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Abstract. In this work we present a new method for steplength selection in the frame of gradient
descent methods for functions minimization. The corresponding algorithm selects the steplength,
according to a backtracking procedure, along the negative gradient, in which the initial stepsize is
determined using a new scalar approximation of the Hessian of the minimizing function. This
approximation is based only on the function values and its gradient in two successive points along the
iterations. Like other gradient descent algorithms, this one is also linear convergent. The main
advantage of this computational scheme is that at every iteration we generate a positive, occasionaly
greater than 1, initial stepsize in the backtracking procedure, this giving us the possibility to continue
and accelerate the convergence of the algorithm. The numerical experience shows that the algorithm
compares favourable with the Barzilai-Borwein approach.
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1. Introduction
For the unconstrained optimization problem

min  f(x) ey

xUR"

where f:R" — Ris a continuously differentiable function, in 1988 Barzilai and Borwein
[2] proposed a gradient descent method (BB method) which essentially is a steepest descent
method, where the choice of the steplength along the negative gradient direction is obtained
from a two-point approximation to the secant equation underlying quasi-Newton methods.
More specifically, considering D, =y, as an approximation to the Hessian of f at x, ,

they choose ¥, such that

D, = argmin”Dsk -V,

2 b
where s = x, —x;and y, = 0f (x, - U f(x,), yielding
T
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With these, the method of Barzilai and Borwein is given by the following iterative scheme:
1
Xprt = Xp y 7 Lf (x,). 3)
k

The quantity kaB given in (2) is frequently referred as a Rayleigh quotient. Indeed, if f is
twice continuously differentiable, we have



O
Vi = amzf(xk"' T s, )dr Ek'

Therefore:

O
kaB = SkTa'DZf(xk-l' Ts,)dT B;k /stk’ “)

which lies between the largest and the smallest eigenvalue of the Hessian average

1
JO? f(x+ T5,)dr.
0

The scalar y,f ® has been already used as scaling factor in the context of limited memory
quasi-Newton algorithms (see, for example Gilbert and Lemaréchal [9], Liu and Nocedal
[14]) or conjugate gradient algorithms (Shanno and Phua [20], Andrei [1]).

Having in view its simplicity and numerical efficiency for well-conditioned
problems, the BB gradient method has received a great deal of attention. In [2] Barzilai and
Borwein proved that for the two-dimensional quadratic case the BB method is R-superlinear
convergent. They present some numerical evidence showing that their method is remarkably
superior to the classical gradient descent method for a quadratic function with four variables.
Raydan [18] proved that for strictly convex quadratic case with any number of variables the
BB method is globally convergent. Using a globalization strategy, based on the non-
monotone line search technique introduced by Grippo, Lampariello and Lucidi [12], Raydan
[19] proved the global convergence of the BB method for non-quadratic functions and reports

some numerical evidence on problems up to 10* variables showing that the BB method is

competitive with the conjugate gradient Polak-Ribiére [17] and CONMIN of Shanno and
Phua [20] methods. A preconditioning technique for the BB method has been considered by
Molina and Raydan [15]. Under a very restrictive assumption they established the Q-linear
rate of convergence of the preconditioned BB method. Some applications of preconditioned
BB method on a distance matrix problem are considered by Glunt, Hayden and Raydan
[10,11]. Extension of the BB method for box-constrained optimization problems have been
considered by Friedlander, Martinez and Raydan [8] (for quadratic function) and by Birgin,
Martinez and Raydan [3].

An analysis of the BB method stressing the importance of non-monotone line search
as well as some open problems are presented by Fletcher [7] and Dai and Fletcher [5]. Dai
and Liao [6] refined the analysis in Raydan [18] and proved that the convergence rate is R-
linear. New globalization strategies for BB method, based on relaxations of the monotonicity
requirements, are considered by Grippo and Sciandrone [13] where the nonmonotone
watchdog technique with nonmonotone linesearch rules are combined. Their algorithms are
very sophisticated and dependent of a number of parameters. Numerical experience and
comparisons with E04DGF routine of NAG library on some collections of problems,
including CUTE [4], shows that their globalization strategy for the BB algorithm compares
favorables with EO4DGF algorithm. (However, for some difficult ill-conditioned problems,
algorithm EO4DGF is more efficient.)

The purpose of this paper is to present a new algorithm of gradient descent type, in
which the initial step size in a backtracking procedure is computed by means of a simple
approximation to the Hessian of the minimizing function. In contrast with the Barzilai and
Borwein approach in which the steplength is computed from a simple interpretation of the
secant equation, the new proposed algorithm considers another approximation of the Hessian
based on the function values and its gradients in two successive points along the iterations.
The corresponding algorithm belongs to the same class of linear convergent descent methods
and compares favourable with the Barzilai-Borwein approach. The conclusion is that using
only the local information given by the gradient, any procedure for step size computation, of
any sophistication, does not change the linear convergence class of algorithms.



2. Gradient Descent Method with an Anticipative Scalar

Approximation of Hessian
In the following we suggest another procedure for computing a scalar approximation of the
Hessian of the function f at x, which can be used to get the stepsize along the nagative

gradient. Let us consider the initial point x, where f(x,) and g, =0Uf(x,) can

immediately be computed. Using the backtracking procedure (initialized with ¢ =1) we can

compute the steplength ¢, = argmin f(x, —tg,), with which the next estimate
<1

X, = x, —t,g, is computed, where again we can determine f(x,)and g, = Lf(x,). So,
the first step is computed using the backtracking along the negative gradient. Now, at point
X0 =X, —t,g,, k=0,,...we have

1
f(xk+1):f(xk)_tkg1§gk +Et1§ng sz(z)gk’ (%)

where z is on the line segment connecting x, and x,,,. Having in view the local character
of the searching procedure and that the distance between x, and x,,, is enough small we
can choose z = x,,, and consider y,,, as a scalar approximation of the 00° f(x,.,), where
Y.+ U R. This is an anticipative view point, in which a scalar approximation to the Hessian
at point x,,, is computed using only the local information from two successive points: X,
and x,,,. Therefore, we can write:

2 1 ,
Yin = gT t_z[f(xkﬂ) = f(x,) +t.g, gk]' (6)
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Observe that at x,,,, £ =0,1,... we know f(x,,,), g,,, and an approximation of

0*f(x,,,) as Y,,I. Now, in order to compute the next estimation
Xiey = X4y — 108, We must consider a procedure to determine the steplength 7,,,.For
this let us consider the function:

1
D)= f(x4) _tg/{ﬂgkﬂ +Et2yk+lng+lgk+l' (7

Observe that @,,,(0)= f(x,.,), sy (2/ V)= f(x,y) and @, (0)=-g/, g, <O.
Therefore, ®,,,(¢) is a convex function for all 7= 0. To have a minimum for ®,,, (¢) we

must have y,,, >0. Considering for the moment that y,,, >0, then from @, (1) =0 we
get

o= ®
Ve
as the minimum point of @, (¢). Observe that
_ 1 2
Py (i) = [ () = 50— 1 ©)
Yin

showing that, if y,,, >0, then at every iteration the value of function f is reduced. This
suggests us to determine the stepsize ¢,,, as:

tiw = argmin S(X — 1200, (10)
1<t

using for example a backtracking procedure and to consider x,,, =x,,, =, &4 - TO
complete the algorithm we must consider the situation when y,,, <0 and to detail the
backtracking procedure.



Concerning the backtracking procedure we consider the Armijo’s rule. This
procedure selects two scalars 0 <a <0.5, 0 < 3 <land takes the following steps:
Backtracking procedure
Step 1. Set: 1=, and o = min{ £(x,), j =0,1,....k +1}.

Setp 2. While  f (X, =18411) > frin ~Q 1840 &pu» St L= 1.

Step 3. Set t,,, =1t.

Therefore, the initialization of the backtracking procedure is given by £, ,, and in Armijo rule
. Typically, a =0.0001 and B = 0.8, meaning
that we accept a small decrease in f of the prediction based on the linear extrapolation.

Observe that for convex functions y,,, >0. If f(x,,,)— f(x,)+t, g, g, <O,

then the reduction f(x,,,)— f(x,) in function value is smaller than —¢, g, g,. In these

the function values are compared with f;

min

cases the idea is to change a little the stepsize ¢, as ¢, +1],, maintaining the other quantities
at their values, in such a manner that y,,, to be positive. To get a value for 17, let us select a
real O >0, enough small”, but comparable with the current value of the function,

(5 = ea f(xk+1)

, €&, =107) and consider

1
N = Ty [f(xk)_f(xkﬂ)_tkg/zgk +5], (11)

k

with which a new value for y,,, can be computed as:

1
T
g: 8 (t,+n,

Yin = )2 [f(xk+l)_ S(x)+ (@, +n, )nggk]- (12)

With these, the corresponding Anticipative Algorithm is as follows:

The Anticipative Algorithm (AA)
Step 1. Select x, Udom fand compute f,, g,and ¢, =argmin f(x, —tg,). Set
t<l1

k=0and f = f,.
Step 2. Compute X,,, =x, —t, g, , fimand g.,. If fi,, < fo.,then f .= f. .
Step 3. Compute Y,,, as in (6). If y,,, <0, then select & > 0 and compute a new value for
Y+ asin (12), where 1, is given by (11).
Step 4. Compute the initial stepsize 7,,, =1/ V-
Step 5. Using the above backtracking procedure determine the steplength ¢, ;.
Step 6. Test for continuation. If

Hg/m g/¢T+1gk+1 SE/"fkﬂ
then stop; otherwise set k = k +1and continue with step 2.

; (13)

LSE, or 1,

If in step 3 of algorithm AA instead of y,,, we consider y,fﬁ , then we get a variant

of Barzilai-Borwein algorithm with line search, called algorithm BB.
The analysis of convergence of this algorithm is given by the following results.

Proposition 1. For every k =0,1,... y, generated by the algorithm AA is bounded away
from zero.

Proof. For every k=0,1,... we know that f(x,,,)— f(x,)+¢,g/g, >0.Therefore,
f(x,)= f(x,,) <t, g, g,. With this we have:



_2(f(xk)_f(xk+1)) >£_2tk(nggk) _
t(g:8:) te 1:(gig0)

2
S

Therefore, the step 4 of AA is well defined. However, towards the final iterations of the
algorithm, especially when the accuracy requirements are too high, it is possible that

(f(x,.)*t. gl g,)— f(x,) <0,but very close to zero. This is because g, g, is too small.

That means the reduction in function values is too small. The remedy, we have suggested
here in this situations, is to increase a little the steplength in order to compensate the
accuracy requirements.

In the following let us assume that f is strongly convex and the sublevel set
S = {x Odom f: f(xE f (xo)} is closed. Strong convexity of f on S involves that there
exists the constants m and M such that ml <[O*f(xE MI,for all xOS. A

consequence of strong convexity of f is that we can bound f ", the value of function fin
local minimum, as:

F-—orls £ far —bref- (14)
2m 2M

In this circumstances the following theorem can be proved.

Theorem 1. For strongly convex functions the AA algorithm with backtracking is linear

convergent and
S)= 1" ﬁ'l e re 1)

where ¢, =1-— min{2mat_i+l,2ma tuB p"} <l and p,20 is an integer
(p; =0,1,2,... given by the backtracking procedure).

Proof. We can write:

: 1, 2
fG0= £ ~H -0y el
But, t—t"y,,, /2 is a concave function, and for all 0<z<1/y,,,, it follows that
t=t’y,,, /2 =1t/2. Hence,

O s f =3 lell < ) -ade,

since d<1/2. The backtracking linesearch procedure terminates either with ¢ =1¢

2
2 2
k+1
(p, =0)or a value t=1,,, B",where p,>1is an integer given by the backtracking
procedure. With this, at step & we can get a lower bound on the decrease of the function. In

the first case we have:

— 2
S o) S f(x) =18, »
and in the second one
_ . 2
fa) S f(x) =B e
Therefore,
; " " Pr 2
S(xp)s f(xk)_mln{atkH’atkHB } ‘gkuz'
Hence

FCan) =1 < fe) =1 —mindaiaiaB el



j > Zm(f(xk)—f*). Hence,
fxe) - el fxo-17),

Having in view the strong convexity, from (14), we have H g

where
=1 - min{2ma,,,,2ma i, ,B "
c, min{2mat,, ,2mat,,B .

. . . . . . *
Since ¢, <1, the sequence f(x,)is linear convergent, like a geometric series, to f . B

3. Numerical Results

In this section we present the performance of a Fortran implementation of these algorithms.
All codes are written in standard Fortran and compiled with f77 (default compiler settings)
on a Pentium 1.5Ghz. For the very beginning, in order to illustrate the behaviour of the
Anticipative Algorithm (AA) in comparison with the Barzilai-Borwein algorithm (BB) in this

formulation, let us consider the Freudenstein & Roth function:
n/2

)= 3 (<1343, +((5 x5, —2)x,,) +

i=1
(_29 +x,, H((xy, tDxy, _14)x2i)2'
Considering  x, =[O.5,—2,...,0.5,—2], a =0.0001 and pfB =0.8, in backtracking
procedure, as well as €, =10"and € 5 =107 in the criteria (13) for stopping the

iterations, than for n =1000, the evolution of ‘ f(x,)—f *‘ given by the AA and BB
algorithms are presented in Figure 1.

10 T T T T
Freudenstein & Roth function, n=1000

Barzilai-Borwein Algorithm
218 iterations

Errar |f{xk)-f

Anticipative Algarithm
25 iterations

1 1 1
0 a0 100 150 200 240
Mumber of iterations

Fig. 1. AA versus BB algorithms.

We see that, for this example, subject to the number of iterations, the AA algorithm is about
8.7 times more performant than BB. It worth saying that, for algorithm AA we have
0.0002269 < ¢, =1/y, <0.34479, for k =1,2,...,25. At the same time for algorithm BB
0.00023029 <7, =1/ y,fB <0.34477, for k=12,...,218,showing that the initial
steplength used in backtracking procedure has an acceptable value. However, for general
functions the numbers y, and ka ? can be unacceptable large or small, or even y,f ? <0 for
nonconvex functions. Therefore, we must assume that the initial steplength computed
through 7, =1/y, or £, =1/y,;” is modified so as to satisfy a bounding condition of the



form 0<¢, <t, <t for all k, where ¢, and 7, are numbers specified by the user. The
Armijo line search, used in the backtracking, does not permit any increase of the stepsize.
Therefore, it is necessary to implement some rules that occasionally admit increases in the
stepsize. Such a procedure, for example, was proposed by Grippo and Sciandrone [13] based
on a combination of nonmonotone watchdog techniques with nonmonotone linesearches.
However, in this paper we did not consider this approach of line search because the main
interests were directed to suggest and to present the numerical evidence of an alternative
scalar approximation of the Hessian to that of Barzilai and Borwein’s, in the frame of
gradient descent algorithm.

The number of iterations (iter), function and its gradient evaluations (fg) and cpu
time in centeseconds (cpu(c)) for minimizing this function, for » =1000,2000,...,10000,

corresponding to AA and BB algorithms are presented in Table 1.

Table 1. AA versus BB algorithms for function f(x)with n =1000,2000,...,10000.

AA BB
n iter fg cpu(c) iter fg cpu(c)
1000 25 194 22 218 1615 204
2000 25 194 50 240 1762 445
3000 25 194 71 240 1771 670
4000 25 194 99 145 1086 554
5000 25 194 121 138 1028 654
6000 25 194 148 285 2096 1615
7000 25 194 171 175 1302 1170
8000 25 194 192 295 2173 2246
9000 25 194 225 170 1254 1456
10000 25 194 247 140 1047 1356
TOTAL 250 1940 1346 2046 15134 10370

In the following we present the performance of these algorithms, subject to cpu time metric,
on a number of 310 unconstrained optimization test functions. The test problems are the
unconstrained problems in the CUTE library [4], along with other large-scale optimization
test problems. We selected 31 large-scale unconstrained optimization test problems, in
extended or generalized form, and for each test function we have considered 10 numerical
experiments with number of variables n =1000,2000,...,10000. The numerical results
concerning the number of iterations, number of function and gradient evaluations, cpu time
in seconds, the minimum and maximum values of the initial stepsize, for each of these
algorithms are posted at the following web site:
http://www.ici.ro/camo/neculai/ansoft.htm/asa. The main indicator of performance is the
relative cpu time of algorithms AA and BB for solving a problem, as sugested by Morales
[16], and measured by

) B ime',, U
time, = —log, hime" H
BB

where timei1 , 1s the cpu time for solving the i —th problem by algorithm AA. The sign of
time; indicates the winer. In all cases in which AA wins ftime, has a positive value. The

number of times by which the winer outperforms the loser is 21l We refer this number as
the outperforming factor. In Figure 2 we display the values of time, for the set of problems

considered in this experiment, where the problems have been placed in decreasing order with

respect to their values of |time ,.|.
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Fig.2. Cpu time performance profile for 310 problems. AA versus BB.

We observe that for this set of experiments the AA algorithm outperforms BB, out of 310
problems, for 156 the AA algorithm was faster than BB. However, the gain is only marginal,
showing that the anticipative procedure for a scalar approximation of Hessian compares
favourable to that of Barzilai and Borwein’s.

4. Conclusion

The paper proposes a new scalar approximation to the Hessian of a minimizing function
which is based on the function values and its gradient in two successive points along the
iterations. This approximation, computed at step k is used to determine the initial stepsize
for a backtracking procedure which compute the steplength for the next iteration k +1. The
anticipative scheme, suggested here, is more robust than that of Barzilai and Brown which
often hapens to generate too small or even negative estimates for the initial steplength. The
advantage of this computational scheme is that at every iteration we generate a positive
scalar approximation of the Hessian, this giving us the possibility to continue the algorithm.
Like BB method, the anticipative strategy for steplength computation has a limited value in
the practice of gradient descent algorithms. The convergence of resulting algorithms, even
for strongly convex functions, is only linear. However, this idea of anticipative approach for
scalar approximation of Hessian is more profitable in the frame of scaled conjugate gradient
computational scheme [1].
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