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Abstract. A double parameter scaled BFGS method for unconstrained optimization is 

presented. In this method, the first two terms of the known BFGS update formula are 

scaled with a positive parameter while the third one is scaled with another positive 

parameter. These parameters are selected in such a way as to improve the eigenvalues 

structure of the BFGS update. The parameter scaling the first two terms of the BFGS 

update is determined by clustering the eigenvalues of the scaled BFGS matrix. On the 

other hand, the parameter scaling the third term is determined as a preconditioner to the 

Hessian of the minimizing function combined with the minimization of the conjugacy 

condition from conjugate gradient methods. Under the inexact Wolfe line search, the 

global convergence of the double parameter scaled BFGS method is proved in very 

general conditions without assuming the convexity of the minimizing function. Using 80 

unconstrained optimization test functions with a medium number of variables, the 

preliminary numerical experiments show that this double parameter scaled BFGS 

method is more efficient than the standard BFGS update or than some other scaled BFGS 

methods. 
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1. Introduction 

Let : nf R R  be a continuously differentiable function bounded from below and consider the 

following unconstrained minimization problem: 

                                                                        min ( ),f x                                                             (1.1) 

where .nx R  Given an initial point 0
nx R  and an initial approximation 0

n nB R   to the 

Hessian  of function ,f  symmetric and positive definite, for solving (1.1) the well known quasi-

Newton BFGS method introduced by Broyden [1], Fletcher [2], Goldfarb [3] and Shanno [4], 

generates a sequence { }kx  computed by the scheme: 

                                                                   1 ,k k k kx x d                                                         (1.2) 

0,1, ,k   where kd  is the BFGS search direction obtained as solution of the linear algebraic 

system 

                                                                       ,k k kB d g                                                           (1.3) 
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and kg  is the gradient ( )kf x  of f  at .kx  In (1.3) the matrix kB  is the BFGS approximation to 

the Hessian 2 ( )kf x  of f  at ,kx  being updated by the classical formula: 

                                                         1 ,
T T

k k k k k k
k k T T

k k k k k

B s s B y y
B B

s B s y s
                                              (1.4) 

0,1, ,k   where 1k k ks x x   and 1 .k k ky g g   An important property of the BFGS 

updating formula (1.4), which we call standard BFGS, is that 1kB   inherits the positive 

definiteness of kB  if 0.T
k ky s   The condition 0k

T

k sy  holds if the stepsize k  in (1.2) is 

determined by the Wolfe line search conditions [5, 6]: 

                                                   ( ) ( ) ( ) ,T
k k k k k k kf x d f x g x d                                        (1.5) 

                                                   ( ) ( ) ,T T
k k k k k kg x d d g x d                                                  (1.6) 

where the positive constants   and   satisfy 0 1.     We note that the condition 0T
k ky s   

is also guaranteed to hold if the stepsize k  is determined by the exact line search: 

min{ ( ), 0}.k kf x d    Since kB  is positive definite, the search direction kd  generated by 

(1.3) is a descent direction of f  at ,kx  no matter whether the Hessian is positive definite or not.  

The BFGS method proved to be one of the most efficient quasi-Newton methods for 

solving small and medium-size unconstrained optimization problems. An excellent presentation 

of the theoretical aspects concerning the properties and the convergence of this method were 

given by Dennis and Moré [7, 8]. At the same time, a deep analysis of the BFGS method and its 

variants was presented by Nocedal [9]. The BFGS method is fast and robust and it is currently 

used in innumerable optimization software for solving unconstrained or constrained optimization 

problems. The main results concerning its convergence property are as follows. For twice 

continuously differentiable convex functions with compact level sets, Powel [10] proved the 

global convergence of the BFGS algorithm. Under the exact line search or under some special 

inexact line searches, for convex minimization problems the BFGS method is globally convergent 

[11, 12, 13, 14, 15]. On the other hand, for nonconvex problems under the exact line search, 

Mascarenhas [16] proved that the BFGS method and some other methods in the Broyden class 

may fail. For non-convex functions with line searches that satisfy the Wolfe conditions, Yu-Hong 

Dai [17] showed that the BFGS method may fail. However, the BFGS method has very 

interesting properties and remains one of the most respectable quasi-Newton methods for 

unconstrained optimization [9, 18 ]. 

 The most important properties of the BFGS method are its self-correcting quality and 

better corrections of the small eigenvalues than the large ones (see Nocedal [9]).  Concerning the 

self-correcting quality, it was proved that if the current inverse approximation to the Hessian kH  

of the minimizing function incorrectly estimates the curvature of this function, i.e. if this estimate 

slows down the iteration, then the BFGS Hessian approximation will tend to correct itself within 

a few steps. Another important property explained by Nocedal [9] is that it better corrects small 

eigenvalues than large ones. Powell [19] proved that BFGS with inexact Wolfe line search is 

globally superlinear convergent for convex problems. On the other hand, Byrd and Nocedal [12] 

extended Powell’s analysis and obtained global convergence of BFGS with backtracking line 

search. Furthermore, under the Wolfe inexact line search, Byrd, Nocedal and Yuan [11] 

established the global and the superlinear convergence of the Broyden’s quasi-Newton methods 

on convex problems (excepting DFP method). Intensive numerical experiments on minimizing 

functions with different dimensions and complexities showed that the BFGS method may require 

a large number of iterations or function and gradient evaluations on certain problems [20]. The 

sources of inefficiency of the BFGS method may be caused by a poor initial approximation to the 
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Hessian or, more importantly, by the ill-conditioning of the Hessian approximations along the 

iterations, thus leading to a poorly defined search direction.  

In order to improve the performances of the BFGS method, the self-scaling BFGS 

methods have been derived, firstly suggested and analyzed for the minimization of the quadratic 

functions. Oren and Luenberger [21] scaled the Hessian approximation kB  before updating it, i.e. 

they replaced kB  by ,k kB  where k  is a self-scaling factor computed to reduce the condition 

number of kR  when it is applied to a quadratic function with Hessian ,G  where 1/2 1/2
k kR G H G  

and kH  is the current inverse approximation to the Hessian. Nocedal and Yuan [22] further 

studied the self-scaling BFGS method when / ,T T
k k k k k ky s s B s   where 1k k ks x x   and 

1 ,k k ky g g   (see also Nocedal [9]). An extension of this self-scaling BFGS method was 

considered by Al-Baali [23], who introduced a simple modification: min{1, }.k k   The 

numerical experiments in [23] showed that the modified self-scaling BFGS method is competitive 

versus the unscaled BFGS method. In the same line of efforts, Al-Baali [24] introduced a 

restricted class of self-scaling quasi-Newton methods which imposed some conditions on the 

Broyden family parameter and on the self-scaling factor .k  The global convergence and the 

local superlinear convergence of this class of self-scaling methods with inexact line search were 

proved by Al-Baali [24]. The numerical experiments with this restricted class of self-scaling 

quasi-Newton methods were reported by Al-Baali [25] on a set of small test unconstrained 

optimization problems up to 20 variables.   

Many other modified BFGS methods were suggested. Using different function 

interpolation conditions, Biggs [26, 27] and Yuan [28] obtained some modified BFGS methods 

and proved their global convergence. The idea of their method was to scale the third term of the 

BFGS updating formula. The modified BFGS method by Yuan uses both the gradient and the 

function values information in one step. Another self-scaling modified BFGS method was 

suggested by Aiping Liao [29]. In this method two positive scaling parameters which scale the 

second and the third terms of the BFGS updating formula were introduced, which correct the 

eigenvalues of kB  better than the original unscaled BFGS does. The global convergence of this 

two parameters scaled BFGS modified method is proved by using a tool introduced by Byrd and 

Nocedal [12]. Another scaled BFGS method was proposed by Nocedal and Yuan [22], where the 

first two terms of the BFGS updating formula are scaled by the same factor / .T T
k k k k ky s s B s  They 

proved that this scaled BFGS method under inexact line search is globally convergent on general 

convex functions. They reported disappointing numerical results with their self-scaling BFGS 

method, this being consistent with the analysis given by Shanno and Phua [30]. A recent spectral 

scaling BFGS method was proposed by Cheng and Li [31]. In their method, the standard BFGS 

update is modified by introducing a positive scale factor k  to the third term of the BFGS 

updating formula, which is exactly the Barzilai and Borwein [32] parameter obtained by 

minimizing 
2
.k k ks y  Comparisons of this spectral scaled BFGS method versus some other 

scaled modified BFGS methods given by Yuan [28], Al-Baali [25], Zhang and Xu [33] proved 

that this spectral scaled BFGS method is clearly more efficient and more robust. Another very 

recent adaptive scaled BFGS method has been suggested by Andrei [34]. In this method the third 

term in the standard BFGS update formula is scaled by a positive factor in order to reduce the 

large eigenvalues of the approximation to the Hessian of the minimizing function. Under the 

inexact Wolfe line search, the global convergence of this adaptive scaled BFGS method is proved 

in very general conditions without assuming the convexity of the minimizing function. Intensive 

numerical experiments on unconstrained optimization test functions with a medium number of 

variables (up to 100) show that this variant of the scaled BFGS method is more efficient than the 
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standard BFGS update or than some other well established scaled BFGS methods, including those 

of Biggs [26, 27], Cheng and Li [31] and Yuan [28]. 

This idea of scaling is now commonly applied only after the first iteration of a quasi-

Newton method. A different approach was proposed by Powell [19] and further developed by 

Lalee and Nocedal [35] and Siegel [36]. Powell’s idea was to work with a factorization 
T

k k kH Z Z  of the inverse Hessian. On the other hand, Lalee and Nocedal [35] extended Powell’s 

idea to scale down the columns of kZ  that are too large, as well as to scale up those which are too 

small. Siegel [36] suggested scaling up the last l  columns of ,kZ  where l  is an integer 

parameter. 

In this paper we introduce a new scaled BFGS method with two parameters. The idea of 

this new two parameter scaled BFGS method is to improve its self-correcting property by scaling 

the first two terms of the standard BFGS update with a positive parameter and the third one with 

another positive parameter. In Section 2 we present some procedures for selection of the scaling 

parameters in scaled BFGS update as found in literature. Section 3 is devoted to detail a two 

parameter scaled BFGS update and the corresponding TPSBFGS algorithm. The parameter 

scaling the first two terms of the standard BFGS update is determined to cluster the eigenvalues 

of this matrix. The parameter scaling the third term is determined to reduce its large eigenvalues, 

thus obtaining a better distribution of them. Some properties of this algorithm are proved. The 

global convergence analysis of the double parameter scaled BFGS algorithm is presented in 

Section 4. The analysis is based on the developments presented in [12, 34] and [37]. We find that 

the double parameter scaled BFGS algorithm is globally convergent in very general conditions 

without the convexity assumption of the minimizing function and when the scaling parameters 

are bounded. Our analysis is based on the trace of the BFGS approximation of the Hessian. In 

Section 5 some numerical results of the suggested double parameter scaled BFGS algorithm are 

presented by using 80 unconstrained optimization medium size test problems. At the same time, 

comparisons versus the standard BFGS algorithm, as well as versus some other scaled BFGS 

algorithms by Biggs [26, 27], Cheng and Li [31], Yuan [28], Nocedal and Yuan [22], Andrei [34] 

and Liao [29] are given. We have the computational evidence that our double parameter scaled 

BFGS algorithm is much more efficient and more robust than all these scaled BFGS algorithms. 

However, the scaled BFGS update by Andrei [34] is more efficient. 

 

 

2. Selection of the Scaling Parameters in the BFGS update 

One of the first scaled BFGS update was  

                                                   1 ,
T T

k k k k k k
k k kT T

k k k k k

B s s B y y
B B

s B s y s
                                                (2.1) 

where 0k   is a parameter. For the scaling parameter k  in (2.1) some values have been 

proposed in literature, as follows.  

 

1) Scaled BFGS with different interpolation conditions (Biggs [26, 27] and Yuan [28]). 

Observe that the quasi-Newton step k k kd H g   is a stationary point of the following problem: 

                                             
1

min ( ) ( ) .
2

n

T T
k k k kd R

d f x g d d B d


                                         (2.2) 

Since for small ,d  ( ) ( ),k kd f x d    it follows that the problem (2.2) is an approximation to the 

problem (1.1) near the current point .kx  From (2.2) we have that 

                                                   (0) ( ),k kf x     (0) ( ),k kg x                                              (2.3) 

and the quasi-Newton condition 1 1k k kH y s   is equivalent to  
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                                                          1 1( ) ( ).k k k kx x g x                                                       (2.4) 

Therefore ( )k kx x   is a quadratic interpolation of ( )f x  at kx  satisfying the above conditions 

(2.3) and (2.4).  

If the objective function is cubic along the line segment connecting 1kx   and kx  and the 

Hermite interpolation is used on the same line between 1kx   and ,kx  then the following condition 

holds 

                               2
1 1 1 1 1 1( ) 4 2 6( ( ) ( )).T T T

k k k k k k k k ks f x s s g s g f x f x                                 (2.5) 

Biggs [26, 27] considers the update (2.1) where the value of k  is chosen in such a way that the 

new approximate Hessian satisfies the reasonable condition 

                                    1 1 1 1 1 14 2 6( ( ) ( )).T T T
k k k k k k k k ks B s s g s g f x f x                                     (2.6) 

Therefore, the value of k  proposed by Biggs is 

                                             1 1

6
( ( ) ( ) ) 2.T

k k k k kT
k k

f x f x s g
y s

                                           (2.7) 

For one-dimensional problems, Wang and Yuan [38] showed that the scaled BFGS (2.1) with k  

given by (2.7) and without line search is R-linear convergent. 

In the same line of research, Yuan [28] considered that the approximate function ( )k d  

satisfies the interpolation condition 

                                                           1 1( ) ( )k k k kx x f x                                                        (2.8) 

instead of (2.4) and determines the following value for the scaling parameter 

                                                1 1

2
( ( ) ( ) ).T

k k k k kT
k k

f x f x s g
y s

                                             (2.9) 

For uniformly convex functions it is easy to prove that there exists a constant 0   such that for 

all ,k  [ ,2].k   Powell [39] showed that the scaled BFGS update (2.1) with k  given by (2.9) 

is globally convergent for convex functions with inexact line search. However, for general 

nonlinear functions, the inexact line search does not involve the positivity of .k  In these cases 

Yuan restricted k  in the interval [0.01,100]  and proved the global convergence of this variant of 

the scaled BFGS method. 

 

 2) Spectral scaled BFGS (Cheng and Li [31]). Another scaled BFGS method was 

introduced by Cheng and Li [31]. In this update the scaling parameter k  in (2.1) is computed as 

                                                                    
2

,
T
k k

k

k

y s

y
                                                              (2.10) 

obtained as solution of the problem: 
2

min .k k ks y  Observe that (2.10) is exactly one of the 

spectral stepsizes introduced by Barzilai and Borwein [32]. Therefore, the scaled BFGS method 

given by (2.1) with k  given by (2.10) is viewed as the spectral scaled BFGS method. Under 

classical assumptions it is proved that this spectral scaled BFGS method with Wolfe line search is 

globally convergent and R-linear convergent for convex optimization problems. Using some test 

problems with dimensions between 10 and 500 from the CUTE collection [40], Cheng and Li 

[31] present the computational evidence that their spectral scaled BFGS algorithm is top 

performer versus the standard BFGS and versus the scaled BFGS algorithms by Al-Baali [25], 

Yuan [28] and Zhang and Xu [33]. 
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3) Scaled BFGS with diagonal preconditioning and conjugacy condition (Andrei [34]). 

Andrei [34] introduced another scaled BFGS update given by (2.1), in which the scaling 

parameter k  is computed in an adaptive manner as: 

 

 

 

                                                         
2

min ,1 ,
T
k k

k

k k

y s

y




  
  

  

                                                (2.11) 

where 0k  for all .,1,0 k  Since under the Wolfe line search conditions (1.5) and (1.6) 

0T
k ky s   for all 0,1, ,k   it follows that k  given by (2.11) is bounded away from zero, i.e. 

.10  k  It is proved that if k  is selected as in (2.11), where 0k  for all ,,1,0 k  then 

the large eigenvalues of 1kB  given by (2.1) are shifted to the left [34]. Intensive numerical 

experiments showed that this scaled BFGS algorithm with 1
T

k k ks g   is the best one, being 

more efficient and more robust versus the standard BFGS algorithm as well as versus some other 

scaled BFGS algorithms, including the versions of Biggs [26, 27], Yuan [28] and Cheng and Li 

[31]. The theoretical justification of this selection of the parameter k  is as follows. To have a 

good algorithm, we hope that k I  is a diagonal preconditioner of 2
1( )kf x   that reduces the 

condition number to the inverse of 2
1( ),kf x   i.e. it reduces the large eigenvalues. Such matrix 

k I  should be a rough approximation to the inverse of 2
1( ).kf x   Therefore, k  can be 

computed to minimize 
2
.k k ks y  On the other hand, for nonlinear functions, the classical 

conjugacy condition used by Hestenes and Stiefel [41] for quadratic functions which incorporate 

the second-order information is 1 1.
T T
k k k kd y s g    Therefore, in our algorithm we want k I  to be 

a diagonal preconditioner of 2
1( )kf x   and also to minimize the conjugacy condition, i.e. k  can 

be selected to minimize a combination of these two conditions: 

                                                          
2 2

1min{ }.T
k k k k k ks y s g     

 

4) Scaling the first two terms of the BFGS update with a parameter (Oren and 

Luenberger [21] and Nocedal and Yuan [22]). This scaled BFGS update is defined as: 

 

                                                    1 ,
T T

k k k k k k
k k k T T

k k k k k

B s s B y y
B B

s B s y s


 
   

 
                                     (2.12) 

 

where k  is a positive parameter. Concerning the selection of k  in (2.12) Oren and Luenberger 

[21] suggested /T T
k k k k k ky s s B s   being one of the best, as it simplifies the analysis. Furthermore, 

Nocedal and Yuan [22] presented a deep analysis of this scaling quasi-Newton method and 

showed that even if the corresponding algorithm with inexact line search is superlinear 

convergent on general functions, it is computationally expensive as regards the steplength 

computation. In other words, the numerical results with this scaling BFGS algorithm are not 

convincing.  
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5) Scaling the last terms of the BFGS update with two parameters (Liao [29]). In another 

avenue of research, Liao [29] introduced the two parameter modified (scaled) BFGS method:  

 

                                                  1

T T
k k k k k k

k k k kT T
k k k k k

B s s B y y
B B

s B s y s
                                             (2.13) 

and proved that this scaled BFGS method with two positive parameters corrects the large 

eigenvalues better than the standard BFGS method given by (1.4) does. In other words, it has 

been proved that this scaled BFGS method has a strong self-correcting property with respect to 

the determinant [29]. In Liao’s method, the parameters scaling the terms in the BFGS update are 

computed in an adaptive way subject to the values of a positive parameter as: 

 

                      
, , if ,

( , )

( ,1), otherwise,

T T T
k k k k k k k k

kT T T T T T
k k k k k k k k k k k k k k k k k

k

s B s y s s B s

s B s y s s B s y s s B s y s


 



 
 

    



             (2.14) 

 

where 0 1.k   Liao [29] proposed 2exp( 1/ ).k k    Using a tool given by Byrd and Nocedal 

[12], Liao proved that the scaled BFGS method given by (2.13)-(2.14) with the Wolfe line search 

generates iterates which converge superlinearly to the optimal solution. Limited numerical 

experiments with Liao’s scaled BFGS method proved that this is competitive with the standard 

BFGS method and it corrects large eigenvalues better than the standard BFGS method. 

 

 

3. A Two Parameter Scaled BFGS Update and the TPSBFGS Agorithm  

Two important tools in the analysis of the properties and of the convergence of the BFGS method 

are the trace and the determinant of the standard 1kB   given by (1.4). The trace of a matrix is 

exactly the sum of its eigenvalues. The determinant of a matrix is the product of its eigenvalues. 

By direct computation from (1.4) we get:  

                                                  

2 2

1( ) ( ) .
k k k

k k T T
k k k k k

B s y
tr B tr B

s B s y s
                                              (3.1) 

On the other hand 

1

1det( ) det
T T

k k k k k k
k k T T

k k k k k

s s B B y y
B B I

s B s y s





  
    

   

 

                                                         1( )
det( )det .

T T
k k k

k k k kT T
k k k k k

B s y
B I s B y

s B s y s

 
   

 
 

Now, applying the identity (see [42]) 

                                1 2 3 4 1 2 3 4 1 4 2 3det( ) (1 )(1 ) ( )( )T T T T T TI u u u u u u u u u u u u                              (3.2) 

where  

1 ,ku s   2 ,k k
T
k k k

B s
u

s B s
   1

3 k ku B y  and  4 ,k
T
k k

y
u

y s
  

we obtain: 

                                                        1det( ) det( ) .
T
k k

k k T
k k k

y s
B B

s B s
                                                 (3.3) 

In practical implementations the search direction is computed as  
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                                                                       ,k k kd H g                                                          (3.4) 

where kH  is the BFGS approximation to the inverse Hessian 2 1( )kf x   of f  at ,kx  i.e. 

1.k kH B  With a  little algebra, using the rank-one Sherman-Morrison-Woodbury formula twice, 

from (1.4) we get: 

                                       1 1 .
T T T T

k k k k k k k k k k k
k k T T T

k k k k k k

H y s s y H y H y s s
H H

y s y s y s


 
    

 
                      (3.5) 

 

Also, for the stepsize computation, in practical implementations the inexact Wolfe line search 

conditions (1.5) and (1.6) are used.  

 

As we know, the efficiency of the BFGS method is dependent on the structure of the 

eigenvalues of the approximation to the Hessian matrix [9]. Powell [19] and Byrd, Liu and 

Nocedal [43] emphasized that the BFGS method actually suffers more from the large eigenvalues 

than from the small ones. Observe that the second term on the right hand side of (3.1) is negative. 

Therefore, it produces a shift of the eigenvalues of 1kB   to the left. Thus, the BFGS method is 

able to correct large eigenvalues. On the other hand, the third term on the right hand side of (3.1) 

being positive produces a shift of the eigenvalues of 1kB   to the right. If this term is large, 1kB   

may have large eigenvalues, too. Therefore, a correction of the eigenvalues of 1kB   can be 

achieved by scaling the corresponding terms in (1.4) and this is the main motivation for which we 

use the scaled BFGS methods. In this paper we scale the first two terms in (1.4) with a positive 

scaling parameter and the third one with another positive scaling parameter in order to correct the 

large eigenvalues of 1.kB   However, it must be a balance between these eigenvalue shifts, 

otherwise the Hessian approximation could either approach singularity or become arbitrarily 

large, thus determining the failure of the method [9].   

Motivated by the idea of changing the structure of the eigenvalues of the BFGS 

approximation to the Hessian matrix, in this paper we propose a double parameter scaled BFGS 

method in which the updating of the approximation Hessian matrix 1kB   is computed as: 

 

                                                   1 ,
T T

k k k k k k
k k k kT T

k k k k k

B s s B y y
B B

s B s y s
 

 
   

 
                                    (3.6) 

 

where k  and k  are positive parameters. In our scaled BFGS method the parameter k  is 

selected to cluster the eigenvalues of 1.kB   On the other hand, k  is determined to reduce the 

large eigenvalues of 1,kB   thus obtaining a better distribution of the eigenvalues. It is worth 

saying that a variant of this scaled BFGS update was considered by Nocedal and Yuan [22], 

where /T T
k k k k k ky s s B s   and 1.k   Using the rank-one Sherman-Morrison-Woodbury update 

formula twice, from (3.6) we get 1
1 1,k kH B
   where 

 

                                 1

1
,

T T T T
k k k k k k k k k k k k

k k T T T
k kk k k k k k

H y s s y H y H y s s
H H

y s y s y s



 


  
     

   

                 (3.7) 

 

is the approximation to the inverse Hessian.  
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Proposition 2.1. If the stepsize k  is determined by the Wolfe line search (1.5) and (1.6), kB  is 

positive definite and 0,k   then 1kB   given by (3.6) is also positive definite. 

 

Proof  Using  the symmetry and the positivity of ,kB  we have 

2( ) ( )( ),T T T
k k k k k ks B z s B s z B z  

with equality if 0z  or .0ks  On the other hand, by the Wolfe line search (1.5) and (1.6) we 

have that 0.T
k ky s   Therefore, using the above inequality we get: 

                        1

T T T T
T T k k k k k k

k k k k kT T
k k k k k

z B s s B z z y y z
z B z z B z

s B s y s
       

                                     
2 2 2( ) ( ) ( )

0,
T T T

T k k k k
k k k k kT T T

k k k k k k k

z B s z y z y
z B z

s B s y s y s
         

for any nonzero .z                                                                                                                            

 

The above proposition says that 1kB   given by (3.6) with 0k   inherits the positive definiteness 

of kB  and it does not rely on the line search used or on the convexity of the function .f  

Moreover, observe that this property is not dependent on the values of the parameter .k  

Therefore, (3.6) is well defined if 0,T
k ky s   which is satisfied if the stepsize is determined by the 

Wolfe line search conditions (1.5) and (1.6). The corresponding scaled BFGS algorithm can be 

presented as follows. 

 

 

 Two Parameter Scaled BFGS algorithm – TPSBFGS 

1. Initialization. Choose an initial point 0
nx R  and an initial positive definite matrix 0.H  

Choose the constants ,    with 0 1,     and 0   sufficiently small. Compute 

0 0( ).g f x   Set 0 0.d g   Set 0.k   

2. Test a criterion for stopping the iterations. For example, if ,kg   then stop the 

iterations. Otherwise, continue with step 3. 

3. Compute the stepsize 0k   satisfying the Wolfe line search conditions (1.5) and (1.6). 

4. Compute 1 ,k k k kx x d    1 1( )k kf f x   and 1 1( ).k kg f x    Set 1 ,k k ks x x   

1 .k k ky g g   

5. Compute the scaling factors k  and .k  

6. Update the inverse Hessian kH  using (3.7). 

7. Compute the search direction as 1 1 1.k k kd H g     

8. Set 1k k   and continue with step 2.                                                                                

  

Observe that if 1k   and 1k   for all 0,1,...,k   then the above algorithm is exactly the 

standard BFGS algorithm. For different values of the parameters k  and k  in (3.6) (or (3.7)), 

different scaled BFGS algorithms are obtained. The algorithm is very general, very easy to 

implement, but it is applicable only on solving small and medium unconstrained optimization 

problems. 
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To implement the TPSBFGS algorithm, some procedures for k  and k  in step 5 must be 

given. A variant of TPSBFGS, we consider later in our numerical experiments, is as follows. 

Since the scaled BFGS with diagonal preconditioning and conjugacy condition where the scaling 

parameter k  is computed in an adaptive manner as: 

                                                         
2

1

min ,1 ,
T
k k

k T
k k k

y s

y s g




 
 

  
  

                                           (3.8) 

 

is the best one, in a variant of the general TPSBFGS algorithm we suggest that k  be computed 

as in (3.8) for all .,1,0 k  Observe that 0 1.k   

For selection of k  we propose the following strategy. As we know, the performances of 

the BFGS method are much improved if the eigenvalues of the iteration matrix (3.6) are clustered 

(see [44]). From (3.6) observe that 

 

                                            

2 2

1( ) ( ) .
k k k

k k k k kT T
k k k k k

B s y
tr B tr B

s B s y s
                                          (3.9) 

 

Nocedal [9] proved that the third term on the right hand side of (3.1) is bounded by a positive 

constant. In our algorithm the third term on the right hand side of (3.9) is reduced by the selection 

of 1k   as in (3.8). Since the trace of a matrix is the sum of its eigenvalues, in our double 

parameter scaled TPSBFGS algorithm we suggest that the parameter k  should be selected in 

such a way that 1( )ktr B   given by (3.9) to be equal to .n  The idea is to select k  such that the 

eigenvalues of 1kB  to be clustered. Therefore, from the equation 1( )ktr B n   we obtain:  

                                                               

2

2
,

k
k T

k k
k

k k

T
k k k

y
n

y s

B s
n

s B s











                                                      (3.10) 

 

where k  is given by (3.8). A characterization of k  is as follows. 

 

Proposition 3.1. Let k  be computed as in (3.10). Then, for any 0,1,k  , k  is positive and 

close to 1.                                                           

 

Proof Observe that along the iterations .01 k

T

k gs  Therefore, 
2 2

1/ ( )T
k k k ky y s g   is close 

to 1. On the other hand, kB  is symmetric and positive definite. Therefore, it has real and positive 

eigenvalues: .,,1 n   Since kB  is nonsingular and ,)( nBtr k   it follows that for any 

,,,1 ni   0i   such that 
1

.
n

ii
n


  Observe that 

2

0 0 0 0 0.
TB s s B s  But, for k  

sufficiently large, 
2

0 1k kB s   and 0 1.T
k k ks B s   Since 

2

k kB s  and T
k k ks B s  are 

approximately of the same order of magnitude, it follows that 
2

/ .T
k k k k kn B s s B s  Therefore, 
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we have 
2

/ T
k k k kn y y s  and ,/

2

kk

T

kkk sBssBn   i.e. for any 0,1, ,k   k  is positive 

and close to 1. Observe that the bigger n  is, the closer to 1 k  is.                                                 

 

In order to investigate the properties and the convergence rate of the algorithm TPSBFGS 

let us consider the analysis of the minimization of the strictly convex quadratic function 

                                                * * *1
( ) ( ) ( ) ( ).

2

Tf x x x G x x f x                                           (3.11) 

using the Newton method 1 ,k k k k kx x H g    where kH  is a positive definite matrix and k  is a 

stepsize. When the Newton method with the exact line search is applied to minimize (3.11), then 

the single-step convergence rate can be expressed as: 
2

* *
1

( ) 1
( ) ( ) ( ( ) ( )),

( ) 1

k
k k

k

R
f x f x f x f x

R






 
   

 
 

where 1/2 1/2
k kR G H G  and ( )kR  is the condition number of .kR  Observe that for the steepest 

descent method, kR G  and the single-step convergence rate is linear, with a rate bounded in 

term of ( ).G  Luenberger [45] proved that the quasi-Newton DFP method with exact line search 

applied to minimize (3.11) might cause ( ) ( )kR G   at some iterations. Therefore, in some 

cases, the DFP method may be inferior to the steepest descent method. Dixon [13] showed that 

the Broyden class of the quasi-Newton methods with exact line search produces the same 

iterations for general functions. Therefore, in some cases, the BFGS method with exact line 

search may be inferior to the steepest descent method (see [31]). The following theorem shows 

that the algorithm TPSBFGS can avoid such cases. For this we need to introduce the following 

result of Loewner [46]. 

 

Proposition 3.2. Let n nA R   be a symmetric matrix with eigenvalues 1 1n n      and let 

na R  be an arbitrary nonzero vector. Denote the eigenvalues of the matrix TA A aa   by 

1 1.n n      Then, we have 1 1 1 1.n n n n                                                   

 

 

Theorem 3.1. If we apply the algorithm TPSBFGS with k  and k  selected as in (3.8) and (3.10) 

respectively, with exact line search and 0B I  to minimize (3.11), then ( ) ( ),kR G   where 

1/2 1/2
k kR G H G  and 1.k kH B  

 

Proof  The proof is given by induction as in [31] (see also [21]). Define 1/2 .k kr G s  Observe that 

kR  is similar to .kH G  For 0k   the conclusion of the theorem is clear since 0 .H I  Suppose 

that for some 0,k   ( ) ( ).kR G   Now, let us write (3.6) as 

                                            
1 1

1 1
1 1

.
T T

k k k k k k
k k k k kT T

k k k k k

H s s H y y
H H

s H s y s
  

 
 
 
                                    (3.12) 

Now, pre-multiplying and post-multiplying both sides of the above equality by 1/2G  and using 

the relation k ky Gs  we get: 

                                               
1 1

1 1
1 1

.
T T

k k k k k k
k k k k kT T

k k k k k

R r r R r r
R R

r R r r r
  

 
 
 
                                       (3.13) 

Let the eigenvalues of 1
kR  be arranged as 1 2 0.n       Define the matrix: 
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1 1

1

1
.

T
k k k k

k k T
k k k

R r r R
P R

r R r


 




 
  

 
                                              (3.14) 

Observe that 0.kPr   Therefore, the matrix P  has zero as its eigenvalue, which corresponds to 

kr  as eigenvector. Observe that P  in (3.14) can be written as: 

                                                 1 1 1

1
( )( ) .Tk

k k k k k kT
k k k

P R R r R r
r R r


   


                                         (3.15) 

Now, if we denote the eigenvalues of P  by 1 2 0,n       and having in view the 

structure of P  given by (3.15), then by Proposition 3.2 we have 

                                                 1 1 2 2 0.n n                                                   (3.16) 

From (3.13) we have 

1
1 .

T
k k

k k T
k k

r r
R P

r r


    

Therefore, since 0kPr   we have 1
1 ,k k k kR r r
   i.e. 1

1kR
  has k  as its eigenvalue which 

corresponds to kr  as eigenvector. Since P  is symmetric and kr  is an eigenvector of ,P  it follows 

that every other eigenvector of P  is orthogonal to .kr  Let us consider jw  as an eigenvector of P  

corresponding to the eigenvalue j  for some 1, , 1.j n   Then, we have 

1
1 ,k j j j jR w Pw w
   1, , 1.j n   Therefore, 1 2 1, , ,n k     are eigenvalues of 1

1.kR
  

 Since for any nonsingular matrix X  we have that 1( ) ( ),X X    by inductive 

assumption it follows that  

                                                                1 1( ) ( ).kR G                                                         (3.17) 

Now, let us consider that 1h  and 2h  are the largest and the smallest eigenvalues of 1G  

respectively. Then, (3.17) implies that 1 2 1[ , ] [ , ].n h h    Therefore, from (3.16) it follows that 

1 2 1 2 1, , , [ , ].n h h       

On the other hand, observe that  

2 2
.

T T
k k k k

k

k k k

y s y s

y y



 


 

But, the Rayleigh quotient of 1G  is: 

2 2
.

T T T
k k k k k k

T T
k k k kk

y s s Gs r r

s G s r Gry
   

Therefore, k  is smaller than the Rayleigh quotient of 1.G  Thus, 2 1[ , ].k h h   With this we have 

proved that all the eigenvalues of 1
1kR
  are in the interval 2 1[ , ].h h  Therefore, 1 1

1( ) ( ),kR G  
   

i.e. 

1( ) ( ),kR G    

which completes the proof of the theorem.                                                                                      

 

From the proof of Theorem 3.1 we see that the parameter k  is the key parameter in the economy 

of the TPSBFGS algorithm. However, selected as in (3.10), the importance of the parameter k  

consists in clustering the eigenvalues of the iteration matrix. 
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4. Global Convergence of TPSBFGS 

Assume that the level set 0{ : ( ) ( )}S x f x f x   is bounded. From the first Wolfe condition (1.5) 

it follows that the sequence { ( )}kf x  is nonincreasing and therefore lim ( )k kf x  exists. 

Besides, .kx S  In order to establish the global convergence of the algorithm TPSBFGS, some 

useful propositions are firstly proved as follows, where k  is computed as in (3.8) and k  is 

determined as in (3.10). Our analysis is based on the same principles as those presented by Andrei 

[34] (see also Li and Fukushima [37] and by Byrd and Nocedal [12]). 

 

Proposition 4.1. Let k  be computed as in (3.10) for 0,1, .k   Then, there are the positive 

constants 0     such that for any 0,1, , ,j k   

                                                              1 .k k j                                                            (4.1) 

 

Proof From Proposition 3.1 it follows that k  is close to 1 for any 0,1, .k   As a consequence, 

there are the positive constants 0     such that any product of the form 1 ,k k j    for any 

0,1, ,j  is bounded as in (4.1).                                                                                                    

 

Proposition 4.2. Consider the double parameter scaled 1kB   given by (3.6), where k  and k  

are computed as in (3.8) and (3.10), respectively. Then 

                                                        1 0( ) ( ) ( 1)ktr B tr B k                                                     (4.2) 

and 

                                                    

2

0

0

1
( ( ) ) .

k
i i

T
i i ii

B s
tr B k

s B s  



                                                 (4.3) 

 

Proof  Observe that 

       

2 2

1( ) ( )
k k k

k k k k kT T
k k k k k

B s y
tr B tr B

s B s y s
       

2 2 2 2

1 1 1
1 1 1 1

1 1 1 1 1

( )
k k k k k k

k k k k k k kT T T T
k k k k k k k k k k

B s y B s y
tr B

s B s y s s B s y s
       

   

    

 
     
 
 

 

                    ...  

                    1 0 0( )k k tr B    

                       

2 2

0 0 0
1 0 1 1 0

0 0 0 0 0

k k k kT T

B s y

s B s y s
          

                      

2 2

1 1 1
1 1 1 2 1

1 1 1 1 1

k k k kT T

B s y

s B s y s
          

                                                       

                      

2 2

1 1 1
1 1

1 1 1 1 1

k k k
k k k kT T

k k k k k

B s y

s B s y s
     

 

    

   

                      

2 2

.
k k k

k kT T
k k k k k

B s y

s B s y s
                                                                                            (4.4) 

But, for any 0, , ,i k  
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2 2 2

2 2

1 1

1.
T

i i ii i
i T TT T

i i i ii i i i i i

y y yy s

y s y sy s g y s g


 

  
 

 

Therefore, since by Proposition 4.1 there are the positive constants 0     such that for any 

0,1, , ,j k  1 ,k k j       it follows that 

 

                           

2

1 0 0

0 1

( ) ( ) 1 ( ) 1.
k k

i i
k T

i i ii k

B s
tr B tr B tr B k

s B s


 

                                  (4.5) 

 

From (4.5) we get (4.2).   

On the other hand, since 1kB   is positive definite, 1( ) 0.ktr B    Therefore (4.3) is true.               

 

Remark 4.1 If 0 ,B I  then 

                              1( ) ( 1)ktr B n k          and    

2

0

1
( ) .

k
i i

T
i i ii

B s
n k

s B s  



                               

 

Observe that the last inequality in (4.5) shows that the largest eigenvalue of 1kB   is strictly 

smaller than 0( ) ( 1).tr B k     Therefore, the scaled TPSBFGS method with k  given by (3.8) 

and k  given by (3.10) has a good self-correcting property subject to the trace, i.e. it may be 

more efficient than the standard BFGS in correcting the large eigenvalues. 

 

Proposition 4.3. If for all ,k  ,k m   where 0m   is a constant, and ,k   where 0   is a 

constant, then there is a constant 0c   such that for all k  sufficiently large: 

                                                                     
0

.
k

k
i

i

c


                                                              (4.6) 

 

Proof Considering the identity (3.2), the determinant of the scaled 1kB   given by (3.6) is as 

follows: 

1

1det( ) det
T T

k k k k k k k
k k k T T

kk k k k k

s s B B y y
B B I

s B s y s










  
     

  

 

                                                     1( )
det( )det ( )

T T
k k k k

k k k k kT T
kk k k k k

B s y
B I s B y

s B s y s






 
   

 
 

                                                     det( ) .
T

n k k k
k k T

k k k k

y s
B

s B s





                                                          (4.7) 

Therefore, 

         1
1det( ) det( )

T
n k k

k k k kT
k k k

y s
B B

s B s
    

                        1 1 1 1
1 1 1

1 1 1

det( )
T T

n nk k k k
k k k k kT T

k k k k k k

y s y s
B

s B s s B s
      

  

  

  
   
  

 

1 1 11 1 0 0
1 1 0 0 0

1 1 1 0 0 0

det( )
T T T

n n nk k k k
k k k kT T T

k k k k k k

y s y s y s
B

s B s s B s s B s
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                        1
0

0

det( ).
k T

n i i
i i T

i i ii

y s
B

s B s
 



 
  
 
                                                                              (4.8) 

 

 

But, for all ,i  T T
i i i i i is B s s g   and (1 ) .T T

i i i iy s s g    Besides, for all ,i i m   and .i   

Therefore, 

 

                    
1

1 1 1 1
1 0 0

0 0

1 1
det( ) det( ) det( ) (1 ) .

k k
k

n n k k
k

i ii i

B B m B m


  
 


   



 


             (4.9) 

 

Since 1 1

1
det( ) ( ) ,

n

k kB tr B
n

 

 
  
 

 by using Proposition 4.2, we get 

 1 0

1
det( ) ( ) 1 .

n

kB tr B k
n



 
     
 

 

Therefore, 

                   

 

( 1)( 1) 1 1 ( 1)( 1) 1 1
0 0

10

0

det( ) (1 ) det( ) (1 )
.

det( ) 1
( ) 1

k n k k k n k k k

i n
ki

B m B m

B
tr B k

n

   


       



 
 

 
    

 

         (4.10) 

When k  is sufficiently large, (4.10) implies (4.6).                                                                       

 

Remark 4.2. If 0 ,B I  then 

                                                    

 

( 1)( 1) 1 1

0

(1 )
.

1
1

k n k k k

i n
i

m

n k
n

 


   






 
    

 

                                               

 

Theorem 4.1. Let { }kx  be generated by the algorithm TPSBFGS. Then 

                                                              liminf 0.k kg                                                       (4.11) 

 

Proof Assume that 0,kg     for all .k  Observe that .k k k k kB s B d  Since f  is bounded 

from below, from the first Wolfe condition (1.5) we have 
0
( ) .T

k kk
s g




    Therefore, 

0 0 0

1
( )

kT T T
k k k k k k k k

k k kk k k

g
s g s B s s B s

B s

  

  

        

                                         
0 0

T T
k k k kk k k k k k

k k

k k k k k k k kk k

B s gs B s s B s
g g

B s B s B s B s

 

 

     

                                         
2 2

2 2

0 0

.
T T
k k k k k k

k k k

k kk k k k

s B s s B s
g

B s B s
 

 

 

                                            (4.12) 

Now, from the geometric inequality, for any 0  there exists an integer 0 0k   such that for 

any positive integer q  we have: 
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0 0

0 0

1/

2 2

1 1

.

q
k q k qT T

k k k k k k
k k

k k k kk k k k

s B s s B s
q

B s B s
 

 

   

 
   

  
                                  (4.13) 

Hence,  

                                    
0 0 0

0 0 0

1/1/ 2 2

2

1 1 1

qq
k q k q k q

k k k k
k T T

k k k k k kk k k k k k

B s B s

q s B s q s B s


  

     

    
   

     
    

                                                         
0

2

0 02 2

0

1
( ) ( ) ,

k q
k k

T
k k kk

B s
tr B k q

q s B s q   





    
     

 
         (4.14) 

 

where the last inequality follows from Proposition 4.2. Now, considering ,q  we get a 

contradiction because of Proposition 4.3 which shows that the left-hand side of the above 

inequality (4.14) is greater than a positive constant. Therefore, (4.1) is true.                               

 

Observe that the global convergence of the algorithm TPSBFGS with k  given by (3.8) bounded 

from below and with k  given by (3.10) lower and upper bounded is proved in very general 

conditions without the convexity assumption of function .f  This is the best result we can obtain 

under general assumptions that the function f is bounded from below and the line search is based 

on the inexact Wolfe line search conditions (1.5) and (1.6) and without the convexity assumption 

on .f  Moreover, the above results can be obtained for any positive value for the parameter k  in 

(2.11) tending to zero. The superlinear convergence of the scaled BFGS method (3.6) with the 

scaling parameters k  and k  given by (3.8) and (3.10) respectively can be proved by using a 

tool and the results presented by Byrd and Nocedal [12] and Dennis and Moré [7, 8] (see also 

[37]). If the Hessian matrix 2 ( )f x  of the minimizing function f  is Lipschitz continuous at the 

optimal solution *x  of the problem (1.1), then for any positive definite matrix 0B  the scaled 

BFGS method (3.6) with the scaling parameters given by (3.8) and (3.10), and the line search 

satisfying the inexact Wolfe line search conditions (1.5) and (1.6), generates a sequence { }kx  

which converges to *x  superlinearly. This result is obtained under very general assumptions that 

f  is twice continuously differentiable near *,x  { }kx  converges to *x  where *( ) 0,f x   

2 *( )f x  is positive definite and 2 ( )f x  is Lipschitz continuous, again without convexity 

assumption on f  (see [37]).  

 

Remark 4.3. The scaling factor k  in (3.10) is determined only from the equation 1( ) ,ktr B n   

i.e. using only the trace operator. This is not a limitation. If the stepsizes k  tend to zero, then, as 

proved by Byrd, Nocedal and Yuan [11], this is due to the existence of very small eigenvalues in 

,kB  which cannot be monitored by the trace operator. However, the BFGS update formula has a 

strong self-correcting property with respect to the determinant which can be used to show that, in 

fact, k  is bounded away from zero in mean. From (4.8) we see that when T
i i is B s  is small 

relative to ,T
i iy s  for arbitrary ,i  then the determinant increases, showing that the small curvature 

of the model of the minimizing function is corrected, thus increasing some eigenvalues satisfying 

the condition 1( ) .ktr B n                                                                                                                 
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5. Numerical Results and Comparisons 

In this section we present some numerical results with a Fortran implementation of the scaled 

BFGS algorithms shown above. For this, the algorithm TPSBFGS is particularized as follows: 

BFGS (TPSBFGS with 1k   and ,1k  i.e. the standard BFGS), BFGSC (TPSBFGS with 

1k   and k  given by (2.10), i.e. the scaled BFGS given by Cheng and Li [31]), BFGSB 

(TPSBFGS with 1k   and k  given by (2.7), i.e. the scaled BFGS proposed by Biggs [26, 27]), 

BFGSY (TPSBFGS with 1k   and k  given by (2.9), i.e. the scaled BFGS suggested by Yuan 

[28]), BFGSA (TPSBFGS with 1k   and k  given by (2.11), with 1 ,T
k k ks g   i.e. the scaled 

BFGS proposed by Andrei [34]), BFGSD (TPSBFGS with k  and k  are given by (3.10) and 

(3.8), respectively, i.e. the scaled BFGS given by Andrei [47]), NOYA (TPSBFGS with 

/T T
k k k k k ky s s B s   and 1,k   i.e. the scaled BFGS given by Nocedal and Yuan [22]) and LIAO 

(scaled BFGS by Liao [29], given (2.13) and (2.14)). 

All the algorithms implement the Wolfe line search conditions with 0.8   and 

0.0001.   The iterations are stopped if the inequality 510kg 


  is satisfied, where .


 is the 

maximum absolute component of a vector or if the number of iterations exceeds 1000.  In all the 

algorithms, for all the problems, the initial matrix 0 ,H I  i.e. the identity matrix. For each 

method, except the method of Liao given by (2.13) and (2.14), in order to get the search direction 

we do not solve the system k kB d g   to get .kd  Instead, we use the inverse updating formula 

(3.7). For the scaled BFGS methods by Biggs [26, 27] and Yuan [28], k  given by (2.7) and (2.9) 

respectively is restricted in the interval [0.01, 100]. Besides, at the very first iteration of these 

methods the scaling is not applied. All the codes were written in double precision Fortran and 

compiled with f77 (default compiler settings) on an Intel Pentium 4, 1.8GHz workstation. All the 

codes are authored by Andrei.  

For a start, we present a simple example which illustrates the main elements of running 

the scaled BFGS algorithms. Firstly we consider the BFGSD algorithm, where the scaling 

parameters k  and k  are given by (3.8) and (3.10), respectively. Consider the problem: 

                                                     
1

min ( ) (exp( ) ),
n

i i

i

f x x ix


                                              (5.1) 

where 10n   and 0 [1,1, ,1].x   For this problem 0( ) 4.71454f x   and the BFGSD algorithm 

gives a local optimal solution for which *( ) 3.19505f x   in 8 iterations and 42 evaluations of the 

function f  and of its gradient. 

Table 1 presents: the eigenvalues 1 10, ,   of the Hessian approximation given by (3.6); the 

scaling factors k  and k  given by (3.8) and (3.10), respectively; as well as the evolution of the 

elements 
2

k kB s  and T
k k ks B s  for 1, ,8.k   

An attractive feature of the BFGSD algorithm which we see in Table 1 is that along the iterations, 

the eigenvalues of the Hessian approximation (3.6) are all positive and clustered. In fact, the 

Hessian approximation (3.6) has a special eigenvalue structure that occurs in BFGSD: there are 

some large eigenvalues that may or may not be located near each other, as well as some smaller 

eigenvalues located more or less near 1, all satisfying the condition 
1

.
n

ii
n


  Observe that this 

structure of the eigenvalues of the Hessian approximation (3.6) is very similar to the structure of 

the eigenvalues encountered in conjugate gradient algorithms where the approximation to the 

inverse Hessian is restarted as identity matrix at every step (see [48]).  
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From Table 1 we see that k  computed as in (3.10) is close to 1, as proved in Proposition 3.1. 

Observe that along the iterations, 
2

k kB s  and T
k k ks B s  are of the same order of magnitude, both of 

them tending to zero.  

 
Table 1. Characteristics of the BFGSD algorithm. 

Eigenvalues of Hessian approximation (3.6), ,k  ,k
2

k kB s  and .T
k k ks B s  

k  1 2 3 4 5 6 7 8 

1  0.8532 0.6423 0.6414 0.5303 0.4471 0.8606 1.5591 1.5288 

2  1.0094 1.0227 1.0075 0.9921 1.5161 0.9380 0.6479 1.3073 

3  1.0094 1.0227 1.0075 0.9921 1.0637 0.9380 1.1881 0.6181 

4  1.0094 1.0227 1.0075 0.9921 1.0061 0.9380 0.8883 0.8711 

5  1.0094 1.0227 1.0075 0.9921 0.9987 0.9388 0.9893 0.9821 

6  1.0094 1.0227 1.0075 0.9921 0.9951 0.9395 0.9496 0.9427 

7  1.0094 1.0227 1.0075 0.9966 0.9933 0.9463 0.9451 0.9380 

8  1.0094 1.0227 1.0185 1.0030 0.9933 0.9656 0.9443 0.9375 

9  1.0094 1.0749 1.0729 1.0667 0.9933 1.0090 0.9442 0.9372 

10  1.0713 1.1239 1.2223 1.4431 0.9933 1.5262 0.9442 0.9372 

k  1.0094 1.0131 0.9851 0.9847 1.0012 0.9443 1.0065 0.9926 

k  0.4193 0.4880 0.5943 0.5338 0.4343 0.9285 0.4195 0.4488 

2

k kB s  
1 0.356e-1 0.5203-2 0.553e-3 0.321e-4 0.249e-4 0.236e-6 0.207e-7 

T
k k ks B s  

1 0.417e-1 0.809e-2 0.845e-3 0.554e-4 0.531e-4 0.224e-6 0.223e-7 

 

 

For comparison in Table 2 we present the eigenvalues evolution of the standard BFGS update 

(1.4) along the iterations for solving the problem (5.1).  
 

 

Table 2. Characteristics of the standard BFGS algorithm. 

Eigenvalues of Hessian approximation (1.4) along the iterations. 

k  1 2 3 4 5 6 7 8 9 10 11 

1  0.9810 0.8403 0.9514 0.9134 0.8172 0.8052 0.8561 0.8274 0.8758 0.9220 0.9040 

2  1 1 1 1 1 1 1 1 0.9984 0.9880 0.9661 

3  1 1 1 1 1 1 1 1 1 1 1 

4  1 1 1 1 1 1 1 1 1 1 1.0007 

5  1 1 1 1 1 1 1 1.0052 1.0003 1.0578 1.3407 

6  1 1 1 1 1.0004 1.0007 1.0689 1.0246 1.2735 1.4572 1.8595 

7  1 1 1 1.0157 1.0049 1.2222 1.1001 1.5493 1.6327 2.0415 2.2640 

8  1 1 1.1517 1.0256 1.4972 1.3947 1.8751 1.8844 2.2960 2.5386 2.5981 

9  1 1.4337 1.2816 1.8659 1.8367 2.2604 2.5229 2.7144 2.8109 2.8102 2.8435 

10  2.2009 2.3513 2.8357 2.8916 2.9269 2.9325 2.9374 2.9399 2.9477 2.9478 2.9470 
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Since both the BFGS update (1.4), and BFGSD update (3.6) where k  and k  are given by (3.10) 

and (3.8) respectively, are positive definite, it follows that their eigenvalues are all positive real 

numbers. Observe the differences between Table 1 and Table 2. From Table 1 observe that for the 

BFGSD update (3.6) where k  and k  are given by (3.10) and (3.8), respectively, the maximum 

eigenvalue along the iterations is 1.5591 and the minimum eigenvalue is 0.4471. On the other 

hand, for the BFGS update (1.4) the maximum eigenvalue along the iterations is 2.9478 and the 

minimum eigenvalue is 0.8052. Let us define the size of the eigenvalues spectrum of a positive 

definite matrix as the difference between the largest and the smallest eigenvalues. Observe that 

the eigenvalues corresponding to the BFGSD algorithm are more clustered. Indeed, the size of the 

eigenvalues spectrum corresponding to BFGSD algorithm is 1.1120, and the size of the 

eigenvalues spectrum of BFGS algorithm is 2.1426. Besides the eigenvalues of the BFGSD 

algorithm are more clustered, observe that in contrast to the BFGS algorithm the eigenvalues 

spectrum of BFGSD is shifted to the left, i.e. the scaled BFGSD algorithm corrects the large 

eigenvalues. 

 Table 3 presents the number of iterations (iter) to get a solution of the problem (5.1), the 

minimum eigenvalue ( min ) along the iterations, the maximum eigenvalue ( max ) along the 

iterations and the size of the eigenvalues spectrum (size) corresponding to the BFGS and the 

scaled BFGS algorithms considered in this study.  

 
Table 3. 

Characteristics of the eigenvalues of the BFGS and the scaled BFGS algorithms. 

 iter min  max  Size References 

BFGS 11 0.8052 2.9478 2.1426 Standard BFGS 

BFGSA 8 0.5297 1.7008 1.1711 Andrei [34] 

BFGSB 21 0.0106 2.2009 2.1903 Biggs [26, 27] 

BFGSC 10 0.6233 1.9009 1.2776 Cheng and Li [31] 

BFGSD 8 0.4471 1.5591 1.1120 Andrei [47] 

BFGSY 14 0.0169 2.2009 2.1840 Yuan [28] 

NOYA 13 0.8364 3.7312 2.8948 Nocedal and Yuan [22] 

 

From Table 3 we see that the smallest size of the eigenvalues spectrum corresponds to BFGSD 

algorithm given by (3.6) where k  and k  are given by (3.10) and (3.8) respectively. Close to 

BFGSD is BFGSA where 1k   and k  is computed as in (2.11) with 1 .T
k k ks g   

Immediately in order is BFGSC where 1k   and k  is computed as in (2.10). For these 

algorithms their spectrum is shifted to the left, thus correcting the large eigenvalues. BFGSB and 

BFGSY have similar performances. They shift the eigenvalues to the left, but their size of the 

eigenvalues spectrum is larger than that corresponding to BFGSD, BFGSA and BFGSC. The 

largest size of the eigenvalues spectrum corresponds to NOYA. In the economy of the scaled 

BFGS algorithms the parameter k  has a crucial role (see the Proposition 2.1 and the Theorem 

3.1). In NOYA 1k   and this is the reason why in NOYA the eigenvalues are not clustered and 

not shifted to the left. 

 

In the following, we considered a number of 80 unconstrained optimization test problems 

of medium size ( 100n   variables), described in [49]. The algorithms which we compare in these 

numerical experiments find local solutions. Therefore, the comparisons of the algorithms are 

given in the following context. Let 1ALG

if and 2ALG

if  be the optimal value found by ALG1 and 

ALG2 for problem 1, ,80,i   respectively. We say that, in the particular problem ,i  the 

performance of ALG1 was better than the performance of ALG2 if:  
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                                                            1 2 310ALG ALG

i if f                                                       (5.2) 

 

and the number of iterations (#iter), or the number of function-gradient evaluations (#fg), or the 

CPU time of ALG1 was less than the number of iterations, or the number of function-gradient 

evaluations, or the CPU time corresponding to ALG2, respectively.  

 

In the first set of numerical experiments we compare BFGSD versus BFGS, BFGSC, 

BFGSB and BFGSY.  For BFGSC, BFGSB and BFGSY the search direction is computed as in 

(3.4) where 1kH   is updated as in (3.7) with 1k   and the corresponding values of .k  For the 

standard BFGS algorithm the search direction is determined as in (3.4) where the approximation 

to the inverse Hessian is updated as in (3.5). 

Figure 1 presents the Dolan and Moré [50] performance profiles of these algorithms for 

this set of unconstrained optimization test problems based on the CPU time metric. For example, 

when comparing BFGSD versus BFGS (standard BFGS algorithm), subject to the number of 

iterations, we see that BFGSD was better in 46 problems (i.e. it achieved the minimum number of 

iterations in 46 problems), BFGS was better in 26 problems. Both of them achieved the same 

number of iterations in 5 problems, etc. Out of 80 problems considered in this set of numerical 

experiments only for 77 does the criterion (5.2) hold. 

 

  

  
Fig.1. Performance profiles of BFGSD versus BFGS, BFGSC, BFGSB and BFGSY. 

CPU time metric. 

 

 

From the performance profiles given in Figure 1 we see that BFGSD is top performer 

against BFGS, BFGSB, BFGSC and BFGSY algorithms and the differences are significant. Since 
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all these codes use the same Wolfe line search and the same stopping criterion, they differ only in 

their choice of the search direction. The percentage of the test problems for which a method is the 

fastest is given on the left axis of the plot. The right side of the plot gives the percentage of the 

test problems that were successfully solved by these algorithms. Mainly, the left side is a measure 

of the efficiency of an algorithm; the right side is a measure of the robustness.  

 

Figure 2 presents the performance profiles of all these 5 scaled BFGS methods subject to 

the CPU computing time metric. From Figure 2 we see that subject to the CPU time metric the 

BFGSD algorithm is top performer versus the standard BFGS algorithm and versus the scaled 

BFGSB, BFGSC and BFGSY algorithms. Observe that BFGSD and BFGSC are grouped, having 

better performances versus the other ones.  

 

 
Fig. 2. Performance profile of BFGSD, BFGS, BFGSB, BFGSC and BFGSY. 

CPU time metric. 

 

 

In the second set of numerical experiments we compare the double parameter scaled BFGSD 

algorithm versus the self-scaled BFGS algorithm by Nocedal and Yuan [22], denoted as NOYA, 

where the approximation of the Hessian 1kB   is computed as in (3.6) with /T T
k k k k k ky s s B s   and 

1.k   Figure 3 presents the performance profile of BFGSD versus NOYA subject to CPU time 

metric. From Figure 3 we see that the BFGSD algorithm is top performer versus NOYA. In their 

study, Nocedal and Yuan proved that the self-scaled BFGS algorithm NOYA with inexact line 

search is globally convergent on general convex functions. However, the main drawback of this 

algorithm is that for achieving superlinear convergence it might need to evaluate the minimizing 

function twice per iteration, even very near the solution [22]. The scaling of the first two terms of 

1kB   matrix with /T T
k k k k k ky s s B s  , like in NOYA algorithm, leads to disappointing numerical 

results. This is consistent with the analysis given by Nocedal and Yuan [22] and Shanno and Phua 
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[30]. On the other hand, in our study on the double parameter scaled BFGS algorithm BFGSD we 

emphasize that both parameters k  and k  are important in the economy of the algorithm: k  is 

computed to cluster the eigenvalues of 1kB   and k  is responsible for shifting the large 

eigenvalues to the left. These are the main reasons why BFGSD has better performances than 

NOYA.  

 
Fig. 3. Performance profile of BFGSD versus NOYA. 

CPU time metric. 

 

 

In the third set of numerical experiments we compare the scaled BFGSD algorithm versus 

BFGSA. In BFGSA the search direction is determined like in (3.4), where the inverse 

approximation to the Hessian is computed as in (3.7) with 1k   and k  given by (3.8) [34]. 

Figure 4 shows the performance profiles of these algorithms subject to CPU computing time. 

Observe that BFGSA is top performer versus BFGSD, being much more efficient. In Proposition 

3.1 we proved that k  is close to 1. Therefore, in the economy of the BFGSD algorithm, k  

which scales the first two terms of the BFGS update, is selected as in (3.10) to cluster the 

eigenvalues of the scaled BFGS matrix in such a way that their sum is equal to the dimension of 

the problem. On the other hand, in BFGSA the spectrum of the scaled BFGS matrix is free. Oren 

and Luenberger [21] showed that in order to guarantee that the BFGS update 1kB   will have a 

lower condition number than ,kB  the interval spanned by the eigenvalues of kB  must contain the 

unity. But in our numerical experiments we noticed that along the iterations the spectrum of the 

BFGS update matrix generated by BFGSA always contains unity. Besides, in BFGSA the scaling 

factor k  is selected as in (3.8) in order to be a diagonal preconditioner of 2
1( )kf x   and also to 

minimize the conjugacy condition 1 1.
T T
k k k kd y s g    These are the major arguments for BFGSA 

to be superior to BFGSD.  
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Fig. 4. Performance profile of BFGSD versus BFGSA. 

CPU time metric. 

 

 

In the last set of numerical experiments we compare the double parameter scaled BFGSD 

algorithm with the scaled BFGS algorithm by Liao [29]. In the Liao algorithm, the Hessian 

approximation 1kB   is computed as in (2.13), where the parameters k  and k  are computed as in 

(2.14).  Figure 5a presents the Dolan and Moré performance profiles of BFGSD versus LIAO 

with 1.0005exp( 100 / ).k k    Figure 5b presents the performance profiles of BFGSD versus 

LIAO with 2exp( 1/ ).k k    We observed that if k  is small, like in the LIAO algorithm with 

1.0005exp( 100 / ),k k    then the algorithm takes / ( )T T T
k k k k k k k k ks B s s B s y s    and 

/ ( ),T T T
k k k k k k k ky s s B s y s    as specified in (2.14). If k  is relatively large, like in the LIAO 

algorithm with 2exp( 1/ ),k k    then the algorithm selects k k   and 1,k   as recommended 

by (2.14). Without drawing too many conclusions from this numerical experiment evidence we 

note that in both cases the LIAO algorithm finds the local optimal solution. From Figure 5 we see 

that BFGSD algorithm is top performer versus both variants of LIAO. From (2.13) we get: 

 

                                             

2 2

1( ) ( ) .
k k k

k k k kT T
k k k k k

B s y
tr B tr B

s B s y s
                                           (5.3) 
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Fig. 5. Performance profile of BFGSD versus LIAO. 

CPU time metric. 

 

From (2.14) we see that if ,T T
k k k k ks B s y s  then 0 1.k k     Therefore, the second term on the 

right hand side of (5.3) which shifts the eigenvalues to the left is almost the same as the second 

term on the right hand side of (3.1), while the third term in (5.3) which shifts the eigenvalues to 

the right is much smaller than the third term in (3.1). In this case, the LIAO algorithm better 

corrects the large eigenvalues than the standard BFGS does. In comparison, in BFGSD, the large 

eigenvalues are not only shifted to the left by means of 1k   selected as in (3.8), but they are 

also clustered by a proper selection of k  as in (3.10). This is the reason why BFGSD is more 

efficient and more robust than LIAO (see Fig. 5). In Figure 6 we present a comparison between 

BFGSD and LIAO with 1.0005exp( 100 / ),k k    as well as LIAO with 2exp( 1/ ),k k    

respectively. 

 

 
Fig. 6. Performance profiles of BFGSD versus two variants of LIAO. 

CPU time metric. 
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Observe that the best variant of LIAO is that with 2exp( 1/ )k k    showing that, at least for this 

set of unconstrained optimization problems considered in this numerical study, the selection of 

scaling factors k  and k  in (2.13) as recommended in (2.14) is not a critical one.   

Since in LIAO the search direction 1kd   is computed as solution of the system 

1 1 1,k k kB d g     we generated a Fortran version of the BFGSD code where the search direction 

is computed as solution of the system 1 1 1k k kB d g     to compare it with the LIAO algorithm. 

Therefore, unlike the previous numerical experiments, in this comparison, both in BFGSD and in 

LIAO the search direction 1kd   is computed as solution of the system 1 1 1.k k kB d g     From 

Figure 5 we see that BFGSD is top performer versus LIAO and the difference is significant 

subject to the efficiency and robustness of the algorithms (see also Fig. 6). Since these codes use 

the same Wolfe line search and the same stopping criterion, they differ only in their choice of the 

search direction. Again, observe that the numerical results with LIAO are disappointing. This is 

because in LIAO the modified (scaled) BFGS update is obtained by a simple symmetrization 

procedure from a rank one update (see [29]).   

As a byproduct, it is worth saying that the BFGSD algorithm where the search direction 

is computed as 1 1 1k k kd H g     is much faster than its version where 1kd   is computed as 

solution of the system 1 1 1.k k kB d g      

 

6. Conclusions 

In this paper we suggested a new double parameter scaled BFGS method where the first two 

terms in standard BFGS update are scaled with a positive parameter while the third term is scaled 

with another positive one. In our algorithm the factor scaling the first two terms of the standard 

BFGS update is selected to cluster the eigenvalues of the scaled BFGS update. On the other hand, 

the factor scaling the third term is determined to shift the large eigenvalues to the left. For general 

functions we proved that the algorithm with inexact line search is globally convergent under the 

very reasonable condition that the scaling parameters are bounded. Preliminary numerical results 

using a limited number of 80 unconstrained optimization test problems of different structures and 

complexities show that this double parameter scaled BFGS update is more efficient than the 

standard BFGS algorithm and also than some other well known scaled BFGS algorithms, 

including those by Biggs [26, 27], Cheng and Li [31], Liao [29], Nocedal and Yuan [22] and 

Yuan [28]. The conclusion of this study is that scaling the first two terms of the standard BFGS 

update has an important effect on the performances of the scaled BFGS algorithm. The most 

important is the scaling of the third term of the standard BFGS update (see [34]). The scaling of 

this third term will push down to the left the eigenvalues of the scaled BFGS update, thus 

obtaining a better structure of the eigenvalues than the one of the standard BFGS or of some other 

scaled BFGS methods. 

The main lesson we get from this study is that scaling the terms of the standard BFGS 

update may lead to algorithms that are more efficient than the standard BFGS algorithm. 

However, selecting the values for the scaling factors is not an easy task. In our algorithm, for 

scaling factors determination we implemented the idea of clustering the eigenvalues of the 

iteration matrix and of shifting its large eigenvalues to the left by using the trace operator. Some 

other principles may be used, in which the scaling factors are determined by using the 

determinant of the iteration matrix, or a combination of these two operators (trace and 

determinant). Another idea is to scale the terms of the standard BFGS update at some selected 

iterations, for example only during the first few iterations. In the same line of efforts concerning 

the improving the BFGS method, another interesting idea is to scale the terms of the BFGS 

update in which ky  is modified as in [51] or in [52], or the scaled BFGS update (3.6) with 
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modified Wolfe line search used in [53]. Anyway, the BFGS quasi-Newton methods continue to 

be full of surprises, always having more room for improving their numerical performances.  
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