d0*(a+b)
 nshrink = nshrink + 1
 if (nshrink .gt. nexpand) then
 info = 8
 cg_update = 1
 goto 110
 endif
 call cg_step (xtemp, x, d, alpha)
call cg_grad (gtemp, xtemp, n, nexp)
 ng = ng + 1
 dphi = cg_dot (gtemp, d)
call cg_value (phi, xtemp, n, nexp)
 nf = nf + 1
 if (PrintLevel) then
 write (6, 20) a, alpha, phi, dphi
 20 format ('contract, a:', e14.6, ' alph
a:', e14.6, ' phi:', e14.6, ' dphi:', e14.6)
 endif
 if(cg_Wolfe(alpha, phi, dphi,SWolfe,IWolfe,AWolfe,etta)) then
 cg_update = 1
 goto 110
 endif
 if (dphi .ge. zero) then
 b = alpha
 dphib = dphi
 goto 100
 endif
 if (phi .le. fpert) then
 if (PrintLevel) then
 write (6, *) "update a:", alpha, "dphia:", dphi
 endif
 a = alpha
 dphia = dphi
 else
 b = alpha
 endif
endo
d100 continue
 cg_update = -1
110 continue
if (PrintLevel) then
 write (*, 200) a, b, dphia, dphib, cg_update
200 format ('UP a:', e14.6, ' b:', e14.6, ' da:', e14.6, ' db:', e14.6, ' up:', i2)
 endif
return
end

C**
C Last Line of CG_DESCENT of Hager and Zhang (modified as above)
Subroutine inipoint

Subroutine for initial point specification.

This is a user subroutine:

The calling sequence is:

call inipoint(n,x,nexp)

where:

n (integer) the number of variables,

x (double) array with the initial point.

nexp (integer) parameter specifying the number of the

problem considered in a train of experiments.

Dr. Neculai Andrei

**

*** subroutine inipoint(n,x, nexp) ***

C This subroutine computes the initial point

real*8 x(n)

go to (1, 2, 3, 4, 5, 6, 7, 8, 9,10,
* 11,12,13,14,15,16,17,18,19,20,
* 21,22,23,24,25,26,27,28,29,30,
* 31,32,33,34,35,36,37,38,39,40,
* 41,42,43,44,45,46,47,48,49,50,
* 51,52,53,54,55,56,57,58,59,60,
* 61,62,63,64,65,66,67,68,69,70,
* 71,72,73,74,75,76,77,78,79,80) nexp

1 continue

C Freudenstein & Roth - FREUROTH (CUTE)

i=1
91 x(i) = 0.5d0
x(i+1)= -2.d0
i=i+2
if(i.1.e.n) go to 91
return

2 continue

C Extended White & Holst

i=1
92 x(i) = -1.2d0
x(i+1)= 1.d0
i=i+2
if(i.1.e.n) go to 92
return

3 continue

C TR-WHITEHOLST

i=1
93 x(i) = -1.2d0
x(i+1)= 1.0d0
i=i+2
if(i.le.n) go to 93
return
4 continue
 Extended Beale
 i=1
94 x(i) = 1.d0
 x(i+1)= 0.8d0
 i=i+2
 if(i.le.n) go to 94
 return
5 continue
 Extended Powell
 i=1
95 x(i) = 3.d0
 x(i+1)= -1.d0
 x(i+2)= 0.d0
 x(i+3)= 1.d0
 i=i+4
 if(i.le.n) go to 95
 return
6 continue
 Extended Maratos
 i=1
96 x(i) = 0.1d0
 x(i+1)= 0.1d0
 i=i+2
 if(i.le.n) go to 96
 return
7 continue
 Extended Cliff
 i=1
97 x(i) = 0.001d0
 x(i+1)= -0.001d0
 i=i+2
 if(i.le.n) go to 97
 return
8 continue
 Extended Wood WOODS (CUTE)
 i=1
98 x(i) = -3.d0
 x(i+1)= -1.d0
 x(i+2)= -3.d0
 x(i+3)= -1.d0
 i=i+4
 if(i.le.n) go to 98
 return
9 continue
 Extended Hiebert
 do i=1,n
 x(i) = 5.001d0
 end do
 return
10 continue
 Extended Rosenbrock SROSENBR (CUTE)
 i=1
910 x(i) = -1.2d0
x(i+1) = 1.d0
i = i+2
if (i .le. n) go to 910
return

11 continue

c Generalized Risenbrock GENROSNB (CUTE)

911 i = 1
x(i) = -1.2d0
x(i+1) = 1.1d0
i = i+2
if (i .le. n) go to 911
return

12 continue

c Extended Himmelblau

13 continue

c HIMMELBG (CUTE)

14 continue

c HIMMELBH (CUTE)

15 continue

c Extended Trigonometric ET1

16 continue

c Extended Trigonometric ET2

17 continue

c Extended Block Diagonal BD1

18 continue

c Extended Tridiagonal 1
continue

Extended Three Expo Terms

do i=1,n
 x(i) = 0.1d0
end do
return

continue

Generalized Tridiagonal 1

do i=1,n
 x(i) = 2.d0
end do
return

continue

Generalized Tridiagonal 2

do i=1,n
 x(i) = -1.d0
end do
return

continue

Tridiagonal Double Bordered TR-DB1

do i=1,n
 x(i) = -1.d0
end do
return

continue

Broyden Pentadiagonal (CUTE)

do i=1,n
 x(i) = -1.d0
end do
return

continue

Extended PSC1

i=1

x(i) = 3.d0
x(i+1) = 0.1d0
i=i+2
if(i.le.n) go to 924
return

continue

Perturbed Quadratic PQ1

do i=1,n
 x(i) = 1.d0
end do
return

continue

Perturbed Quadratic PQ2

do i=1,n
 x(i) = 0.5d0
end do
return

continue

Almost Perturbed Quadratic

do i=1,n
 x(i) = 0.5d0
end do
return
continue
 Almost Perturbed Quartic
do i=1,n
 x(i) = 0.5d0
end do
return
continue
 Extended Penalty Function U52
do i=1,n
 x(i) = float(i)/100.d0
end do
return
continue
 TR-Summ of quadratics
do i=1,n
 x(i) = 1.d0
end do
return
continue
 Quadratic Diagonal Perturbed
do i=1,n
 x(i) = 0.5d0
end do
return
continue
 FH1
* Full Hessian FH1 (Summ of Quadratics, Quadratic inside)
* do i=1,n
 x(i) = float(i)/float(n)
end do
return
continue
 FH2
* Full Hessian FH2 (Quadratic, perturbed with sin/cos)
* do i=1,n
 x(i) = 1.d0
end do
return
continue
 FH3
* Full Hessian FH3 (Quartic, perturbed with sin/cos)
* do i=1,n
 x(i) = 1.d0
end do
return
continue
 Diagonal Full Borded
do i=1,n
 x(i) = 0.001d0
end do
return

36 continue
 c D-DBAUP3
* Diagonal Double Bordered Arrow Up
 i=1
 936 x(i) = 0.4d0
 x(i+1)= 1.0d0
 i=i+2
 if(i.1e.n) go to 936
 return

37 continue
 c QP1 Extended Quadratic Penalty
 do i=1,n
 x(i) = 1.d0
 end do
 return

38 continue
 c QP2 Extended Quadratic Penalty
 do i=1,n
 x(i) = 2.d0
 end do
 return

39 continue
 c QP3 Extended Quadratic Penalty
 do i=1,n
 x(i) = 1.d0
 end do
 return

40 continue
 c STAIRCASE S1
 do i=1,n
 x(i) = 1.d0
 end do
 return

41 continue
 c STAIRCASE S2
 do i=1,n
 x(i) = 1.d0
 end do
 return

42 continue
 c STAIRCASE S3
 do i=1,n
 x(i) = 2.d0
 end do
 return

43 continue
 c NONDQUAR
* Tridiagonal Double Bordered Arrow-Down
* i=1
 943 x(i) = 1.d0
 x(i+1)= -1.d0
i = i + 2
if(i .le. n) go to 943
return

44 continue
TRIDIA
Tridiagonal

* do i = 1, n
 x(i) = 1.d0
end do
return

45 continue
ARWHEAD
Diagonal Double bordered Arrow Down

* do i = 1, n
 x(i) = 1.d0
end do
return

46 continue
NONDIA (CUTE)
Diagonal Double bordered Arrow Up

* do i = 1, n
 x(i) = -0.01d0
end do
return

47 continue
BDQRTIC (CUTE)

* do i = 1, n
 x(i) = 1.d0
end do
return

48 continue
DQDRTIC (CUTE)

* do i = 1, n
 x(i) = 3.d0
end do
return

49 continue
EG2 (CUTE)

* do i = 1, n
 x(i) = 0.001d0
end do
return

50 continue
EG3

* do i = 1, n
 x(i) = 0.02d0
end do
return

51 continue
EDENSCH (CUTE)

* do i = 1, n
 x(i) = 0.d0

return
end do
return

52 continue FLETCHCR (CUTE)
do i=1,n
 x(i) = 0.5d0
end do
return

53 continue ENGVAL1 (CUTE)
do i=1,n
 x(i) = 2.d0
end do
return

54 continue DENSCHNA (CUTE)
do i=1,n
 x(i) = 1.d0
end do
return

55 continue DENSCHNB (CUTE)
do i=1,n
 x(i) = 10.d0
end do
return

56 continue DENSCHNC (CUTE)
do i=1,n
 x(i) = 1.d0
end do
return

57 continue DENSCHNF (CUTE)
i=1
957 x(i) = 100.d0
 x(i+1) = -100.d0
 i = i + 2
 if(i.le.n) go to 957
return

58 continue SINQUAD (CUTE)
do i=1,n
 x(i) = 0.00000d0
end do
return

59 continue DIXON3DQ (CUTE)
do i=1,n
 x(i) = -0.1d0
end do
return

60 continue BIGGSB1 (CUTE)
do i=1,n
 x(i) = 0.1d0
end do
return

61 continue
PRODsin (m=n-1)
do i=1,n
 x(i) = 0.000001d0
end do
return

62 continue
PROD1 (m=n)
do i=1,n
 x(i) = 1.d0
end do
return

63 continue
PRODcos (m=n-1)
do i=1,n
 x(i) = 0.1d0
 x(1)=1.d0
end do
return

64 continue
PROD2 (m=1)
do i=1,n
 x(i) = 0.00001d0
 x(n)=1.d0
end do
return

65 continue
DIXMAANA (CUTE)
do i=1,n
 x(i) = 2.d0
end do
return

66 continue
DIXMAANB (CUTE)
do i=1,n
 x(i) = 2.d0
end do
return

67 continue
DIXMAANC (CUTE)
do i=1,n
 x(i) = 2.d0
end do
return

68 continue
DIXMAAND (CUTE)
do i=1,n
 x(i) = 2.d0
end do
return
continue

DIXMAANL (CUTE)

```
do i=1,n
    x(i) = 1.d0
end do
return
```

continue

ARGLINB (m=5)

```
i=1
x(i)  =  0.01d0
x(i+1)=  0.001d0
i=i+2
if(i.le.n) go to 970
return
```

continue

VARDIM (CUTE)

```
do i=1,n
    x(i) = 1.d0-float(i)/float(n)/100000.d0
end do
return
```

continue

DIAG-AUP1

```
do i=1,n
    x(i) = 4.d0
end do
return
```

continue

ENGVAL8

```
do i=1,n
    x(i) = 2.d0
end do
return
```

continue

QUARTIC (CUTE)

```
do i=1,n
    x(i) = 2.d0
end do
return
```

continue

LIARWHD

```
do i=1,n
    x(i) = 4.d0
end do
return
```

continue

NONSCOMP

```
do i=1,n
    x(i) = 3.d0
end do
return
```

continue

Linear perturbed

continue
do i=1,n
 x(i) = 2.d0
end do
return

78 continue
CUBE
 i=1
978 x(i) = -1.2d0
 x(i+1)= 1.1d0
 i=i+2
 if(i.le.n) go to 978
return

79 continue
HARKERP
 do i=1,n
 x(i) = 2.d0
 end do
return

80 continue
QUARTICM
 do i=1,n
 x(i) = 2.d0
 end do
return

end

--
Last line INIPOINT

**
* Date created: November 26, 2018. *
* *
* FUNCTIONS FOR UNCONSTRAINED OPTIMIZATION *
* == *
* *
* Dr. Neculai Andrei *
**
* subroutine cg_value(f, x, n, nexp) *
real*8 x(n), f
real*8 t1,t2,t3,t4, c, d
real*8 s, temp(1000000), temp1, tsum, sum
real*8 u(1000000), v(1000000), t(1000000)
real*8 u1, v1, c1, c2
real*8 alpha, beta, gamma, delta
integer k1, k2, k3, k4

* go to (1, 2, 3, 4, 5, 6, 7, 8, 9,10,
* 11,12,13,14,15,16,17,18,19,20,
* 21,22,23,24,25,26,27,28,29,30,
* 31,32,33,34,35,36,37,38,39,40,
* 41,42,43,44,45,46,47,48,49,50,
* 51,52,53,54,55,56,57,58,59,60,
cF1

* FREUROT (CUTE)
* Extended Freudenstein & Roth
* Initial Point: [0.5, -2, ... , 0.5, -2].
*
1 continue
f = 0.d0
 do i=1, n/2
 t1 = -13.d0 + x(2*i-1) + 5.d0 * x(2*i) * x(2*i) - x(2*i)**3 - 2.d0 * x(2*i)
 t2 = -29.d0 + x(2*i-1) + x(2*i)**3 + x(2*i)**2 - 14.d0 * x(2*i)
 f = f + t1*t1 + t2*t2
 end do
 return

2 continue
f = 0.d0
 do i=1, n/2
 f = f + c*(x(2*i) - x(2*i-1)**3)**2 + (1.d0 - x(2*i-1))**2
 end do
 return

3 continue
 c = 4.d0
 f = 0.d0
 do i=1, n-1
 f = f + c*(x(i+1) - x(i))**3)**2 + (1.d0 - x(i))**2
 end do
 return

4 continue
f = 0.d0
 do i=1, n/2
 t1 = 1.5d0 - x(2*i-1) + x(2*i-1) * x(2*i)
 t2 = 2.25d0 - x(2*i-1) + x(2*i-1) * x(2*i) * x(2*i)
 t3 = 2.625d0 - x(2*i-1) + x(2*i-1) * x(2*i) * x(2*i) * x(2*i)
 f = f + t1*t1 + t2*t2 + t3*t3
 end do
 return

48
end do
return
cF5 Extended Powell
* Initial Point: [3, -1, 0, 1,].
*
5 continue
f=0.d0

do i=1,n/4
 t1= x(4*i-3) + 10.d0*x(4*i-2)
 t2= x(4*i-1) - x(4*i)
 t3= x(4*i-2) - 2.d0*x(4*i-1)
 t4= x(4*i-3) - x(4*i)
 f = f + t1*t1 + 5.d0*t2*t2 + t3**4 + 10.d0*t4**4
end do
return
cF6 Extended Maratos Function
* Initial Point: [1.1, 0.1, ...,1.1, 0.1].
*
6 continue
c = 1.d0
f = 0.d0

do i=1,n/2
 t1 = x(2*i-1)**2 + x(2*i)**2 - 1.d0
 f = f + (x(2*i-1) + c*t1*t1)
end do
return
cF7 Extended CLIFF (CUTE)
* Initial Point: [0, -0.1, ..., 0, -0.1].
*
7 continue
f=0.d0

do i=1,n/2
 temp1 = (x(2*i-1)-3.d0)/100.d0
 f = f+temp1*temp1-(x(2*i-1)-x(2*i))+dexp(2.d0*(x(2*i-1)-x(2*i)))
end do
return
cF8 Extended Wood Function
 WOODS (CUTE)
* Initial Point: [-3,-1,-3,-1,......]
*
8 continue
f=0.d0

do i=1,n/4
 f = f + 100.d0*(x(4*i-3)**2-x(4*i-2))**2
* + \((x(4*i-3)-1.d0)^2 \)
* + \(90.d0*(x(4*i-1)^2-x(4*i))^2 \)
* + \((1.d0-x(4*i-1))^2 \)
* + \(10.1d0*(x(4*i-2)-1.d0)^2 \)
* + \(10.1d0*(x(4*i)-1.d0)^2 \)
* + \(19.8d0*(x(4*i-2)-1.d0)*(x(4*i)-1.d0) \)
end do
return

cF9
Extended Hiebert Function
*
* Initial Point: [0,0,...0].
9 continue

c1 = 10.d0
C2 = 500.d0
f = 0.d0
do i=1,n/2
f = f + (x(2*i-1)-c1)**2 + (x(2*i-1)*x(2*i)-c2)**2
end do
return

cF10
SROENBR (CUTE)
* Extended Rosenbrock function
*
* Initial point: [-1.2, 1, -1.2, 1,, -1.2, 1]
10 continue

c=1000.d0
f=0.d0
do i=1,n/2
f = f + c*(x(2*i)-x(2*i-1)**2)**2 + (1.d0-x(2*i-1))**2
end do
return

cF11
GENROSNB (CUTE)
* Generalized Rosenbrock
*
* Initial Point: [-1.2, 1, ... -1.2, 1]
11 continue

f = (x(1)-1.d0)**2
do i=2,n
f = f + 100.d0*(x(i)-x(i-1)**2)**2
end do
return

cF12
HIMMELBC (CUTE)
* Extended Himmelblau Function
*
* Initial Point: [1, 1,, 1]
12 continue
f=0.d0
do i=1,n/2
 u1 = x(2*i-1)**2 + x(2*i) - 11.d0
 v1 = x(2*i-1) + x(2*i)**2 - 7.d0
 f = f + u1*u1 + v1*v1
end do
return

cF13 HIMMELBG (CUTE)
* *
 Initial Point: [1.5,1.5,...,1.5]
13 continue

 f=0.d0
 do i=1,n/2
 f = f + (2.d0*x(2*i-1)**2+3.d0*x(2*i)**2)*
* (dexp(-x(2*i-1)-x(2*i)))
 end do
 return

cF14 HIMMELBH (CUTE)
* *
 Initial Point: [1.5,1.5,...,1.5]
14 continue

 f= 0.d0
 do i=1,n/2
 f=f+(-3.d0*x(2*i-1)-2.d0*x(2*i)+2.d0+x(2*i-1)**3 + x(2*i)**2)
 end do
 return

cF15 Extended Trigonometric ET1
* *
 Initial Point: [0.2, 0.2,,0.2].
15 continue

 s= float(n)
 do i=1,n
 s = s - dcos(x(i))
 end do

 do i=1,n
 temp(i) = s + float(i)*(1.d0-dcos(x(i)) - dsin(x(i))
 end do

 f = 0.d0
 do i=1,n
 f = f + temp(i)**2
 end do
 return

cF16 Extended Trigonometric ET2
* *
 Initial Point: [0.2, 0.2,,0.2].
16 continue

 s= float(n)
do i=1,n
 s = s - dsin(x(i))
end do

do i=1,n
 temp(i) = s + float(i)*(1.d0-dsin(x(i))) - dsin(x(i))
end do

f = 0.d0
do i=1,n
 f = f + temp(i)**2
end do
return

cF17 Extended Block Diagonal BD1 Function
* Initial Point: [0.1, 0.1, ..., 0.1].
* 17 continue

f = 0.d0

do i=1,n/2
 t1 = x(2*i-1)**2 + x(2*i)**2 - 2.d0
 t2 = dexp(x(2*i-1)) - x(2*i)
 f = f + t1*t1 + t2*t2
end do
return

cF18 Extended Tridiagonal-1 Function
* Initial Point: [2,2,...,2]
* 18 continue

f=0.d0
do i=1,n/2
 u(i) = x(2*i-1) + x(2*i) - 3.d0
 v(i) = x(2*i-1) - x(2*i) + 1.d0
end do

do i=1,n/2
 f = f + u(i)**2 + v(i)**4
end do
return

cF19 Extended Three Exponential Terms
* Initial Point: [0.1,0.1,......,0.1].
* 19 continue

f=0.d0
do i=1,n/2
 t1= x(2*i-1) + 3.d0*x(2*i) - 0.1d0
 t2= x(2*i-1) - 3.d0*x(2*i) - 0.1d0
 t3=-x(2*i-1) - 0.1d0
 f = f + dexp(t1) + dexp(t2) + dexp(t3)
end do
return
Generalized Tridiagonal-1 Function

* Initial Point: [2,2,...,2]

```
f=0.d0
20  do i=1,n-1
     u(i) = x(i) + x(i+1) - 3.d0
     v(i) = x(i) - x(i+1) + 1.d0
   end do

20  do i=1,n-1
     f = f + u(i)**2 + v(i)**4
   end do
return
```

Generalized Tridiagonal-2

* Penta Diagonal
* Initial point: [-1, -1,, -1., -1]

```
f = 0.d0
21  u(1) = 5.d0*x(1)-3.d0*x(1)**2-x(1)**3-3.d0*x(2)+1.d0

21  do i=2,n-1
     u(i)=5.d0*x(i)-3.d0*x(i)**2-x(i)**3-x(i-1)-3.d0*x(i+1)+1.d0
   end do

21  u(n)=5.d0*x(n)-3.d0*x(n)**2-x(n)**3-x(n-1)+1.d0

21  do i=1,n
     f = f + u(i)**2
     v(i) = 5.d0 -6.d0*x(i) -3.d0*x(i)**2
   end do
return
```

TR-DB1 Tridiagonal Double Bordered

* Initial Point: [-1, -1,, -1]

```
f = (x(1)-1.d0)**2

22  do i=1,n-1
     temp(i) = x(1) - 0.5d0*x(i)**2 - 0.5d0*x(i+1)**2
     f = f + temp(i)**2
   end do
return
```

Broyden Pentadiagonal

* Initial point x0=[-1., -1., ..., -1.]

```
temp(1) = 3.d0*x(1) - 2.d0*x(1)*x(1)
23  do i=2,n-1
     temp(i) = 3.d0*x(i)-2.d0*x(i)*x(i)-x(i-1)-2.d0*x(i+1)+1.d0
   end do
```
temp(n) = 3.d0*x(n) - 2.d0*x(n)*x(n) - x(n-1) + 1.d0

f = 0.d0

do i=1,n
 f = f + temp(i)*temp(i)
end do
return

cF24 Extended PSC1 Function
 Initial point: [3, 0.1, ..., 3, 0.1]
24 continue
f = 0.d0
do i=1,n/2
 f = f + (x(2*i-1)**2 + x(2*i)**2 + x(2*i-1)*x(2*i))**2
 * + (dsin(x(2*i-1)))**2 + (dcos(x(2*i)))**2
end do
return

cF25 Perturbed Quadratic function PQ1
 Initial Point: [1, 1,,1].
25 continue
temp1 = 0.d0
do i=1,n
 temp1 = temp1 + x(i)
end do
f = temp1*temp1/100.d0
do i=1,n
 f = f + float(i)*x(i)**2
end do
return

cF26 Perturbed Quadratic function PQ2
 Initial Point: [0.5, 0.5,, 0.5].
26 continue
temp1 = 0.d0
do i=1,n
 temp1 = temp1 + float(i)*x(i)
end do
f = temp1*temp1

do i=1,n
 f = f + float(i)*x(i)**2
end do
return
Almost Perturbed Quadratic

Initial point $x_0 = [0.5, 0.5, \ldots, 0.5]$.

```
cF27 continue
* f = ((x(1)+x(n))**2)/100.d0
    do i=1,n
      f = f + float(i)*x(i)*x(i)
    end do
return
```

Almost Perturbed Quartic

Initial point $x_0 = [0.5, 0.5, \ldots, 0.5]$.

```
cF28 continue
* f = ((x(1)+x(n))**2)/100.d0
    do i=1,n
      f = f + float(i)*x(i)**4
    end do
return
```

Extended Penalty Function U52 (MatrixRom)

Initial Point: $[1, 2, 3, \ldots, n]$.

```
cF29 continue
* temp1=0.d0
    do i=1,n
      temp1 = temp1 + x(i)**2
    end do
* f = (temp1 - 0.25d0)**2
    do i=1,n-1
      f = f + (x(i)-1.d0)**2
    end do
return
```

TR-Summ of quadratics Function

Initial Point: $[1, 1, \ldots, n]$.

```
cF30 continue
* c = 100000.d0
    f = 0.d0
    do i=1,n-1
      f = f + x(i)*x(i) + c*(x(i+1)+x(i)*x(i))**2
    end do
return
```
cF31 Quadratic Diagonal Perturbed Function
 *
 Initial Point: [0.5, 0.5,, 0.5].
 *
 31 continue
 temp1 = 0.d0
 do i=1,n
 temp1 = temp1 + x(i)
 end do
 f = temp1*temp1
 do i=1,n
 f = f + (float(i)/100.d0) * x(i)**2
 end do
 return

 cF32 FH1 (m=50)
 * Full Hessian FH1 (Summ of Quadratics, Quadratic inside)
 *
 32 continue
 m=50
 f=0.d0
 do i=1,m
 u(i)=0.d0
 do j=1,n
 u(i) = u(i) + float(i)*float(j)*x(j)*x(j)
 end do
 f = f + (u(i)-1.d0)**2
 end do
 return

 cF33 FH2
 * Full Hessian FH2 (Quadratic, perturbed with sin/cos)
 *
 33 continue
 s = 0.d0
 do i=1,n
 s = s + x(i)
 end do
 f = s*s
 do i=1,n
 f = f + float(i)*(dsin(x(i)) + dcos(x(i)))/1000.d0
 end do
 return

 cF34 FH3
 * Full Hessian FH3 (Quartic, perturbed with sin/cos)
 *
 34 continue
 s = 0.d0
 do i=1,n
\[s = s + x(i)^2 \]
end do
\[f = s*s \]
do i=1,n
\[f = f + \text{float}(i) * (\text{dsin}(x(i)) + \text{dcos}(x(i))) / 1000.0 \]
end do
return

cF35 Diagonal Full Borded
* Initial point: \([0.1, 0.1, \ldots, 0.1]\)
35 continue
\[f = (x(1) - 1.0)^4 + (x(n)^2 - x(1)^2)^2 \]
do i=1,n-2
\[\text{temp}(i) = \sin(x(i+1) - x(n)) - x(1)^2 - x(i+1)^2 \]
\[f = f + \text{temp}(i) * \text{temp}(i) \]
end do
return

cF36 D-DBAUP3
* Initial point: \(x_0 = [4, 0, \ldots, 4, 0]\)
36 continue
\[f = 0.0 \]
do i=1,n
\[f = f + 4.0 * (x(i) * x(i) - x(1))**2 + (x(i) - 1.0)**2 \]
end do
return

cF37 QP1 Extended Quadratic Penalty
* Initial Point: \([1, 1, \ldots, 1]\).
37 continue
\[t1 = 0.0 \]
do i=1,n
\[t1 = t1 + x(i) * x(i) \]
end do
\[t1 = t1 - 0.5 \]
\[f = 0.0 \]
do i=1,n-1
\[f = f + (x(i) * x(i) - 2.0)**2 \]
end do
\[f = f + t1 * t1 \]
return

cF38 QP2 Extended Quadratic Penalty Function
* Initial Point: \([1, 1, \ldots, 1]\).
continue

t1=0.d0
do i=1,n
 t1 = t1 + x(i)*x(i)
end do
f = t1 - 100.d0

f = 0.d0
do i=1,n-1
 f = f + (x(i)*x(i) - dsin(x(i)))**2
end do
f = f + t1*t1
return

QP3 Extended Quadratic Penalty
*
 Initial Point: [1., 1., ..., 1.].
*

continue

t1=0.d0
do i=1,n
 t1 = t1 + x(i)*x(i)
end do
f = t1 - 0.25d0

f = 0.d0
do i=1,n-1
 f = f - (x(i)*x(i) - 1.d0)**2
end do
return

STAIRCASE S1
*
 Initial point x0=[1,1,...,1].
*

f=0.d0
do i=1,n-1
 f = f + (x(i)+x(i+1)-float(i))**2
end do
return

STAIRCASE S2
*
 Initial point x0=[1,1,...,1].
*

f = 0.d0
do i=2,n
 f = f + (x(i-1)+x(i)-float(i))**2
end do
return

STAIRCASE S3
* Initial point $x_0=[2,2,...,2]$.
*
42 continue
 f = 0.d0
 do i=2,n
 f = f + (x(i-1)+x(i)+float(i))**2
 end do
 return

cF43 NONDQUAR
* Tridiagonal Double Bordered Arrow-Down
*
43 continue
 f = (x(1)-x(2))**2 + (x(n-1)+x(n))**2
 do i=1,n-2
 f = f + (x(i)+x(i+1)+x(n))**4
 end do
 return

cF44 TRIDIA (CUTE)
* Initial point $x_0=[1,1,...,1]$.
*
44 continue
 *
 alpha=5.d0
 beta =1.d0
 gamma=1.d0
 delta=1.d0
 f=gamma*(delta*x(1)-1.d0)**2
 do i=2,n
 f = f + float(i)*(alpha*x(i)-beta*x(i-1))**2
 end do
 return

cF45 ARWHEAD (CUTE)
* Initial point $x_0=[1,1,...,1]$.
*
45 continue
 f=0.d0
 do i=1,n-1
 f = f + (-4.d0*x(i)+3.d0) + (x(i)**2+x(n)**2)**2
 end do
 return

cF46 NONDIA (Shanno-78) (CUTE)
* Initial point $x_0=[-1,-1,...,-1]$.
*
46 continue

c=100.d0
f=(x(1)-1.d0)**2 + c*(x(1)-x(1)**2)**2

do i=2,n
 f = f + c*(x(1)-x(i)**2)**2
end do
return

cF47 BDQRTIC (CUTE)
*
* Initial point x0=[1.,1.,...,1.].
*
*
47 continue
*
 n4=n-4
 f=0.d0
 do i=1,n4
 temp(i) = x(i)**2 + 2.d0*x(i+1)**2 + 3.d0*x(i+2)**2
 + 4.d0*x(i+3)**2 + 5.d0*x(n)**2
 end do
 do i=1,n4
 f = f + (-4.d0*x(i)+3.d0)**2 + temp(i)**2
 end do
return

cF48 DQDRTIC (CUTE)
*
* Initial point x0=[3,3,3...,3].
*
*
48 continue
*
 c=1000.d0
 d=1000.d0
 f=0.d0
 do i=1,n-2
 f = f + (x(i)**2 + c*x(i+1)**2 + d*x(i+2)**2)
 end do
return

cF49 EG2 (CUTE)
*
* Initial point x0=[1,1,1...,1].
*
*
49 continue
*
 f=0.5d0*dsin(x(n)*x(n))
 do i=1,n-1
 f = f + dsin(x(1)+x(i)*x(i)-1.d0)
 end do
return
cF50 EG3
*
* Initial point x0=[1,1,1...1].
*
* 50 continue

f=0.5d0*dcos(x(n)*x(n))

do i=1,n-1
 f = f + dcos(x(1)+x(i)*x(i)-1.d0)
end do
return

cF51 EDENSCH Function (CUTE)
*
* Initial Point: [0., 0., ..., 0.].
*
* 51 continue

f = 16.d0

do i=1,n-1
 f = f + (x(i)-2.d0)**4 +
* (x(i)*x(i+1)-2.d0*x(i+1))**2 +
* (x(i+1)+1.d0)**2
end do
return

cF52 FLETCHCR (CUTE)
*
* Initial Point: [0.5,0.5,...0.5]
*
* 52 continue

f=0.d0

do i=1,n-1
 f = f + 100.d0*(x(i+1)-x(i)+1.d0-x(i)*x(i))**2
end do
return

cF53 ENGVAL1 (CUTE)
*
* Initial point x0=[2.,2.,2...2.].
*
* 53 continue

do i=1,n-1
 t(i) = x(i)*x(i) + x(i+1)*x(i+1)
end do

f = 0.d0

do i=1,n-1
 f = f + t(i)*t(i) + (-4.d0*x(i) + 3.d0)
end do
return

cF54 DENSCHNA (CUTE)
*
* Initial point: [8, 8,...,8]
* continue

f=0.d0
do i=1,n/2
 f = f + x(2*i-1)**4 +
 * (x(2*i-1)+x(2*i))**2 +
 * (-1.d0+dexp(x(2*i)))**2
end do
return

cF55 DENSCHNB (CUTE)
* Initial point: [0.1, 0.1,...,0.1]

55 continue

f=0.d0
do i=1,n/2
 f = f + (x(2*i-1)-2.d0)**2 +
 * ((x(2*i-1)-2.d0)**2)*(x(2*i))**2 +
 * (x(2*i)+1.d0)**2
end do
return

cF56 DENSCHNC (CUTE)
* Initial point: [8, 8,...,8]

56 continue

f=0.d0
do i=1,n/2
 f = f + (-2.d0+x(2*i-1)**2+x(2*i))**2 +
 * (-2.d0+dexp(x(2*i-1)-1.d0)+x(2*i))**3)**2
end do
return

 cF57 DENSCHNF (CUTE)
* Initial point: [2,0,2,0,...,2,0]

57 continue

f=0.d0
do i=1,n/2
f=f+(2.d0*(x(2*i-1)+x(2*i))**2+(x(2*i-1)-x(2*i))**2-8.d0)**2+
* (5.d0*x(2*i-1)**2+(x(2*i)-3.d0)**2-9.d0)**2
end do
return

 cF58 SINQUAD (CUTE)
* Initial Point: [0.1, 0.1, ..., 0.1]

58 continue

f=(x(1)-1.d0)**4 + (x(n)**2-x(1)**2)**2
do i=1,n-2
 \(t(i) = dsin(x(i+1) - x(n)) - x(1)^2 + x(i+1)^2 \)
 \(f = f + t(i)*t(i) \)
end do
return

DIXON3DQ (CUTE)
* Initial Point x0=[-1, -1,..., -1]
* 59 continue
f=(x(1)-2.d0)**2
do i=1,n-1
 \(f = f + (x(i) - x(i+1))^2 \)
end do
f = f + (x(n)-1.d0)**2
return

BIGGSB1 (CUTE)
* Initial Point: [0., 0.,,0.]
* 60 continue
f=(x(1)-1.d0)**2 + (1.d0-x(n))**2
do i=2,n
 \(f = f + (x(i) - x(i-1))^2 \)
end do
return

PRODsin (m=n-1)
* Initial point x0=[5. 5, 5, 5,...,5].
* 61 continue
m = n-1
t1=0.d0
t2=0.d0
do i=1,m
 \(t1 = t1 + x(i)*x(i) \)
end do
do i=1,n
 \(t2 = t2 + dsin(x(i)) \)
end do
f = t1*t2
return

PROD1 (m=n)
* Initial point x0=[1. 1, 1, 1,...,1].
* 62 continue
m = n
s1=0.d0
s2=0.d0

* do i=1,m
 s1 = s1 + x(i)
* end do

* do i=1,n
 s2 = s2 + x(i)
* end do

f = s1*s2
return

PRODcos (m=n-1)
*
* Initial point x0=[5. 5, 5, 5,...,5].
* 63 continue

m = n-1
m=n/2
s1=0.d0
s2=0.d0

* do i=1,m
 s1 = s1 + x(i)*x(i)
* end do

* do i=1,n
 s2 = s2 + dcos(x(i))
* end do

f = s1*s2
return

PROD2 (m=1)
*
* Initial point x0=[15. 15, 15, 15,...,15].
* 64 continue

m = 1
s1=0.d0
s2=0.d0

* do i=1,m
 s1 = s1 + x(i)**4
* end do

* do i=1,n
 s2 = s2 + float(i)*x(i)
* end do

f = s1*s2
return

DIXMAANA (CUTE)
* Initial point \(x_0=[2.,2.,2\ldots,2.]\).
* Modified \(m=n/4\)

```fortran
continue
*
    alpha = 1.d0
    beta = 0.d0
    gamma = 0.125d0
    delta = 0.125d0

    k1 = 0
    k2 = 0
    k3 = 0
    k4 = 0

    m = n/4
    f = 1.d0

do i=1,n
    f = f + alpha * x(i)*x(i)*((float(i)/float(n))**k1)
end do

do i=1,n-1
    f = f + beta * x(i)*x(i)*((x(i+1)+x(i+1)*x(i+1))**2) * ((float(i)/float(n))**k2)
end do

do i=1,2*m
    f = f + gamma * x(i)*x(i) * (x(i+m)**4) * ((float(i)/float(n))**k3)
end do

do i=1,m
    f = f + delta * x(i) * x(i+2*m) * ((float(i)/float(n))**k4)
end do
return
```

```
cF66 DIXMAANB (CUTE)
* *
* Initial point \(x_0=[2.,2.,2\ldots,2.]\).
* Modified \(m=n/4\)

continue
*
    alpha = 1.d0
    beta = 0.0625d0
    gamma = 0.0625d0
    delta = 0.0625d0

    k1 = 0
    k2 = 0
    k3 = 0
    k4 = 1

    m = n/4
    f = 1.d0

do i=1,n
    f = f + alpha * x(i)*x(i)*((float(i)/float(n))**k1)
end do

do i=1,n-1
```

f = f + beta * x(i)*x(i)*((x(i+1)+x(i+1)*x(i+1))**2) *
 ((float(i)/float(n))**k2)
end do

do i=1,2*m
f = f + gamma * x(i)*x(i) * (x(i+m)**4) *
 ((float(i)/float(n))**k3)
end do

do i=1,m
f = f + delta * x(i) * x(i+2*m) *
 ((float(i)/float(n))**k4)
end do
return

cF67 DIXMAANC (CUTE)
* Initial point x0=[2.,2.,2...,2.].
* Modified m=n/4
67 continue

*
 alpha = 1.d0
 beta = 0.125d0
 gamma = 0.125d0
 delta = 0.125d0

 k1 = 0
 k2 = 0
 k3 = 0
 k4 = 0

 m = n/4
 f = 1.d0

do i=1,n
f = f + alpha * x(i)*x(i)*((float(i)/float(n))**k1)
end do

do i=1,n-1
f = f + beta * x(i)*x(i)*((x(i+1)+x(i+1)*x(i+1))**2) *
 ((float(i)/float(n))**k2)
end do

do i=1,2*m
f = f + gamma * x(i)*x(i) * (x(i+m)**4) *
 ((float(i)/float(n))**k3)
end do

do i=1,m
f = f + delta * x(i) * x(i+2*m) *
 ((float(i)/float(n))**k4)
end do
return

cF68 DIXMAAND (CUTE)
* Initial point x0=[2.,2.,2...,2.].
* Modified m=n/4
68 continue

*
 alpha = 1.d0
 beta = 0.26d0
gamma = 0.26d0
delta = 0.26d0

k1 = 0
k2 = 0
k3 = 0
k4 = 0

m = n/4
f = 1.d0

do i=1,n
 f = f + alpha * x(i)*x(i)*((float(i)/float(n))**k1)
end do

do i=1,n-1
 f = f + beta * x(i)*x(i)*((x(i+1)+x(i+1)*x(i+1))**2) *
 ((float(i)/float(n))**k2)
end do

do i=1,2*m
 f = f + gamma * x(i)*x(i) * (x(i+m)**4) *
 ((float(i)/float(n))**k3)
end do

do i=1,m
 f = f + delta * x(i) * x(i+2*m) *
 ((float(i)/float(n))**k4)
end do
return

cF69 DIXMAA\(L\) (CUTE)
* Initial point x0=[2.,2.,2...,2.].
* Modified m=n/4
69 continue
*
alpha = 1.d0
beta = 0.26d0
gamma = 0.26d0
delta = 0.26d0

k1 = 2
k2 = 0
k3 = 0
k4 = 2

m = n/4
f = 1.d0

do i=1,n
 f = f + alpha * x(i)*x(i)*((float(i)/float(n))**k1)
end do

do i=1,n-1
 f = f + beta * x(i)*x(i)*((x(i+1)+x(i+1)*x(i+1))**2) *
 ((float(i)/float(n))**k2)
end do

do i=1,2*m
 f = f + gamma * x(i)*x(i) * (x(i+m)**4) *
 ((float(i)/float(n))**k3)
end do

do i=1,m
 f = f + delta * x(i) * x(i+2*m) *
 * ((float(i)/float(n))**k4)
end do
return

cF70 ARGLINB (m=5)
* Initial point x0=[0.01 0.001, ,0.01 0.001].
* 70 continue
m=5
f=0.d0
do i=1,m
 u(i)=0.d0
do j=1,n
 u(i) = u(i) + float(i)*float(j)*x(j)
 end do
 f = f + (u(i)-1.d0)**2
end do
return

cF71 VARDIM (CUTE)
* Initial point x0=[1-1/n, 1-2/n,...,1-n/n].
* Modified m=n/4 71 continue
s = float(n)*float(n+1)/2.d0
t1=0.d0
do i=1,n
 t1 = t1 + float(i)*x(i)
end do
t1 = t1-s
f = 0.d0
do i=1,n
 f = f + (x(i)-1.d0)**2
end do
f = f + t1**2 + t1**4
return

cF72 DIAG-AUP1
* Initial point x0=[4., 4.,4.].
* 72 continue
f=0.d0
do i=1,n
 f = f + 4.d0*(x(i)*x(i) - x(1))**2 + (x(i)**2-1.d0)**2
end do
return

ENGVAL8
*
*
*
*
73 continue

f = 0.d0
do i=1,n-1
 f = f + (x(i)**2+x(i+1)**2)**2 - (7.d0-8.d0*x(i))
end do
return

QUARTIC (CUTE)
*
*
*
*
74 continue

f = 0.d0
do i=1,n
 f = f + (x(i)-1.d0)**4
end do
return

LIARWHD (CUTE)
*
*
*
*
75 continue

f = 0.d0
do i=1,n
 f = f + 4.d0*(x(i)**2-x(1))**2 + (x(i)-1.d0)**2
end do
return

NONSCOMP (CUTE)
*
*
*
*
76 continue

f = (x(1)-1.d0)**2
do i=2,n
 f = f + 4.d0*(x(i)-x(i-1))**2
end do
return

Linear Perturbed

89
* Initial point x0=[2., ...,2.]
* 77 continue
 f = 0.d0
 do i=1,n
 f = f + float(i)*x(i)**2 + x(i)/100.d0
 end do
 return

 CF78 CUBE
* * Initial point x0=[-1.2, 1, -1.2, 1., ..., -1.2, 1]
* 78 continue
 f = (x(1)-1.d0)**2
 do i=2,n
 f = f + 100.d0*(x(i)-x(i-1)**3)**2
 end do
 return

 CF79 HARKERP
* * Initial point x0=[1,2,...,n]
* 79 continue
 s = 0.d0
 do i=1,n
 s = s + x(i)
 end do
 f = s*s
 do i=1,n
 f = f - (x(i) + 0.5d0*x(i)*x(i))
 end do
 return

 CF80 QUARTICM
* * Initial point x0=[2,2,...,2]
* 80 continue
 f = 0.d0
 do i=1,n
 f = f + (x(i)-float(i))**4
 end do
 return
end
* *---Last line CG_VALUE
GRADIENT OF FUNCTIONS

Dr. Neculai Andrei

subroutine cg_grad(g, x, n, nexp)
real*8 x(n), g(n)
real*8 t1, t2, t3, t4, c, d
real*8 s, temp(1000000), temp1, tsum, sum
real*8 u(1000000), v(1000000), t(1000000)
real*8 u1, v1, c1, c2
real*8 alpha, beta, gamma, delta
integer k1, k2, k3, k4

go to (1, 2, 3, 4, 5, 6, 8, 9, 10,
* 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
* 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
* 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
* 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
* 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
* 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
* 71, 72, 73, 74, 75, 76, 77, 78, 79, 80) nexp

cF1

FREUROTH (CUTE)

Extended Freudenstein & Roth

Initial Point: [0.5, -2, ..., 0.5, -2].

1 continue
j=1

do i=1,n/2
 ti=13.d0*x(2*i-1)+5.d0*x(2*i)*x(2*i)-x(2*i)**3-2.d0*x(2*i)
t2=29.d0*x(2*i-1)+x(2*i)**3+x(2*i)**2-14.d0*x(2*i)
g(j) =2.d0*(t1+t2)
g(j+1)=2.d0*t1*(-10.d0*x(2*i)-3.d0*x(2*i)+x(2*i)-2.d0) +
* 2.d0*t2*(3.d0*x(2*i)*x(2*i)+2.d0*x(2*i)-14.d0)
j=j+2
end do
return

cF2

Extended White & Holst function

Initial point: [-1.2, 1, -1.2, 1,, -1.2, 1]

2 continue

j=1

do i=1,n/2
 g(j) =-6.d0*c*x(2*i-1)*x(2*i-1)*(x(2*i)-x(2*i-1)**3) -
* 2.d0*(1.d0-x(2*i-1))

91
\[g(j+1) = 2.0 \cdot c \cdot (x(2i) - x(2i-1)) \]
\[j = j + 2 \]
end do
return

cF3

TR-WHITEHOLST

Tridiagonal White-Holst (c=4)

Initial point \(x = [-1.2, 1, ..., -1.2, 1] \)

3 continue

\[c = 4.0 \]

\[g(1) = -6.0 \cdot c \cdot (x(2) - x(1)) \cdot x(1) \cdot x(1) - 2.0 \cdot (1.0 - x(1)) \]

\[\text{do } i=2, n-1 \]
\[g(i) = 2.0 \cdot c \cdot (x(i) - x(i-1)) \cdot x(i) \cdot x(i) \]
\[* 6.0 \cdot c \cdot (x(i+1) - x(i)) \cdot x(i) \cdot x(i) \]
\[* 2.0 \cdot (1.0 - x(i)) \]
end do

\[g(n) = 2.0 \cdot c \cdot (x(n) - x(n-1)) \]
return

cF4

Extended Beale Function BEALE (CUTE)

Initial Point: \([1, 0.8, ..., 1, 0.8]\)

4 continue

\[j=1 \]
\[\text{do } i=1, n/2 \]
\[t1 = 1.5 \cdot 10 \cdot x(2i-1) + x(2i-1) \cdot x(2i) \]
\[t2 = 2.25 \cdot 10 \cdot x(2i-1) + x(2i-1) \cdot x(2i) \cdot x(2i) \]
\[t3 = 2.625 \cdot 10 \cdot x(2i-1) + x(2i-1) \cdot x(2i) \cdot x(2i) \cdot x(2i) \]

\[g(j) = 2.0 \cdot t1 \cdot (-1.0 + x(2i)) + \]
\[* 2.0 \cdot t2 \cdot (-1.0 + x(2i)) \cdot x(2i) \]
\[* 2.0 \cdot t3 \cdot (-1.0 + x(2i)) \cdot x(2i) \cdot x(2i) \]
\[g(j+1) = 2.0 \cdot t1 \cdot x(2i-1) + \]
\[* 2.0 \cdot t2 \cdot x(2i-1) \cdot x(2i) + \]
\[* 2.0 \cdot t3 \cdot x(2i-1) \cdot x(2i) \cdot x(2i) \]
\[j=j+2 \]
end do
return

cF5

Extended Powell

Initial Point: \([3, -1, 0, 1, ...]\)

5 continue

\[j=1 \]
\[\text{do } i=1, n/4 \]
\[t1 = x(4i-3) + 10.0 \cdot x(4i-2) \]
\[t2 = x(4i-1) - x(4i) \]
\[t3 = x(4i-2) - 2.0 \cdot x(4i-1) \]
\[t4 = x(4i-3) - x(4i) \]

\[g(j) = 2.0 \cdot t1 + 40.0 \cdot t4 \]
\[g(j+1) = 20.0 \cdot t1 + 4.0 \cdot t3 \]
\[g(j+2) = 10.0 \cdot t2 - 8.0 \cdot t3 \]
g(j+3) = -10.d0*t2 - 40.d0*t4**3

j=j+4
end do
return

cF6

Extended Maratos Function
*
* Initial Point: [1.1, 0.1, ..., 1.1, 0.1].
* 6 continue
 c = 1.d0
 j=1
 do i=1,n/2
 t1 = x(2*i-1)**2 + x(2*i)**2 - 1.d0
 g(j) = 1.d0 + 4.d0 * c * t1 * x(2*i-1)
 g(j+1) = 4.d0 * c * t1 * x(2*i)
 j=j+2
 end do
end do
return

cF7

Extended CLIFF (CUTE)
*
* Initial Point: [0, -0.1,, 0, -0.1].
* 7 continue
 j=1
 do i=1,n/2
 temp1 = (x(2*i-1)-3.d0)/100.d0
 g(j) = temp1/50.d0 - 1.d0 + 2.d0*dexp(2.d0*(x(2*i-1)-x(2*i)))
 g(j+1) = 1.d0 - 2.d0*dexp(2.d0*(x(2*i-1)-x(2*i)))
 j=j+2
 end do
end do
return

cF8

Extended Wood Function
*
* WOODS (CUTE)
* 8 continue
 j=1
 do i=1,n/4
 g(j) = 400.d0*(x(4*i-3)**2-x(4*i-2))*x(4*i-3)
 g(j+1) = -200.d0*(x(4*i-3)**2-x(4*i-2))
 g(j+2) = 360.d0*(x(4*i-1)**2-x(4*i))*x(4*i-1)
 g(j+3) = -180.d0*(x(4*i-1)**2-x(4*i))
 j=j+4
 end do
end do
return
Extended Hiebert Function

* Initial Point: [0,0,...0].

```
cF9
continue

  c1 = 10.d0
c2 = 500.d0

  j=1
  do i=1,n/2
    g(j) = 2.d0*(x(2*i-1)-c1)
    * + 2.d0*(x(2*i-1)*x(2*i)-c2)*x(2*i)
    g(j+1) = 2.d0*(x(2*i-1)*x(2*i)-c2)*x(2*i-1)
    j=j+2
  end do
return
```

Extended Rosenbrock function

* Initial point: [-1.2, 1, -1.2, 1,, -1.2, 1]

```
cF10
continue
c=1000.d0

  j=1
  do i=1,n/2
    g(j) = -4.d0*c*x(2*i-1)*(x(2*i)-x(2*i-1)**2) -
    * 2.d0*(1.d0-x(2*i-1))
    g(j+1) = 2.d0*c*(x(2*i)-x(2*i-1)**2)
    j = j + 2
  end do
return
```

Generalized Rosenbrock

* Initial Point: [-1.2, 1, ... -1.2, 1]

```
cF11
continue

  g(1) = 2.d0*(x(1)-1.d0)-400.d0*x(1)*(x(2)-x(1)**2)
  do i=2,n-1
    g(i) = 200.d0*(x(i)-x(i-1)**2)-400.d0*x(i)*(x(i+1)-x(i)**2)
  end do

  g(n) = 200.d0*(x(n)-x(n-1)**2)
return
```

Extended Himmelblau Function

* Initial Point: [1, 1,, 1]

```
cF12
continue

  j=1
  do i=1,n/2
    u1 = x(2*i-1)**2 + x(2*i) - 11.d0
    v1 = x(2*i-1) + x(2*i)**2 - 7.d0
```
g(j) = 4.d0*u1*x(2*i-1) + 2.d0*v1

j = j + 2
end do
return

continue
j = 1
do i = 1, n/2
 t1 = 2.d0*x(2*i-1)**2 + 3.d0*x(2*i)**2
 t2 = dexp(-x(2*i-1) - x(2*i))
 g(j) = 4.d0*x(2*i-1)*t2 - t1*t2
 g(j+1) = 6.d0*x(2*i)*t2 - t1*t2
 j = j + 2
end do
return

continue
j = 1
do i = 1, n/2
 g(j) = -3.d0 + 3.d0*x(2*i-1)**2
 g(j+1) = -2.d0 + 2.d0*x(2*i)
 j = j + 2
end do
return

continue
s = float(n)
do i = 1, n
 s = s - dcos(x(i))
end do

do i = 1, n
 temp(i) = s + float(i)*(1.d0 - dcos(x(i))) - dsin(x(i))
end do
s = 0.d0
return
s = s + temp(i)
end do

do i=1,n
 g(i) = 2.d0*s*dsin(x(i)) +
 2.d0*temp(i)*(float(i)*dsin(x(i)) - dcos(x(i)))
end do
return

cF16 Extended Trigonometric ET2
* Initial Point: [0.2, 0.2, ..., 0.2].
16 continue
 s= float(n)
 do i=1,n
 s = s - dsin(x(i))
 end do
 do i=1,n
 temp(i) = s + float(i)*(1.d0 - dsin(x(i))) - dsin(x(i))
 end do
 s=0.d0
 do i=1,n
 s = s + temp(i)
 end do
 do i=1,n
 g(i) = -2.d0*s*dcos(x(i)) +
 2.d0*temp(i)*(-float(i)*dcos(x(i)) - dcos(x(i)))
 end do
return

cF17 Extended Block Diagonal BD1 Function
* Initial Point: [0.1, 0.1, ..., 0.1].
17 continue
 j=1
 do i=1,n/2
 t1 = x(2*i-1)**2 + x(2*i)**2 - 2.d0
 t2 = dexp(x(2*i-1)) - x(2*i)
 g(j) = 4.d0*t1*x(2*i-1) + 2.d0*t2*dexp(x(2*i-1))
 g(j+1) = 4.d0*t1*x(2*i) - 2.d0*t2
 j=j+2
 end do
return

cF18 Extended Tridiagonal-1 Function
* Initial Point: [2,2,...,2]
18 continue
 do i=1,n/2
 u(i) = x(2*i-1) + x(2*i) - 3.d0
 v(i) = x(2*i-1) - x(2*i) + 1.d0
 end do
j=1
do i=1,n/2
 g(j) = 2.d0*u(i) + 4.d0*v(i)**3
 g(j+1) = 2.d0*u(i) - 4.d0*v(i)**3
 j=j+2
end do
return

Extended Three Exponential Terms
* Initial Point: [0.1,0.1,......,0.1].
* continue

j=1
do i=1,n/2
 t1= x(2*i-1) + 3.d0*x(2*i) - 0.1d0
 t2= x(2*i-1) - 3.d0*x(2*i) - 0.1d0
 t3=-x(2*i-1) - 0.1d0
 g(j) = dexp(t1) + dexp(t2) - dexp(t3)
 g(j+1) = 3.d0*dexp(t1) - 3.d0*dexp(t2)
 j=j+2
end do
return

Generalized Tridiagonal-1 Function
* Initial Point: [2,2,...,2]
* continue

do i=1,n-1
 u(i) = x(i) + x(i+1) - 3.d0
 v(i) = x(i) - x(i+1) + 1.d0
end do

 g(1) = 2.d0*u(1) + 4.d0*v(1)**3

 do i=2,n-1
 g(i) = 2.d0*u(i-1) - 4.d0*v(i-1)**3 + 2.d0*u(i) + 4.d0*v(i)**3
 end do

 g(n) = 2.d0*u(n-1) - 4.d0*v(n-1)**3
return

Generalized Tridiagonal-2
* Penta Diagonal
* Initial point: [-1, -1,, -1., -1]
 continue

 u(1) = 5.d0*x(1)-3.d0*x(1)**2-x(1)**3-3.d0*x(2)+1.d0

 do i=2,n-1
 u(i)=5.d0*x(i)-3.d0*x(i)**2-x(i)**3-x(i-1)-3.d0*x(i+1)+1.d0
 end do

 u(n)=5.d0*x(n)-3.d0*x(n)**2-x(n)**3-x(n-1)+1.d0
*
do i=1,n
 v(i) = 5.d0 - 6.d0*x(i) - 3.d0*x(i)**2
end do

* g(1) = 2.d0*u(1)*v(1) - 2.d0*u(2)
do i=2,n-1
 g(i) = -6.d0*u(i-1) + 2.d0*u(i)*v(i) - 2.d0*u(i+1)
end do
g(n) = -6.d0*u(n-1) + 2.d0*u(n)*v(n)
return

\texttt{cF22} \hspace{1cm} \texttt{TR-DB1}
\begin{verbatim}
Tridiagonal Double Boarded
* Initial Point: [-1, -1, ..., -1]
* \texttt{22} continue
\end{verbatim}
do i=1,n-1
 temp(i) = x(1) - 0.5d0*x(i)**2 - 0.5d0*x(i+1)**2
end do

-- g(1) = 2.d0(x(1)-1.d0) + 2.d0*temp(1)*(1.d0-x(1))
do i=2,n-1
 g(1) = g(1) + 2.d0*temp(i)
end do
do i=2,n-1
 g(i) = -2.d0*x(i)*(temp(i-1) + temp(i))
end do
g(n) = -2.d0*x(n)*temp(n-1)
return

\texttt{cF23} \hspace{1cm} \texttt{Broyden Pentadiagonal}
\begin{verbatim}
* \texttt{23} continue
\end{verbatim}
temp(1) = 3.d0*x(1) - 2.d0*x(1)*x(1)
do i=2,n-1
 temp(i) = 3.d0*x(i)-2.d0*x(i)*x(i)-x(i-1)-2.d0*x(i+1)+1.d0
end do
temp(n) = 3.d0*x(n)-2.d0*x(n)*x(n)-x(n-1)+1.d0
g(1) = 2.d0*temp(1)*(3.d0-4.d0*x(1)) - 2.d0*temp(2)
g(2) = 2.d0*temp(2)*(3.d0-4.d0*x(2)) - 2.d0*temp(3)
do i=3,n-1
 g(i) = -4.d0*temp(i-1)
* +2.d0*temp(i)*(3.d0-4.d0*x(i))
* -2.d0*temp(i+1)
end do
\[g(n) = -4.0^*\text{temp}(n-1) + 2.0^*\text{temp}(n) * (3.0-4.0^*x(n)) \]

return

cF24 Extended PSC1 Function
 *
 * Initial point: [3, 0.1, ..., 3, 0.1]
 *
 24 continue
 j=1
 do i=1,n/2
 g(j) = 2.0^*(x(2*i-1)**2+x(2*i)**2+x(2*i-1)*x(2*i)) +
 (2.0^*x(2*i-1)+x(2*i)) +
 2.0^*(\text{dsin}(x(2*i-1)))*\text{dcos}(x(2*i-1))

g(j+1) = 2.0^*(x(2*i-1)**2+x(2*i)**2+x(2*i-1)*x(2*i)) +
 (2.0^*x(2*i)+x(2*i-1)) -
 2.0^*(\text{dcos}(x(2*i)))*\text{dsin}(x(2*i))
 j=j+2
 end do
return

cF25 Perturbed Quadratic function PQ1
 *
 * Initial Point: [1, 1,,1].
 *
 25 continue
 temp1 = 0.0
 do i=1,n
 temp1 = temp1 + x(i)
 end do
 do i=1,n
 g(i) = float(i) * 2.0^* x(i) + temp1/50.0
 end do
return

cF26 Perturbed Quadratic function PQ2
 *
 * Initial Point: [0.5, 0.5,, 0.5].
 *
 26 continue
 temp1 = 0.0
 do i=1,n
 temp1 = temp1 + float(i)*x(i)
 end do
 do i=1,n
 g(i) = float(i)*2.0^*x(i) + 2.0^*temp1*float(i)
 end do
return

cF27 Almost Perturbed Quadratic
 *
 * Initial point x0=[0.5, 0.5, ...,0.5].
 *
 27 continue
* \(g(1) = 2.0d0 \times x(1) + (x(1)+x(n))/50.0d0 \)

\[
do \text{i=2, n-1} \\
g(i) = 2.0d0 \times \text{float}(i) \times x(i) \\
end do
\]

\(g(n) = 2.0d0 \times \text{float}(n) \times x(n) + (x(1)+x(n))/50.0d0 \)

return

Almost Perturbed Quartic

* Initial point \(x_0 = [0.5, 0.5, ..., 0.5] \).

```
cF28                   Almost Perturbed Quartic
* * Initial point x0=[0.5, 0.5, ...,0.5].
* * continue
28                    * g(1) = 4.0d0 \times x(1)**3 + (x(1)+x(n))/50.d0
  do i=2,n-1
  g(i) = 4.0d0 \times \text{float}(i) \times x(i)**3
  end do
  g(n) = 4.0d0 \times \text{float}(n) \times x(n)**3 + (x(1)+x(n))/50.d0
  return
```
cF31 Quadratic Diagonal Perturbed Function

 Initial Point: [0.5, 0.5,, 0.5].

31 continue

 temp1 = 0.d0
 do i=1,n
 temp1 = temp1 + x(i)
 end do

 do i=1,n
 g(i) = float(i) * x(i) / 50.d0 + 2.d0*temp1
 end do
 return

 cF32 FH1 (m=50)

 Full Hessian FH1 (Summ of Quadratics, Quadratic inside)

32 continue

 m=50

 do i=1,m
 u(i)=0.d0
 do j=1,n
 u(i) = u(i) + float(i)*float(j)*x(j)*x(j)
 end do
 end do

 *--
 do j=1,n
 g(j) = 0.d0
 do i=1,m
 g(j) = g(j) + 4.d0*(u(i)-1.d0)*float(i)*float(j)*x(j)
 end do
 end do
 return

 cF33 FH2

 Full Hessian FH2 (Quadratic, perturbed with sin/cos)

33 continue

 s = 0.d0
 do i=1,n
 s = s + x(i)
 end do

 do i=1,n
 g(i) = 2.d0*s + float(i)*(dcos(x(i)) - dsin(x(i)))/1000.d0
 end do
 return

 cF34 FH3

 Full Hessian FH3 (Quartic, perturbed with sin/cos)

34 continue

 s = 0.d0
 do i=1,n
\[s = s + x(i)^2 \]
end do

\[
\text{do } i=1,n \\
g(i) = 4.0d0 \times x(i) + \frac{\text{float}(i) \times (\cos(x(i)) - \sin(x(i)))}{1000.0d0}
\text{end do}
\]
return

cF35
*
Diagonal Full Bordered
*
* Initial point: [0.1, 0.1,, 0.1]
35 continue

\[
\text{do } i=1,n-2 \\
temp(i) = \sin(x(i+1)-x(n)) - x(1)^2 - x(i+1)^2
\text{end do}
\]

\[
g(1) = 4.0d0 \times (x(1)-1.0d0)^2 - 4.0d0 \times x(1) \times (x(n)^2-x(1)^2)
\text{do } i=1,n-2 \\
g(1) = g(1) - 4.0d0 \times \text{temp}(i) \times x(1)
\text{end do}
\]

\[
g(n) = 4.0d0 \times x(n) \times (x(n)^2-x(1)^2)
\text{do } i=1,n-2 \\
g(n) = g(n) - 2.0d0 \times \text{temp}(i) \times \cos(x(i+1)-x(n))
\text{end do}
\]
return

cF36
*
D-DBAUP3
*
* Initial point: \(x_0=[4, 0,, 4,0]\)
36 continue

\[
g(1) = 2.0d0 \times (x(1)-1.0d0) + 8.0d0 \times (x(1)^2-x(1)) \times (2.0d0 \times x(1)-1.0d0)
\text{do } i=2,n \\
g(1) = g(1) - 8.0d0 \times (x(i)^2-x(i))
\text{end do}
\]

\[
g(i) = 16.0d0 \times x(i) \times (x(i)^2-x(1)) + 2.0d0 \times (x(i)-1.0d0)
\text{end do}
\]
return

cF37
*
QP1 Extended Quadratic Penalty
*
* Initial Point: \([1, 1,,1]\).
37 continue

\[t1=0.0d0 \]
\text{do } i=1,n \\
t1 = t1 + x(i) \times x(i)
\text{end do}
\]
t1 = t1 - 0.5d0
do i=1,n-1
 g(i) = 4.d0*(x(i)*x(i)-2.d0)*x(i) + 4.d0*t1*x(i)
end do

 g(n) = 4.d0*t1*x(n)
return

cF38 QP2 Extended Quadratic Penalty Function
*
* Initial Point: [1, 1,,1].
*
38 continue

 t1=0.d0
 do i=1,n
 t1 = t1 + x(i)*x(i)
 end do
 t1 = t1 - 100.d0

do i=1,n-1
 g(i) = 2.d0*(x(i)*x(i)-dsin(x(i)))*(2.d0*x(i)-dcos(x(i)))*
 + 4.d0*t1*x(i)
end do

 g(n) = 4.d0*t1*x(n)
return

 cF39 QP3 Extended Quadratic Penalty
*
* Initial Point: [1., 1.,,1.].
*
39 continue

 t1=0.d0
 do i=1,n
 t1 = t1 + x(i)*x(i)
 end do
 t1 = t1 - 0.25d0

do i=1,n-1
 g(i) = -4.d0*(x(i)*x(i)-1.d0)*x(i) + 4.d0*t1*x(i)
end do

 g(n) = 4.d0*t1*x(n)
return

 cF40 STAIRCASE S1
*
* Initial point x0=[1,1,...,1].
*
40 continue

 g(1) = 2.d0*(x(1)+x(2)-1.d0)
 do i=2,n-1
 g(i) = 2.d0*(x(i-1)+x(i)-float(i-1)) +
 2.d0*(x(i)+x(i+1)-float(i))
 end do

 g(n) = 2.d0*(x(n-1)+x(n)-float(n-1))
return
cF41
STAIRCASE S2
*
Initial point \(x_0 = [1,1,...,1]\).
*
41 continue
g(1) = 2.d0 \cdot (x(1) + x(2)) + 2.d0
do i = 2, n-1
g(i) = 2.d0 \cdot (x(i-1) + x(i) - float(i)) +
* 2.d0 \cdot (x(i) + x(i+1) - float(i+1))
end do
g(n) = 2.d0 \cdot (x(n-1) + x(n) - float(n))
return

cF42
STAIRCASE S3
*
Initial point \(x_0 = [2,2,...,2]\).
*
42 continue
g(1) = 2.d0 \cdot (x(1) + x(2)) + 2.d0
do i = 2, n-1
g(i) = 2.d0 \cdot (x(i-1) + x(i) + float(i)) +
* 2.d0 \cdot (x(i) + x(i+1) + float(i+1))
end do
g(n) = 2.d0 \cdot (x(n-1) + x(n) + float(n))
return

cF43
NONDQUAR
Tridiagonal Double Borbed Arrow-Down
*
43 continue
g(1) = 2.d0 \cdot (x(1) - x(2)) + 4.d0 \cdot (x(1) + x(2) + x(n))**3
g(2) = -2.d0 \cdot (x(1) - x(2)) + 4.d0 \cdot (x(1) + x(2) + x(n))**3 +
* 4.d0 \cdot (x(2) + x(3) + x(n))**3
do i = 3, n-2
g(i) = 4.d0 \cdot (x(i-1) + x(i) + x(n))**3 +
* 4.d0 \cdot (x(i) + x(i+1) + x(n))**3
end do
g(n-1) = 4.d0 \cdot (x(n-2) + x(n-1) + x(n))**3 +
* 2.d0 \cdot (x(n-1) + x(n))
g(n) = 2.d0 \cdot (x(n-1) + x(n))
do i = 1, n-2
g(n) = g(n) + 4.d0 \cdot (x(i) + x(i+1) + x(n))**3
end do
return

cF44
TRIDIA (CUTE)
*
Initial point \(x_0 = [1,1,...,1]\).
*
44 continue
* alpha=5.d0
beta =1.d0
gamma=1.d0
delta=1.d0

g(1) = 2.0*gamma*(delta*x(1)-1.0)*delta -
* 4.0*(alpha*x(2)-beta*x(1))*beta

do i=2,n-1
 g(i) = 2.0*float(i)*(alpha*x(i)-beta*x(i-1))*alpha -
* 2.0*float(i+1)*(alpha*x(i+1)-beta*x(i))*beta
end do

g(n) = 2.0*float(n)*(alpha*x(n)-beta*x(n-1))*alpha
return

cF45 ARWHEAD (CUTENON)
* Initial point x0=[1,1,...,1].
* 45 continue
 do i=1,n-1
 g(i) = -4.0 + 4.0*x(i)*(x(i)**2+x(n)**2)
 end do
 g(n) = 0.0
do i=1,n-1
 g(n) = g(n) + 4.0*x(n)*(x(i)**2+x(n)**2)
end do
return

cF46 NONDIA (Shanno-78) (CUTCUTENON)
* Initial point x0=[-1,-1,...,-1].
* 46 continue
 c=100.d0

g(1)=2.0*(x(1)-1.0) + 2.0*c*(x(1)-x(1)**2)*(1.0-2.0*d0*x(1))
do i=2,n
 g(i) = g(1) + 2.0*c*(x(1)-x(i)**2)
end do

do i=2,n
 g(i) = -4.0*c*x(i)*(x(1)-x(i)**2)
end do
return

cF47 BDQRTIC (CUTENON)
* Initial point x0=[1.,1.,...,1.].
* 47 continue
*
n4 = n - 4

do i = 1, n4
 temp(i) = x(i)**2 + 2.0d0*x(i+1)**2 + 3.0d0*x(i+2)**2 * + 4.0d0*x(i+3)**2 + 5.0d0*x(n)**2
end do

g(1) = -8.0d0*(-4.0d0*x(1)+3.0d0) + *(4.0d0*temp(1)) *x(1)
g(2) = -8.0d0*(-4.0d0*x(2)+3.0d0) + *(8.0d0*temp(1)+ 4.0d0*temp(2)) *x(2)
g(3) = -8.0d0*(-4.0d0*x(3)+3.0d0) + *(12.0d0*temp(1)+ 8.0d0*temp(2)+ 4.0d0*temp(3)) *x(3)
g(4) = -8.0d0*(-4.0d0*x(4)+3.0d0) + *(16.0d0*temp(1)+12.0d0*temp(2)+ 8.0d0*temp(3)+ * 4.0d0*temp(4)) *x(4)

do i = 5, n4
 g(i) = -8.0d0*(-4.0d0*x(i)+3.0d0) + *(16.0d0*temp(i-3)+12.0d0*temp(i-2)+ * 8.0d0*temp(i-1)+4.0d0*temp(i)) *x(i)
end do

g(n4+1) = (16.0d0*temp(n4-2)+12.0d0*temp(n4-1)+8.0d0*temp(n4)) *x(n4+1)
g(n4+2) = (16.0d0*temp(n4-1)+12.0d0*temp(n4)) *x(n4+2)
g(n4+3) = (16.0d0*temp(n4)) *x(n4+3)

tsum = 0.0d0

do i = 1, n4
 tsum = tsum + temp(i)
end do

g(n) = 20.0d0*tsum*x(n)
return

cF48 DQDRTIC (CUTE)
*
* Initial point x0=[3,3,3...3].
*
48 continue

c=1000.0d0
d=1000.0d0
g(1) = 2.0d0*x(1)
g(2) = 2.0d0*c*x(2) + 2.0d0*x(2)

do i = 3, n-2
 g(i) = 2.0d0*(d0+d+c)*x(i)
end do

g(n-1) = 2.0d0*(c+d)*x(n-1)
g(n) = 2.0d0*d*x(n)
return

cF49 EG2 (CUTE)
*
* Initial point x0=[1,1,1...1].
*
49 continue
\[
g(1) = (1.0 + 2.0 \times x(1)) \times \cos(x(1) + x(1) \times x(1) - 1.0)
\]
\[
do i = 2, n - 1
\]
\[
g(i) = g(i) + \cos(x(1) + x(i) \times x(i) - 1.0)
\]
end do
\[
do i = 2, n - 1
\]
\[
g(n) = x(n) \times \cos(x(n) \times x(n))
\]
return

\[
cF50
cF51
\]
\[
\text{EG3}
\]
\[
\text{Initial point } x_0 = [1, 1, 1, \ldots, 1].
\]
\[
cF52
\]
\[
\text{EDENSCH Function (CUTE)}
\]
\[
\text{Initial Point: } [0., 0., \ldots, 0.].
\]
\[
f(1) = 4.0 \times (x(1) - 2.0)^2 + 2.0 \times x(2) \times (x(1) \times x(2) - 2.0 \times x(2))
\]
\[
do i = 2, n - 1
\]
\[
g(i) = 2.0 \times (x(i) - x(i - 1) \times x(i - 2.0) \times x(i)) +
\]
\[
\times (x(i + 1) - x(i) \times x(i) + 2.0 \times x(i) + 4.0 \times x(i - 2.0) \times x(i))
\]
end do
\[
g(n) = 2.0 \times (x(n) - x(n - 1) \times x(n) - 2.0 \times x(n)) +
\]
\[
2.0 \times (x(n) + 1.0)
\]
return

\[
cF52
\]
\[
\text{FLETCHCR (CUTE)}
\]
\[
\text{Initial Point: } [0.5, 0.5, \ldots, 0.5]
\]
\[
g(1) = 200.0 \times (x(2) - x(1) + 1.0 - x(1) \times x(1)) \times (-1.0 - 2.0 \times x(1))
\]
\[
do i = 2, n - 1
\]
\[
g(i) = 200.0 \times (x(i) - x(i - 1) + 1.0 - x(i - 1) \times x(i - 1)) +
\]
\[
200.0 \times (x(i + 1) - x(i) + 1.0 - x(i) \times x(i)) \times (-1.0 - 2.0 \times x(i))
\]

107
end do

g(n) = 200.d0*(x(n)-x(n-1)+1.d0-x(n-1)**2)
return

cF53

ENGVAL1 (CUTE)
*
* Initial point x0=[2.,2.,2...,2.].
*

53 continue

do i=1,n-1
 t(i) = x(i)*x(i) + x(i+1)*x(i+1)
end do

g(1) = 4.d0*x(1)*t(1) - 4.d0
do i=2,n-1
 g(i) = 4.d0*x(i)*t(i-1) + 4.d0*x(i)*t(i) - 4.d0
end do

g(n) = 4.d0*x(n)*t(n-1)
return

cF54

DENSCHNA (CUTE)
*
* Initial point: [8, 8,...,8]
*

54 continue

j=1
do i=1,n/2
 g(j) = 4.d0*x(2*i-1)**3 + 2.d0*(x(2*i-1)+x(2*i))
 g(j+1) = 2.d0*(x(2*i-1)+x(2*i)) +
 2.d0*(dexp(x(2*i)))*(-1.d0+dexp(x(2*i)))
 j=j+2
end do
return

cF55

DENSCHNB (CUTE)
*
* Initial point: [0.1, 0.1,...,0.1]
*

55 continue

j=1
do i=1,n/2
 g(j) = 2.d0*(x(2*i-1)-2.d0) + 2.d0*(x(2*i-1)-2.d0)*x(2*i)*x(2*i)
 g(j+1) = ((x(2*i-1)-2.d0)**2)*2.d0*x(2*i) + 2.d0*(x(2*i)+1.d0)
 j=j+2
end do
return

cF56

DENSCHNC (CUTE)
*
* Initial point: [8, 8,...,8]
*

56 continue
j=1
do i=1,n/2
 g(j) = 4.d0*x(2*i-1)*(-2.d0+x(2*i-1)**2+x(2*i)**2)+
* 2.d0*(dexp(x(2*i-1)-1.d0))*(-2.d0+dexp(x(2*i-1)-1.d0)+x(2*i)**3)
 g(j+1) = 4.d0*x(2*i)*(-2.d0+x(2*i-1)**2+x(2*i)**2)+
* 6.d0*(x(2*i)**2)*(-2.d0+dexp(x(2*i-1)-1.d0)+x(2*i)**3)
 j=j+2
end do
return

cF57 DENSCHNF (CUTE)
* Initial point: [2,0,2,0,...,2,0]
57 continue
j=1
do i=1,n/2
 g(j)=2.d0*(2.d0*(x(2*i-1)+x(2*i))**2+(x(2*i-1)-x(2*i))**2-8.d0)*
* (4.d0*(x(2*i-1)+x(i+1))+2.d0*(x(2*i-1)-x(2*i))) +
* 2.d0*(5.d0*x(2*i-1)**2+(x(2*i)-3.d0)**2-9.d0)*10.d0*x(2*i-1)
 g(j+1)=2.d0*(2.d0*(x(2*i-1)+x(i+1))**2+(x(2*i-1)-x(2*i))**2-8.d0)*
* (4.d0*(x(2*i-1)+x(2*i))-2.d0*(x(2*i-1)-x(2*i))) +
* 2.d0*(5.d0*x(2*i-1)**2+(x(2*i)-3.d0)**2-9.d0)*2.d0*(x(2*i)-3.d0)
 j=j+2
end do
return

cF58 SINQUAD (CUTE)
* Initial Point: [0.1, 0.1, ..., 0.1]
58 continue
 do i=1,n-2
 t(i) = dsin(x(i+1)-x(n)) - x(1)**2 + x(i+1)**2
 end do
 g(1) = 4.d0*(x(1)-1.d0)**3 - 4.d0*x(1)*x(n)**2-x(1)**2)
 do i=1,n-2
 g(1) = g(1) - 4.d0*t(i)*x(1)
 end do
 do i=2,n-1
 g(i) = 2.d0*t(i-1)*(dcos(x(i)-x(n))+2.d0*x(i))
 end do
 g(n) = 4.d0*x(n)**2-2*(x(1)**2)
 do i=1,n-2
 g(n) = g(n) - 2.d0*t(i)*dcos(x(i+1)-x(n))
 end do
 return

cF59 DIXON3DQ (CUTE)
* Initial Point x0=[-1, -1,..., -1]
59 continue
 g(1) = 2.d0*(x(1)-2.d0) + 2.d0*(x(1)-x(2))
do i=2,n-1
 g(i) = -2.d0*(x(i-1)-x(i)) + 2.d0*(x(i)-x(i+1))
end do

 g(n) = -2.d0*(x(n-1)-x(n)) + 2.d0*(x(n)-1.d0)
return

BIGGSB1 (CUTE)
*
* Initial Point: [0., 0.,,0.]
*
continue

g(1) = 4.d0*x(1) - 2.d0*x(2) - 2.d0

 do i=2,n-1
 g(i) = 4.d0*x(i) - 2.d0*x(i-1) - 2.d0*x(i+1)
 end do

 g(n) = 4.d0*x(n) - 2.d0*x(n-1) - 2.d0
return

PRODsin (m=n-1)
*
* Initial point x0=[5. 5, 5, 5,...,5].
*
continue

 m = n-1
 t1=0.d0
 t2=0.d0

 do i=1,m
 t1 = t1 + x(i)*x(i)
 end do

 do i=1,n
 t2 = t2 + dsin(x(i))
 end do

 do i=m+1,n
 g(i) = 2.d0*x(i)*t2 + t1*dcos(x(i))
 end do

 do i=m+1,n
 g(i) = t1*dcos(x(i))
 end do
return

PROD1 (m=n)
*
* Initial point x0=[1. 1, 1, 1,...,1].
*
continue

 m = n
 t1=0.d0
 t2=0.d0
do i=1,m
 t1 = t1 + x(i)
end do

doi=1,n
 t2 = t2 + x(i)
end do

doi=1,m
 g(i) = t1 + t2
end do

doi=m+1,n
 g(i) = t1
end do
return

cF63 PRODcos (m=n-1)
*
* Initial point x0=[5, 5, 5, ..., 5].
* 63 continue
c m = n-1
m=n/2
 t1=0.d0
 t2=0.d0

doi=1,m
 t1 = t1 + x(i)*x(i)
end do

doi=1,n
 t2 = t2 + dcos(x(i))
end do

doi=1,m
 g(i) = 2.d0*x(i)*t2 - t1*dsin(x(i))
end do

doi=m+1,n
 g(i) = -t1*dsin(x(i))
end do
return

cF64 PROD2 (m=1)
*
* Initial point x0=[15, 15, 15, ..., 15].
* 64 continue
m = 1
 t1=0.d0
 t2=0.d0

doi=1,m
 t1 = t1 + x(i)**4
end do

doi=1,n
 t2 = t2 + float(i)*x(i)
end do

do i=1,m
 g(i) = 4.d0*t2*x(i)**3 + float(i)*t1
end do

do i=m+1,n
 g(i) = float(i)*t1
end do
return

cF65
DIXMAANA (CUTE)
*
* Initial point x0=[2.0, 2.0, ..., 2.0].
* Modified m=n/4
65 continue
*
a = 1.d0
beta = 0.d0
gamma = 0.125d0
delta = 0.125d0
k1 = 0
k2 = 0
k3 = 0
k4 = 0
m = n/4

do i=1,n
 g(i) = 0.d0
end do

c1

do i=1,n
 g(i) = g(i) + 2.d0*a*x(i)*((float(i)/float(n))**k1)
end do

c2

g(1) = g(1) + 2.d0*beta*(x(1))*((x(2)+x(2)*x(2))**2)*
* ((float(1)/float(n))**k2)
do i=2,n-1
 g(i) = g(i) + 2.d0*beta*(x(i-1)**2)*(x(i)+x(i)**2)*
* (1.d0+2.d0*x(i))*((float(i-1)/float(n))**k2)+
* 2.d0*beta*x(i)*((x(i+1)+x(i+1)**2)**2)*
* ((float(i)/float(n))**k2)
end do

g(n) = g(n) + 2.d0*beta*(x(n-1)**2)*(x(n)+x(n)**2)*
* (1.d0+2.d0*x(n))

c3

do i=1,2*m
 g(i) = g(i) + 2.d0*gamma*x(i)*(x(i+m)**4)*
* ((float(i)/float(n))**k3)
g(i+m) = g(i+m) + gamma*(x(i)**2)*4.d0*(x(i+m)**3)*
* ((float(i)/float(n))**k3)
end do

c4

do i=1,m
 g(i) = g(i) + delta*x(i+2*m)*((float(i)/float(n))**k4)
g(i+2*m) = g(i+2*m) + delta*x(i)*((float(i)/float(n))**k4)
end do
return

cF66 DIXMAANB (CUTE)
* Initial point x0=[2.,2.,2...,2.].
* Modified m=n/4
66 continue
*
alpha = 1.d0
beta = 0.0625d0
gamma = 0.0625d0
delta = 0.0625d0

k1 = 0
k2 = 0
k3 = 0
k4 = 1

m = n/4

do i=1,n
 g(i) = 0.d0
end do

c1

do i=1,n
 g(i) = g(i) + 2.d0*alpha*x(i)*((float(i)/float(n))**k1)
end do

c2

g(1) = g(1) + 2.d0*beta*x(1)*((x(2)+x(2)*x(2)))**2)*
 (((float(1)/float(n))**k2)
do i=2,n-1
 g(i) = g(i) + 2.d0*beta*(x(i-1)**2)*(x(i)+x(i)**2)*
 (1.d0+2.d0*x(i))*((float(i)/float(n))**k2)+
 2.d0*beta*x(i)*((x(i+1)+x(i+1)**2)**2)*
 ((float(i)/float(n))**k2)
end do

 g(n) = g(n) + 2.d0*beta*(x(n-1)**2)*(x(n)+x(n)**2)*
 (1.d0+2.d0*x(n))

c3

do i=1,2*m
 g(i) = g(i) + 2.d0*gamma*x(i)*(x(i+m)**4)*
 (((float(i)/float(n))**k3)
 g(i+m) = g(i+m) + gamma*(x(i)**2)*4.d0*(x(i+m)**3)*
 ((float(i)/float(n))**k3)
end do

c4

do i=1,m
 g(i) = g(i) + delta*x(i+2*m)*((float(i)/float(n))**k4)
g(i+2*m) = g(i+2*m) + delta*x(i)*((float(i)/float(n))**k4)
end do
return

 cF67 DIXMAANC (CUTE)
* Initial point x0=[2.,2.,2...,2.].
* Modified m=n/4
DIXMAAND (CUTE)

* Initial point \(x_0=[2.,2.,2...,2.].\)
* Modified \(m=n/4\)

Code Snippet

```plaintext
continue
*
alpha = 1.d0
beta  = 0.125d0
gamma = 0.125d0
delta = 0.125d0
k1 = 0
k2 = 0
k3 = 0
k4 = 0
m = n/4
do i=1,n
  g(i) = 0.d0
end do
c1
do i=1,n
  g(i) = g(i) + 2.d0*alpha*x(i)*((float(i)/float(n))**k1)
end do
c2
g(1) = g(1) + 2.d0*beta*x(1)*((x(2)+x(2)*x(2))**2)*
     ((float(1)/float(n))**k2)
do i=2,n-1
  g(i) = g(i) + 2.d0*beta*(x(i-1)**2)*(x(i)+x(i)**2)*
     (1.d0+2.d0*x(i))*((float(i-1)/float(n))**k2)+
     2.d0*beta*x(i)*((x(i+1)+x(i+1)**2)**2)**2)*
     ((float(i)/float(n))**k2)
end do
g(n) = g(n) + 2.d0*beta*(x(n-1)**2)*(x(n)+x(n)**2)*
     (1.d0+2.d0*x(n))
c3
do i=1,2*m
  g(i) = g(i) + 2.d0*gamma*x(i)*(x(i+m)**4)*
     ((float(i)/float(n))**k3)
g(i+m) = g(i+m) + gamma*(x(i)**2)*4.d0*(x(i+m)**3)*
     ((float(i)/float(n))**k3)
end do
c4
do i=1,m
  g(i) = g(i) + delta*x(i+2*m)*((float(i)/float(n))**k4)
g(i+2*m) = g(i+2*m) + delta*x(i)*((float(i)/float(n))**k4)
end do
return
```

114
k2 = 0
k3 = 0
k4 = 0
m = n/4

do i=1,n
 g(i) = 0.d0
end do
c1

do i=1,n
 g(i) = g(i) + 2.d0*alpha*x(i)*((float(i)/float(n))**k1)
end do
c2
 g(1) = g(1) + 2.d0*beta*x(1)*((x(2)+x(2)*x(2))**2)*
 ((float(1)/float(n))**k2)
 do i=2,n-1
 g(i) = g(i) + 2.d0*beta*(x(i-1)**2)*(x(i)+x(i)**2)*
 (1.d0+2.d0*x(i))*(float(i-1)/float(n))**k2) +
 2.d0*beta*x(i)*((x(i+1)+x(i+1)**2)**2)*
 (float(i)/float(n))**k2)
 end do
 g(n) = g(n) + 2.d0*beta*(x(n-1)**2)*(x(n)+x(n)**2)*
 (1.d0+2.d0*x(n))
c3
 do i=1,2*m
 g(i) = g(i) + 2.d0*gamma*x(i)*(x(i+m)**4)*
 ((float(i)/float(n))**k3)
 g(i+m) = g(i+m) + gamma*(x(i)**2)*4.d0*(x(i+m)**3)*
 ((float(i)/float(n))**k3)
 end do
c4
 do i=1,m
 g(i) = g(i) + delta*x(i+2*m)*((float(i)/float(n))**k4)
 g(i+2*m) = g(i+2*m) + delta*x(i)*((float(i)/float(n))**k4)
 end do
return

cF69 DIXMAANL (CUTE)
* *
 Initial point x0=[2.,2.,2...,2.].
 Modified m=n/4
 continue
* ~
 alpha = 1.d0
 beta = 0.26d0
 gamma = 0.26d0
 delta = 0.26d0

 k1 = 2
 k2 = 0
 k3 = 0
 k4 = 2

 m = n/4

do i=1,n
 g(i) = 0.d0
end do
do i=1,n
 g(i) = g(i) + 2.d0*alpha*x(i)*((float(i)/float(n))**k1)
end do

g(1) = g(1) + 2.d0*beta*x(1)*((x(2)+x(2)**2)**2)*
 ((float(1)/float(n))**k2)
 do i=2,n-1
 g(i) = g(i) + 2.d0*beta*(x(i-1)**2)*(x(i)+x(i)**2)*
 (1.d0+2.d0*x(i))*((float(i)/float(n))**k2) +
 2.d0*beta*(x(i)**2)*(x(i+1)+x(i+1)**2)**2)*
 (1.d0+2.d0*x(i))
 end do

g(n) = g(n) + 2.d0*beta*(x(n-1)**2)*(x(n)+x(n)**2)*
 (1.d0+2.d0*x(n))

do i=1,2*m
 g(i) = g(i) + 2.d0*gamma*x(i)*(x(i+m)**4)*
 ((float(i)/float(n))**k3)
 g(i+m) = g(i+m) + gamma*(x(i)**2)*4.d0*(x(i+m)**3)*
 ((float(i)/float(n))**k3)
end do

do i=1,m
 g(i) = g(i) + delta*x(i+2*m)*((float(i)/float(n))**k4)
 g(i+2*m) = g(i+2*m) + delta*x(i)*((float(i)/float(n))**k4)
end do
return

+--+--+
| ARGLINB (m=5) | VARDIM (CUTE) |
+--+--+
| * Initial point x0=[0.01 0.001, ..., 0.01 0.001]. | * Initial point x0=[1-1/n, 1-2/n, ..., 1-n/n]. |
| * Modified m=n/4 | * Modified m=n/4 |
+--+--+

continue

m=5

do i=1,m
 u(i)=0.d0
 do j=1,n
 u(i) = u(i) + float(i)*float(j)*x(j)
 end do
end do

do j=1,n
 g(j) = 0.d0
 do i=1,m
 g(j) = g(j) + 2.d0*(u(i)-1.d0)*float(i)*float(j)
 end do
end do
return
\[s = \text{float}(n) \times \text{float}(n+1)/2.0 \]

\[t1 = 0.0 \]

\[
\text{do } i=1,n \\
\hspace{1cm} t1 = t1 + \text{float}(i) \times x(i) \\
\text{end do} \\
\hspace{1cm} t1 = t1 - s \\
\text{do } i=1,n \\
\hspace{1cm} g(i) = 2.0 \times (x(i) - 1.0) + 2.0 \times t1 \times \text{float}(i) + 4.0 \times \text{float}(i) \times t1^3 \\
\text{end do} \\
\text{return}
\]

cF72

DIAG-AUP1

* Initial point \(x_0 = [4., 4., ..., 4.] \).

*

72 continue

\[
g(1) = 4.0 \times (x(1)^2 - 1.0) \times x(1) + 8.0 \times (x(1)^2 - x(1) \times (2.0 \times x(1) - 1.0)) \\
\text{do } i=2,n \\
\hspace{1cm} g(1) = g(1) - 8.0 \times (x(i)^2 - x(1)) \\
\text{end do} \\
\text{do } i=2,n \\
\hspace{1cm} g(i) = 16.0 \times x(i) \times (x(i)^2 - x(1)) + 4.0 \times (x(i)^2) \times x(i) \\
\text{end do} \\
\text{return}
\]

cF73

ENGVAL8

* Initial point \(x_0 = [2., 2., ..., 2.] \).

*

73 continue

\[
g(1) = 4.0 \times (x(1)^2 + x(2)^2) \times x(1) + 8.0 \\
\text{do } i=2,n-1 \\
\hspace{1cm} g(i) = 4.0 \times (x(i-1)^2 + x(i)^2) \times x(i) + 4.0 \times (x(i)^2 + x(i+1)^2) \times x(i) + 8.0 \\
\text{end do} \\
g(n) = 4.0 \times (x(n-1)^2 + x(n)^2) \times x(n) \\
\text{return}
\]

cF74

QUARTIC (CUTE)

* Initial point \(x_0 = [2., 2., ..., 2.] \).

*

74 continue

\[
\text{do } i=1,n \\
\hspace{1cm} g(i) = 4.0 \times (x(i-1)^2)^3 \\
\text{end do} \\
\text{return}
\]
LIARWHD (CUTE)

* Initial point x0=[4., 4., ..., 4.].

75 continue

g(1) = 8.d0*(x(1)**2-x(1))*(2.d0*x(1)-1.d0) + 2.d0*(x(1)-1.d0)
do i=2,n
 g(1) = g(1) - 8.d0*(x(i)**2-x(1))
end do

do i=2,n
 g(i) = 8.d0*(x(i)**2-x(1))*(2.d0*x(i)) + 2.d0*(x(i)-1.d0)
end do
return

NONSCOMP (CUTE)

* Initial point x0=[3., 3., ..., 3.].

76 continue

g(1) = 2.d0*(x(1)-1.d0) - 8.d0*(x(2)-x(1)**2)*(2.d0*x(1))
do i=2,n-1
 g(i) = 8.d0*(x(i)-x(i-1)**2) - 8.d0*(x(i+1)-x(i)**2)*(2.d0*x(i))
end do

78 continue

g(1) = 2.d0*(x(1)-1.d0) - 600.d0*(x(2)-x(1)**3)*(x(1)**2)
do i=2,n-1
 g(i) = 200.d0*(x(i)-x(i-1)**3) - 600.0*(x(i+1)-x(i)**3)*(x(i)**2)
end do

Linear Perturbed

* Initial point x0=[2., ..., 2.]

77 continue

do i=1,n
 g(i) = float(i)*2.d0*x(i) + 1.d0/100.d0
end do
return

CUBE

* Initial point x0=[-1.2, 1., -1.2, 1., ..., -1.2, 1.]

78 continue

g(1) = 2.d0*(x(1)-1.d0) - 600.d0*(x(2)-x(1)**3)*(x(1)**2)
do i=2,n-1
 g(i) = 200.d0*(x(i)-x(i-1)**3) - 600.0*(x(i+1)-x(i)**3)*(x(i)**2)
end do

HARKERP
Initial point $x_0 = [1, 2, \ldots, n]$

```
s = 0.d0
```

```
do i=1,n
  s = s + x(i)
end do
```

```
do i=1,n
  g(i) = 2.d0*s - 1.d0 - x(i)
end do
```

```
return
```

```
Initial point $x_0 = [2, 2, \ldots, 2]$
```

```
do i=1,n
  g(i) = 4.d0*(x(i) - \text{float}(i))**3
end do
```

```
return
```

Dr. Neculai Andrei
Center for Advanced Modeling and Optimization, Academy of Romanian Scientists, Bucharest, Romania