
A numerical study on efficiency and robustness of some conjugate
gradient algorithms for large-scale unconstrained optimization

Neculai Andrei1

Abstract. A numerical evaluation and comparisons using performance profiles of some
representative conjugate gradient algorithms for solving a large variety of large-scale
unconstrained optimization problems are carried on. In this intensive numerical study we
selected eight known conjugate gradient algorithms: Hestenes and Stiefel (HS), Polak-Ribière-
Polyak (PRP), CONMIN, ASCALCG, CG-DESCENT, AHYBRIDM, THREECG and
DESCON. These algorithms are different in many respects. However, they have a lot of
concepts in common, which give the numerical comparisons sense and confident expectations.
The initial search direction in all algorithms is the negative gradient computed in the initial
point and the step length is computed by the Wolfe line search conditions. Excepting
CONMIN and CG-DESCENT, all the algorithms from this numerical study implement an
acceleration scheme which modifies the step length in a multiplicative manner to improve the
reduction of the functions values along the iterations. The numerical study is based on a set of
800 artificially large-scale unconstrained optimization test functions of different complexity
and with different structures of their Hessian matrix. A detailed numerical evaluation based on
performance profiles is applied to the comparisons of these algorithms showing that all of
them are able to solve difficult large-scale unconstrained optimization problems. However,
comparisons using only artificially test problems are weak and dependent by arbitrary choices
concerning the stopping criteria of the algorithms and on decision of whether an algorithm
found a solution or not. To get definitive conclusions using this sort of comparisons based only
on artificially test problems is an illusion. However, using some real unconstrained
optimization applications we can get a more confident conclusion about the efficiency and
robustness of optimization algorithms considered in this numerical study.

Key words: Large scale unconstrained optimization. Conjugate gradient algorithms. Numerical
comparisons. Benchmarking, Performance profiles, Data profiles, MINPACK-2 applications.

1. Introduction
Conjugate gradient method represents an important computational innovation for
continuously differentiable large scale unconstrained optimization with strong local and
global convergence properties and very modest and predictable memory requirements. This
family of algorithms includes a lot of variants and extensions with important convergence
properties and numerical efficiency. Different from the Newton or quasi-Newton methods
(including here the limited-memory quasi-Newton methods), the descent condition plays a
crucial role in convergence of the conjugate gradient algorithms. As a characteristic the
searching directions in conjugate gradient algorithms are selected in such a way that, when
applied to minimize a strongly quadratic convex function, two successive directions are
conjugate, subject to the Hessian of the quadratic function. Therefore, to minimize a convex
quadratic function in a subspace spanned by a set of mutually conjugate directions is
equivalent to minimize this function along each conjugate direction in turn. This is a very
good and productive idea, leading us to many variants of conjugate gradient algorithms, but
the performance of these algorithms is strongly dependent on the accuracy of the line search.

For solving the nonlinear unconstrained optimization problem:
 min ()

nx R
f x

, (1)

1 Research Institute for Informatics, Center for Advanced Modeling and Optimization, 8-10, Averescu
Avenue, Bucharest 1, Romania. E-mail: nandrei@ici.ro
Dr. Neculai Andrei is member of Academy of Romanian Scientists, Splaiul Independenţei Nr. 54,
Sector 5, Bucharest, Romania.

 1

mailto:nandrei@ici.ro

where : nf R R is a continuously differentiable function, bounded from below, starting

from an initial guess a nonlinear conjugate gradient algorithm generates a sequence of

points
,0x

kx , according to the following recurrence formula

 1k k k kx x d , (2)

where k is the step length, usually obtained by Wolfe line search [51, 52],

 () () T
k k k k k k k ,f x d f x g d (3a)

 (3b) 1 ,T T
k k k kg d g d

with 0 1/ 2 1, and the directions are computed as: kd

 1 1k kd g k sk , 0 .d g0 (4)

Here k is a scalar known as the conjugate gradient parameter, and

 In the following

()kg f x k

1k k .ks x x 1 .k k ky g g Even that the conjugate gradient algorithms

correspond to different choices for the parameter k , often they are designed in a specific

manner in such a way that the search direction d satisfies the sufficient descent condition k

,
2

kk
T
k gcdg

(11
T
k

T
k sgtyd

k

 for some arbitrary positive constant In these algorithms, the

conjugacy condition, or the modified conjugacy condition, is or

 where is a scalar. When applied to general nonlinear functions,

often, the searching directions in conjugate gradient algorithms are computed using some
formulas which do not satisfy the conjugacy condition. However, by extension we call they
conjugate gradient algorithms.

.0c

,01 k
T
k yd

),k 0t

 The elaboration of nonlinear optimization software using nonlinear conjugate
gradient algorithms is a very active field of research. On one hand, many conjugate gradient
algorithms have achieved a maturity stage and are frequently used for solving a wide range of
real applied problems in a large variety of areas. On the other hand, plenty of conjugate
gradient algorithms are continuously elaborated and therefore their efficiency and robustness
need to be established. The development of different versions of nonlinear conjugate gradient
algorithms can be presented as follows. Classical conjugate gradient algorithms: Hestenes
and Stiefel [33], Fletcher and Reeves [26], Daniel [21], Polak and Ribière [42] and Polyak
[43], conjugate descent by Fletcher [27], Liu and Storey [36] and Day and Yuan [22]. Hybrid
conjugate gradient algorithms using projections: hybrid Dai-Yuan [23], Gilbert and Nocedal
[28], Hu and Storey [34], Touati-Ahmed and Storey [50], hybrid Liu and Storey [36], and
hybrid conjugate gradient algorithms using the concept of convex combination of classical
schemes: convex combination of Hestenes-Stiefel and Dai-Yuan with Newton direction [3, 4,
8], convex combination of Polak-Ribière-Polyak and Dai-Yuan with conjugacy condition [7].
Scaled BFGS preconditioned conjugate gradient algorithms by Shanno [47, 48], Birgin and
Martínez [18] and Andrei [2, 9]. Conjugate gradient algorithms with guaranteed descent and
guaranteed conjugacy conditions by Hager and Zhang [32] and Andrei [12]. Three-term
conjugate gradient algorithms [10, 11].

The purpose of this paper is to study the performance of some conjugate gradient
algorithms in a controlled numerical environment to highlight the main differences among
them and to indicate the developer of algorithms and practitioner the best algorithms and the
types of problems that are well suited to each algorithm. Therefore, we are interested to see
the efficiency and robustness of some conjugate gradient algorithms for solving a large class
of large-scale unconstrained optimization problems. For this purposes from the above classes
of algorithms we selected a number of eight conjugate gradient algorithms, which seem to be
the most representative: Hestenes and Stiefel, (HS) [33], Polak-Ribière-Polyak (PRP) [42,
43], CONMIN [47-49], ASCALCG [2, 9], CG-DESCENT [32], AHYBRIDM [3, 8],
THREECG [10] and DESCON [12]. For a numerical evaluation of these algorithms the

 2

performance profiles [24] or the data profiles [37] are now standards for presenting efficiency
and robustness as well as the numerical comparisons. Besides, the collection of unconstrained
optimization test problems used in evaluation may have a great influence on the conclusions
of the numerical study of these algorithms. In order to see the performances of these
algorithms we assembled a collection of 800 large-scale unconstrained optimization test
problems of a large variety and of different complexity and different structures of their
Hessian matrix. The comparisons among algorithms are presented using the performance
profiles. Besides, a number of five applications from MINPACK-2 collection [14] have been
used to see the performances of the conjugate gradient algorithms considered in this
numerical study. Our study is limited by this collection of test problems we used. However,
we have tried to consider a test set of considerable diversity. Some of the artificially test
problems are quadratic or nearly quadratic, while others are cubic or cubic perturbed with
quadratic and linear. Some are combinations of quadratics including exp, sin or cos functions.
There are varying degrees of nonlinearity and ill-conditioning. The functions are expressed in
extended or generalized form as a sum or difference of element functions [31]. It is worth
saying that the Hessian of the functions from this collection has different structure: diagonal,
block-diagonal, tri-diagonal or penta-diagonal, bounded-diagonal, bounded-block-diagonal,
etc. or full Hessian. The numerical conclusions concerning the efficiency and robustness of
algorithms are based on this sample of functions, but we hope that they may be more
generally useful for both the developer of algorithms for unconstrained optimization or
practitioners faced with solving practical applications.

All these eight Fortran codes, which implement the conjugate gradient algorithms
considered in this numerical study, are not new. The oldest is CONMIN, the 1978 version
written by Shanno and Phua [49]. CG-DESCENT is version 1.4, (2005) written by Hager and
Zhang [32]. The most recent are ASCALCG (2010) [9], AHYBRIDM (2010) [8], THREECG
(2013) [10] and DESCON (2013) [12], all written by Andrei. In our numerical experiments
we do not try to tune the algorithms to a particular set of test problems, and a single fixed
version of each algorithm with fixed parameters was used.

As a general conclusion of this numerical study we can indicate that the conjugate
gradient software analyzed in this numerical study is able to solve a very large diversity of
unconstrained optimization problems of different complexity and with different structures of
the Hessian matrix. At least for this set of artificially test problems, concerning the efficiency,
CG-DESCENT is slightly more efficient, followed by DESCON and followed by THREECG.
Subject to robustness by far DESCON is the most robust, followed by THREECG and
followed by ASCALCG. It seems that the conjugate gradient algorithms implementing both
the sufficient descent condition and the conjugacy condition are the best. However, this is not
a definitive conclusion. In front of us there are an infinite number of artificially unconstrained
optimization test problems and it is always possible to assemble a set of problems for which
the efficiency and robustness of the considered algorithms are completely different. However,
in order to have a true conclusion at all we compared the above algorithms on five

applications from MINPACK-2 collection with variables. In this case DESCON proved
to be the fastest and the most reliable algorithm.

610

 The structure of the paper is as follows. In section 2 the main characteristics of
unconstrained optimization test problems considered in this numerical study are presented. A
detailed presentation of the comparison framework including the performance profiles and the
data profiles, their advantages and weakness, and the efficiency and the robustness of an
algorithm is given in section 3. In section 4 we present the conjugate gradient algorithms
considered in this numerical study insisting on their definition and convergence properties.
Section 5 is devoted to present the numerical experiments and comparisons using the
performance profiles. In section 6 some discussions are given including some comparisons
among algorithms for solving problems with different structures of the Hessian, the weakness
of the numerical experiments and comparisons using artificially test problems and some
results and comparisons for solving five MINPACK-2 applications. Conclusions are drawn in
the last section.

 3

2. Unconstrained optimization test problems considered in this numerical study
In this numerical study, we have considered 80 large-scale unconstrained optimization test
functions, in extended or generalized form we presented in [5], some of them being taken
from Cuter collection [19]. Each problem was tested 10 times for a gradually increasing
number of variables: Therefore, we obtained a set of 800
unconstrained optimization test problems of different complexity and with different structures
of their Hessian. The problems considered in this numerical study are in generalized or
extended form as a sum or difference of element functions [31] of different nonlinear
complexity. The structure of the Hessian matrix of the generalized functions is tri-diagonal or
multi-diagonal. The structure of the Hessian matrix of the extended function is block-
diagonal. Some functions are highly nonlinear and ill-conditioned.

.10000,,2000,1000 n

In [38] Nash and Nocedal suggested some criteria to classify the test problems used in
numerical studies. For the various function characteristics that are relevant to the convergence
theory or computational performances of algorithms they selected the following criteria:
deviation from quadratic (degree of nonlinearity), condition number of the Hessian,
convexity, eigenvalue structure, cost of evaluating the function and its gradient, etc. None of
these criteria is operational for large-scale unconstrained optimization. For example, the
deviation from quadratic involves the computation of the Hessian which is a very difficult
task for functions with a large number of variables. Probably, the most important criterion is
the eigenvalue structure of the Hessian. The eigenvalue distribution greatly affects the
performance of conjugate gradient algorithms. However, in case of large-scale optimization
computation of eigenvalue structure of the Hessian is not tractable. Also, convexity, an
important concept in optimization, is difficult to be established. Hence, we do not classify the
problems according to these criteria because we believe that they are not relevant for our
purpose and, besides, there is not a clear conclusion concerning the performances of
algorithms subject to the criteria considered in [38].

However, we can classify the problems according to the structure of their Hessian.
Knowing the analytical expression of the gradient it is very easy to get the structure of the
Hessian. In this numerical study, out of 80 functions for 10 of them the Hessian is a diagonal
matrix, for 19 the Hessian is a block-diagonal matrix, for 22 the Hessian is tri-diagonal (or
penta-diagonal) and finally for 16 of them the Hessian is a full matrix. Therefore, in the last
section of the paper we present some comments about the performances of the above
conjugate gradient algorithms for solving problems with different structures of the Hessian.

3. Comparison framework
3.1. Performance profiles versus data profiles
Both performance profiles [24] and data profiles [37] are common standards for presenting
the numerical comparisons among algorithms. In the following we shall present them
insisting both on their importance and the main differences. Let us consider a number of
methods used for solving

m

mMM ,,1 p problems and let be a metric

representing the effort method made for solving problem in order to get a point in

which the value of the function is We assume that the metric is such that the smaller

its value, the higher the performance of the method for solving the problem Consider

 the smallest value among all the required by each method that get a solution for

problem With these elements let us define the performance profile of method as:

pPP ,1

jP
ijt

iM

f .ij

t

ijt

M

iM .jP

iM

min
jt ij i

.jP

,
:,,1#

)(
min

p

ttwithPforsolutionafoundMpj jijji
i

 (5)

 4

where is the cardinality of the set Observe that the performance profiles, as defined
in (5), represent a curve very useful for graphical representation of comparisons among
several methods for solving large sets of problems. Mainly,

A# .A

)(i represents the fraction of

problems a method solved within a prescribed limit on its performance measurement like,

for example, the number of iterations, or the number of functions evaluation or the CPU time.
The main characteristic of the performance profile is that for each problem, the imposed limit
is a proportion

iM

1 of the performance measurement of the most efficient method for
solving this particular problem. Therefore, for a given method ,iM)1(i represents the

fraction of problems for which the method was the most efficient over all methods. On the
other hand,)(i represents the fraction of problems solved by method irrespective

of the required effort. In this context,

,iM

)1(i is associated to the efficiency of method

while
,iM

)(i is associated to the robustness of method .iM
 It is worth saying that the performance profile gives the same importance both to the
problems easy to be solved and to the problems hard to be solved, where by easy we
understand that the problem can be solved without a consistent effort (number of iterations, or
number of functions evaluation or CPU time).
 In order to make a difference between the easy problems and the hard ones the data
profiles has been introduced as:

.
:,,1#

)(
p

twithPforsolutionafoundMpj ijji
i

 (6)

As we can see,)(i represents the fraction of problems method is able to solve within a

prescribed limit on its performance measurement like the number of iterations, or the number
of function evaluations, or CPU time. Observe that in this case the limit is independent of the
performances of the other methods considered in a numerical study.

iM

The difference between these two profiles is major and there is not a clear answer
which one from these two to prefer. However, in this paper we select the performance profiles
as the main instrument for comparing the algorithms. The motivation behind this selection is
that we consider the easy and the hard problem have the same importance within a set of test
problems.

3.2. Solving an unconstrained optimization problem and comparison framework
In this numerical study by solving an unconstrained optimization problem we understand that
the methods determine local solutions of the problems . For a given

problem it is quite possible that two different methods determine two different local
minimizers with different function values. There is a great discussion whether all these
problems should be removed from the performance evaluation process or not. In our analysis
all the problems for which two different methods found different function values are removed.
The motivation behind this selection is that we are interested to compare algorithms which
find the same function values (in a given tolerance) to see the main characteristics of the
optimization processes concerning the number of iterations, the number of function and its
gradient evaluations and the CPU running time.

mMM ,,1 pPP ,1

In case of the unconstrained optimization the quality of solutions can be very simple
evaluated by comparing only the values of function to be minimized. Since we are working in
floating-point arithmetic we must compare two function values using relative errors, as
follows. Let us consider that when the methods are applied for solving a

particular problem, the following function values are obtained. Let

 and consider

mMM ,,1

f ,1 mf,

 mfff ,,min 1
min

 5

 ,
},1max{ min

min

f

ffi
i

 .,,1 mi (7)

Therefore, for a given tolerance we say that the method found a solution if ,0f iM

 (8) ,f
i

i.e. in comparisons when 1min f we consider “small absolute errors”, and “small relative

errors” otherwise. It is quite clear that using relative errors in this manner, the question is the

value of the threshold parameter Arbitrary small or large value choices of this parameter
will have some influence in the comparison of algorithms. Since we do not have any

possibility to fix a “good” value for in this numerical study we compare the algorithms

using the performance profiles (efficiency) and

.f

)1(
,f

)((robustness) for 6 different

values of : From our intensive numerical experiments we observed

that the value of the threshold parameter does not have a great influence on the
performance profiles and

f .8

(

10,,10 3 f

)1(

f
) of the algorithms. In order to have a better

understanding of the efficiency and the robustness of algorithms we present the performance

profiles for 16,,1 and .310f

4. Conjugate gradient algorithms considered in this numerical study
In this work we focus on unconstrained optimization software which implements conjugate
gradient algorithms. The eight solvers considered in this numerical study include: the classical

conjugate gradient algorithms Hestenes and Stiefel (HS) () [33] and

Polak-Ribière-Polyak (PRP) () [42, 43]; the BFGS preconditioned

conjugate gradient algorithms CONMIN [49] and ASCALCG [9]; a conjugate gradient
algorithm with guaranteed descent CG-DESCENT [32]; a hybrid conjugate gradient
algorithm as a convex combination of HS, and Day and Yuan conjugate gradient algorithms
AHYBRIDM [3, 8]; a simple three-term conjugate gradient algorithm which satisfy both the
descent and the conjugacy conditions THREECG [10], and a conjugate gradient algorithm for
which both the descent and the conjugacy conditions are guaranteed with modified second
Wolfe line search condition DESCON [12]. In this study we are interested to see the
efficiency and the robustness of these algorithms and to compare their performances subject to
a large class of artificially test problems and real unconstrained optimization applications.

k
T
kk

T
k

HS
k syyg /1

k
T
kk

T
k

PRP
k ggyg /1

 Intensive numerical experiments proved that in conjugate gradient algorithms the step
length may differ from 1 in a very unpredictable manner. They can be larger or smaller than 1
depending on how the problem is scaled. This is in very sharp contrast to the Newton and
quasi-Newton algorithms, including the limited memory quasi-Newton algorithms, which
accept the unit step length most of the time along the iterations, thus requiring only few
function evaluations per search direction. Therefore, excepting CONMIN and CG-
DESCENT, all the algorithms from this numerical study implement an acceleration scheme
which modifies the step length in a multiplicative manner to improve the reduction of the
functions values along the iterations [1, 6]. The initial search direction in all algorithms is

 and the step length is computed by the Wolfe line search conditions implemented

in the same manner. The initial guess of the step length at the first iteration is

00 gd

./1 00 g At

the following iterations, in all algorithms, the starting guess for step k is computed as

./
2211 kkk dd This strategy proved to be one of the best selection of the initial guess of

the step length.
The HS and PRP conjugate gradient algorithms are very well known in literature.

Both of them have in numerator and possess a built-in restart feature that directly k
T
k yg 1

 6

addresses the jamming, which is a very important property. When the step is

small, the factor in the numerator of and tends to zero. Therefore, and

 become small and the direction corresponding to HS or PRP algorithms is

essentially the steepest descent direction

kkk xxs 1

HS
kky HS

k

1kd

PRP
k

.1

PRP
k

 kg Hence, the HS and PRP methods

automatically adjust the parameter k to avoid jamming. The HS method has the property

that the conjugacy condition 1 0T
k ky d always holds, independent by the line search. If

is uniformly convex and the line search is exact, Polak and Ribière [42] proved the global
convergence of PRP algorithm. On the other hand, for general nonlinear function Powell [45]
proved the global convergence of PRP algorithm if the step size tends to zero, the line

search is exact and the gradient is Lipschitz continuous. Using an exact line search,

f

ks

.HS
k PR

k
P Therefore, the convergence properties of the HS algorithm should be similar to

the convergence properties of the PRP algorithm. But, for general nonlinear functions the
convergence of the PRP method is uncertain. The classical Powell’s example shows that when
the function is not strongly convex, the PRP algorithm may not converge, even with an exact
line search [44]. Hence, the HS algorithm with an exact line search may not converge for
general nonlinear functions. However, although HS and PRP may not converge in general,
they often perform better than some other conjugate gradient algorithms like Fletcher and

Reeves (FR) (
2

/ k

2

1k gg FR
k) [26], Dai and Yuan (DY) (k

T
kk

DY
k syg /

2

1) [22]

and the Fletcher’s algorithm CD ()k
T
k sg/(

2

1kg
CD
k) [27]. The line search in both HS

and PRP is based on the Wolfe conditions implemented in the same manner.
Both CONMIN and ASCALCG belong to the same class of conjugate gradient

algorithms based on scaled BFGS preconditioning. CONMIN elaborated by Shanno and Phua
[49] incorporates two nonlinear optimization algorithms, a conjugate gradient algorithm and a
variable metric BFGS one. The conjugate gradient algorithm in CONMIN, we consider in our
numerical study, is the Beale restarted memoryless BFGS updating algorithm, which in fact is
a modification of Perry algorithm [41]. Shanno [47] observed that the conjugate gradient
algorithms are exactly the BFGS quasi-Newton algorithm where the approximation to the
inverse Hessian is restarted as the scaled identity matrix at every step, as no additional storage
is used to develop a better approximation to the inverse Hessian. The scaling factor is

computed as ./
2

kk
T
k ydy The algorithm implemented in CONMIN is a composite conjugate

gradient algorithm in which the same philosophy used in BFGS of modifying the negative
gradient with a positive definite matrix which best estimates the inverse Hessian without
adding anything to storage requirements [47] is implemented at restarting, i.e. when the
Beale-Powell restart criterion is satisfied. The linear search uses Davidon’s cubic
interpolation to find a step-length satisfying the Wolfe line search conditions. Shanno [47]

proved that under the assumptions on that ,)(
22 uM)(xf u xfuT and

 uniformly in

M 0

Lxf)(,x either 0lim kgk or .0lim k s k Under the further

assumption that for any the level set 0R RxfxS)(
*x

: is bounded, then the

sequence generated by the algorithm converges to a point at which kx ,0)(* xg or

the sequence cycles.
On the other hand, ASCALCG elaborated by Andrei [9] is an accelerated scaled conjugate
gradient algorithm which combines the scaled memoryless BFGS algorithm and the
preconditioning technique. The preconditioner, which is also a scaled memoryless BFGS
matrix, is reset when the Beale-Powell restart criterion [16] holds. The parameter scaling the

gradient is selected as a spectral gradient: The search direction in

ASCALCG is computed as a double quasi-Newton update scheme:

./ k
T
kkk sy 1

T
k ss

 7

 ,1
)()(111

1 k
k

T
k

k
T
k

k
T
k

T
k

k
T
k

k
T
kk

T
k

k s
sy

sg

sy

wy

sy

swgwsg
vd

 (9)

where and and is the BFGS approximation to the inverse

Hessian initialized with the identity matrix and scaled by the scalar
11 kr gHv kr yHw 1 1rH

1r at the r th iteration
where the Beale-Powell restart test is satisfied:

 .1 1111
r

T
r

T
rr

r
T
r

r
T
r

r
r

T
r

T
rr

T
rr

rrr sy

ss

sy

yy

sy

yssy
IH

 (10)

The restart direction is computed as where is exactly the BFGS

quasi-Newton matrix, and at every step the approximation of the inverse Hessian is the
identity matrix multiplied by the scalar

,1
*

11 kkk gQd

,1k

*
1kQ

 i.e.

 .1 1
1

1
1

1
1111 k

k
T
k

k
T
k

k
k

T
k

k
T
k

k
T
k

k
T
k

kk
k

T
k

k
T
k

kkkk s
sy

yg

sy

sg

sy

yy
y

sy

sg
gd

 (11)

For the step-length computation the algorithm implements the Wolfe line search conditions in
the same manner as in CONMIN. The global convergence of ASCALCG was established by
Babaie-Kafaki [15]. For uniformly convex function if the gradient of the function is

Lipschitz continuous on the level set

f

)()(: 0xfxfxS , then the search directions

generated by ASCALCG satisfy the sufficient descent condition. For general nonlinear
functions under exact line search and if the gradient of the function is Lipschitz
continuous, then the algorithm satisfies the sufficient descent condition, i.e. it is globally
convergent.

f

CG-DESCENT algorithm was elaborated by Hager and Zhang [32] in order to ensure
sufficient descent, independent of the accuracy of the line search. In CG_DESCENT the

search direction , where 1 1
HZ

k k kd g ks

2

12

T

kHZ k
k k kT T

k k k k

y g
y s ,

y s y s

 (12)

satisfies the sufficient descent condition
2

(7 / 8) .T
k k kg d g If the function f is a

quadratic and the line search is exact, then CG_DESCENT reduces to HS. In fact,
CG_DESCENT is a modification of HS algorithm. However, in CG_DESCENT the search
directions do not satisfy the conjugacy condition. Again, when iterates jam the expression

2 2
1(()) / (T T

k k k k k)y s g y s in the above formulation of HZ
k becomes negligible. This

modification of the HS scheme makes CG_DESCENT to perform better than HS [32]. In
order to obtain global convergence for general nonlinear functions, the algorithm truncates the

parameter in a manner similar to PRP+ [28]. It is not clearly known that this truncation

mechanism is benefic in the economy of the algorithm. Under standard assumptions the
algorithm that satisfies the Wolfe line search is convergent in the sense that either for

some or

HZ
k

0kg

k 0inflim kk g [32]. A very simple restart scheme is implemented in CG-

DESCENT: when the number of iterations is a multiple of n , then the searching direction is
reset to the negative gradient. However, for the vast majority of problems the number of

 8

iterations for solving a problem is much smaller that its dimension. Therefore, the restart
iterations are very seldom used.

AHYBRIDM, elaborated by Andrei [3, 8], is an accelerated hybrid conjugate gradient

algorithm in which the parameter k is computed as a convex combination of and

where the parameter

HS
k

DY
k

k in the convex combination is computed in such a way the direction

corresponding to the conjugate gradient algorithm is the best direction we know, i.e. the
Newton direction, while the pair satisfies the modified secant given by Li et al. [35]

 where

)ky,(ks

,1 kkk zsB kkk(kk ssyz)/
2 and

Therefore,

.) k
T s(kg)(2 11 kkkk gff

 (1) HS
k k k k

DY
k (13)

where

1
1

1
1

1

.

T
Tk k k
k k kT T

k k k k
k T

T k k
k k kT

k k

y g
s g

s s y s

g g
g g

y s

 (14)

 is a scalar parameter (1 in our numerical experiments). In [8] we have the
computational evidence that AHYBRIDM, as a convex combination of HS and DY conjugate
gradient algorithms, is top performer versus the hybrid conjugate gradient algorithms obtained

by projections, like hybrid Dai and Yuan [23] (,,min,max DY
k

HS
k

DY
k

hDY
k c where

)1/()1(c), Gilbert and Nocedal [28] (FR
k

PRP
k

FR
k

GN
k ,min,max) or

hybrid Liu and Storey [36] (CD
k

LS
k ,min /()(1 k

T
k

LS
k gyg CD ,0maxLS

k
 ,).

This is the reason we selected AHYBRIDM in this numerical study on the efficiency and
robustness of conjugate gradient algorithms. The step-length is computed using the Wolfe line
search. An acceleration scheme is implemented by modifying the step-length in order to
improve de reduction of function values along the iterations. Under classical assumptions,
both for uniformly convex functions and for general nonlinear functions the algorithm with
strong Wolfe line search is globally convergent [8].

)k
T
k s

THREECG is a simple three-term conjugate gradient algorithm developed by Andrei
[10]. The algorithm is a modification of the HS algorithm or of CG-DESCENT in such a way
that the search direction is descent and it satisfies the conjugacy condition. These properties
are independent of the line search. Also, the algorithm could be considered as a very simple
modification of the memoryless BFGS quasi-Newton method. The search direction is
computed as:
 1 1 ,k k k k kd g s yk (15)

where

2

11
T T

k k k k k
k T T T

k k k k k k

y s g y g 1 ,
y s y s y s

 (16)

 1 .
T
k k

k T
k k

s g

y s
 (17)

The new approximation of the minimum is obtained by the general Wolfe line search
conditions and the acceleration technique. For uniformly convex functions, under standard
assumptions, the algorithm is globally convergent [10].
 Finally DESCON [12] is a conjugate gradient algorithm for which both the descent
and the conjugacy conditions are guaranteed. The search direction is selected as
 1 1k k kd g k ks , (18)

where

 9

2

1

1

()
1

T
k k kk

k T
k k k k

y s ga b

y g

 k

, (19)

2

11 1
T

kk k k
k T

k k k k

gy g b
a

y s

k

1,

 (20)

and

 1()T T
k k k k ka v s g y g (21)

2

1 1() ()(T T T
k k k k k k k kb w g y s y g s g 1), (22)

2

1 1 1()() (T T T
k k k k k k k k).y g s g g y s (23)

0w and are arbitrary positive constants which specify the sufficient descent

condition

0v
2

1!1 k
T
k dg kgw and the conjugacy condition

respectively. The algorithm introduces the modified Wolfe line search conditions, in which
the parameter in the second Wolfe condition is modified at every step as:

),(11 k
T
kk

T
k sgvyd

2

1 1/ ()T
k k k k kg y g g 2

1 . (24)

The algorithm implements the acceleration scheme. Both for uniformly convex functions and
for general nonlinear functions, the algorithm with strong Wolfe line search generates
directions bounded away from infinite. Therefore, the algorithm is globally convergent [12].
 HS, PRP, AHYBRIDM, THREECG and DESCON use the Beale-Powell [16, 45]

restart mechanism: if
2

11 2.0 kk
T
k ggg is satisfied, then .11 kk gd In our numerical

experiments we noticed that for solving a problem this test is used in many iterations
representing a sort of relaxation of the algorithm.
 Excepting CG-DESCENT all the algorithms considered in this numerical study use
exactly the same implementation of the Wolfe line search (3). This is an advanced
implementation with Davidon’s cubic interpolation and different safeguards to ensure that the
search procedure cannot be stuck or attempt to move away past a local maximum to a more
distant local minimum.

5. Numerical experiments and comparisons
In the present numerical experiments we considered 800 large-scale unconstrained

optimization test problems of the form . The stopping criterion associated
with successful convergence of the algorithms, very used in large-scale optimization, was

}:)(min{ nRxxf

 ,g
kg

 (25)

where

. is the maximum absolute component of a vector. Concerning the threshold

parameter there is not a clear rule to establish its value. However, in order to achieve

small values of the sup-norm of the gradient we selected in (25). We see that for

problems with variables (25) implies that

g
610g

410n .10 4
2
kg In all algorithms considered

in this numerical study, for the step length k computation, the same implementation of the

Wolfe line searches conditions (3) is used, where and 410 .8.0 In DESCON the

parameter is computed at every step as in (24). At the same time, even CG-DESCENT has
two procedures for the step length k computation, the classical Wolfe line search (3) and the

approximate Wolfe line search, in our numerical experiments we have considered only the
classical Wolfe conditions. In all cases we preserved the software’s default parameters.
Software was compiled with Fortran 77, option –O4. The numerical experiments were
executed on a Workstation Intel Pentium 4 with 1.8 GHz. Excepting CONMIN, all algorithms
use the loop unrolling of depth 5.

 10

 In all the numerical comparisons we selected to use the performance profiles [24] to
present the results of the numerical experiments. This is motivated by the fact that using a
large set of test problems, the easy-to-solve problems have the same importance as the harder
ones. Besides, the performance profiles illustrate both the efficiency and the robustness of a
method versus some other methods considered in this numerical study. The performance
profiles correspond to the CPU time metric in which all the problems that do not satisfy the
criterion (8) have been ignored. It is worth saying that the performance profiles refer to a
comparative analysis of eight conjugate gradient algorithms using only two algorithms each
time.

5.1. DESCON versus classical conjugate gradient algorithms HS and PRP

Considering in (8), in Figures 1 and 2 we present the performance profile of
DESCON versus HS and PRP subject to CPU time metric, respectively. Observe that the best
performance, relative to the CPU time metric, was obtained by DESCON, the solid top curve
in Figures 1 and 2. The figures indicate that relative to CPU time metric, DESCON is fastest.
Since all these three codes use the same line search based on Wolfe conditions (implemented
in exactly the same manner), these codes only differ in their choice of the search direction.

310f

Comparing, for example, DESCON versus HS (see Figure 1), subject to the number
of iterations, we see that DESCON was better in 610 problems (i.e. it achieved the minimum
number of iterations in 610 problems). HS was better in 84 problems and they achieved the
same number of iterations in 62 problems, etc. Out of 800 problems, only for 756 problems

does the criterion (8) holds with Therefore in comparison with HS (see Figure 1)
and PRP (see Figure 2) DESCON appear to generate the best search direction on average.

.10 3f

 Tables 1 and 2 present the efficiency and robustness rates of DESCON versus HS and

of DESCON versus PRP respectively, for and 610g .10,,10 83 f From these
Tables we have the computational evidence that DESCON is the most efficient and the most

robust method for every value of in the set: f .8

)1(

10,,10 3 For example, for
from Table 1 we see that DESCON is 8.069% more efficient than HS and 12.037% more
robust. Concerning PRP, DESCON is 9.272% more efficient and 12.848% more robust. In
Tables 1 and 2 Nrp is the number of problems, out of 800 used in these numerical studies that
satisfy criterion (8). Again, from Tables 1 and 2 observe that the value of the threshold

parameter does not have a great influence on performance profiles

,10 3f

f and of
DESCON versus HS and PRP. All these three algorithms use the Beale-Powell restart

procedure. If

)(

2

11 2.0 kk
T
k ggg is satisfied, then ,11 kgkd

1000

 i.e. the current direction is

the negative gradient. This is an important ingredient in conjugate gradient algorithms
representing a sort of relaxation of iterations. It is worth seeing the restart iterations in these
algorithms for a particular problem. Let us consider the problem #3 (extended Rosenbrock
function). This problem was chosen because it illustrates the typical performance that we
observed in numerical experiments. For n to get the optimal solution, DESCON
needs 57 iterations out of which 21 are restart iterations, i.e. 36.842% are restart iterations. On
the other hand, HS needs 79 iterations, out of which 46 are restart iterations, i.e. 58.227% are
restart iterations. In the same context, PRP needs 78 iterations, 42 from these being restart
iterations, i.e. 53.846% are restart iterations that use the negative gradient as the searching
direction. Observe that DESCON needs the least number of restart iterations, and this is the
reason of its efficiency and robustness in comparisons with HS and PRP.
HS and PRP conjugate gradient algorithms use the Wolfe line search conditions (3) where

and .410 8.0 On the other hand, DESCON again use the Wolfe line search (3), but

at every step modifies k as in (24).

 11

Fig. 1. DESCON versus HS. () 310f

Fig. 2. DESCON versus PRP. () 310f

 12

Table 1. Performance profiles)1(and)(of DESCON versus HS.

)1()(f Nrp

DESCON HS DESCON HS
310 756 0.69841 0.61772 0.99735 0.87698

410 727 0.69876 0.62173 0.99725 0.87208

510 700 0.70143 0.62857 0.99714 0.86714

610 677 0.70901 0.62925 0.99705 0.86263

710 647 0.71252 0.63679 0.99691 0.85781

810 620 0.71613 0.64677 0.99677 0.85806

Table 2. Performance profiles)1(and)(of DESCON versus PRP.

)1()(f Nrp

DESCON PRP DESCON PRP
310 755 0.70861 0.61589 0.99735 0.86887

410 724 0.71685 0.61326 0.99724 0.86326

510 697 0.71736 0.62267 0.99713 0.85796

610 673 0.72511 0.62407 0.99703 0.85290

710 629 0.72019 0.64865 0.99682 0.85056

810 604 0.72351 0.64404 0.99669 0.85099

5.2. DESCON versus CONMIN and ASCALCG

For Figures 3 and 4 present the performance profiles of DESCON versus
CONMIN and ASCALCG, respectively. The best performance, relative to the CPU time
metric, again was obtained by DESCON, the solid top curve in Figures 3 and 4. We see that
out of 800 problems used in these numerical experiments in case of CONMIN only 730
satisfy criterion (8). In case of ASCALCG only 743 problems satisfy the same criterion.
Tables 3 and 4 present the performance profiles

310f

)1(and)(of DESCON versus

CONMIN and ASCALCG, respectively. From Tables 3 and 4, for observe that
DESCON is 23.287% more efficient than CONMIN and 35.262% more efficient than
ASCALCG. Concerning the robustness, from the same tables we see that DESCON is 3.151%
more robust than CONMIN and 1.076% more robust than ASCALCG. Observe that
DESCON is more efficient and more robust versus CONMIN and ASCALCG, respectively,

for every value of in the considered set

,10 3f

f .10 8,,10 3
It is worth saying that CONMIN uses the second order information as the BFGS update
initialized with the identity matrix at every step. On the other hand, ASCALCG uses the
second order information as the BFGS update in which, at every step, the approximate of the

inverse Hessian is restarted as ,1Ik where (by Wolfe line

search conditions.) Both CONMIN and ASCALCG satisfy the sufficient descent condition,
but do not satisfy the conjugacy condition. On the other hand, DESCON satisfies both the
sufficient descent and the conjugacy conditions. Besides, DESCON uses the second order

information by using the modified conjugacy condition with .

./1 k
T
kk

T
kk syss

1 k
T
k yd

0k
T
k sy

)(1 k
T
k sgv 05.0v

ASCALCG, is more elaborated than CONMIN. Therefore, subject to robustness, it is closer to
DESCON than CONMIN is (see Figure 4).

 13

Fig. 3. DESCON versus CONMIN. () 310f

Fig. 4. DESCON versus ASCALCG. () 310f

 14

Table 3. Performance profiles)1(and)(of DESCON versus CONMIN.

)1()(f Nrp

DESCON CONMIN DESCON CONMIN
310 730 0.78219 0.54932 0.99863 0.96712

410 720 0.77917 0.55417 0.99861 0.96667

510 682 0.77273 0.57918 0.99853 0.96481

610 660 0.77273 0.59091 0.99848 0.96515

710 614 0.78013 0.60098 1 0.96254

810 592 0.77365 0.61318 1 0.96284

Table 4. Performance profiles)1(and)(of DESCON versus ASCALCG.

)1()(f Nrp

DESCON ASCALCG DESCON ASCALCG
310 743 0.81292 0.46030 0.99596 0.98520

410 721 0.81415 0.46186 0.99584 0.98474

510 671 0.81669 0.46796 0.99553 0.98510

610 603 0.81758 0.45439 0.99502 0.98673

710 518 0.80888 0.45946 0.99421 0.99035

810 478 0.80335 0.45816 0.99372 0.99163

There are problems for which ASCALCG takes very few Beale-Powell restart iterations. For
example, for problem #13 (Hager), with ,1000n

,1000

 ASCALCG needs 42 iterations, out of
which 1 iteration is a restart one. On the other hand, DESCON needs 44 iterations, out of
which 2 iterations are restart iterations. But, for some other problems (not so many in this
collection) ASCALCG takes a large number of Beale-Powell restart iterations. For example,
for problem #32 (White & Holst), with n ASCALCG needs 3111 iterations, out of
which 1281 (41.176%) are Beale-Powell restart iterations. In this case, DESCON takes only
148 iterations, out of which 12 (8.108%) are restart iterations. This is the weakness of
ASCALCG.

5.3. DESCON versus CG-DESCENT
These two algorithms differ in many respects. CG-DESCENT was designed to guarantee the

sufficient descent condition
2

(7 / 8) .T
k k kg d g On the other hand, DESCON is more

elaborated it uses the second order information by satisfying the modified conjugacy

condition with)(11 k
T
kk

T
k sgvyd 05.0v and the sufficient descent condition

2

1!1 kk
T
k gwdg with Observe that we consider .8/7w 8/7w

.w

 in DESCON as in

CG-DESCENT. Intensive numerical studies and sensitivity analysis [12] proved that
DESCON is very little sensitive to the numerical values of and Besides, DESCON is
equipped with an acceleration scheme very efficient for improving the values of the
minimizing function.

v

Figure 5 presents the performance profile of DESCON versus CG-DESCENT for
Observe that DESCON is more efficient and more robust versus CG-DESCENT. Out of 800
unconstrained optimization problems considered in this numerical study, only for 774
problems does the criterion (8) holds. Table 5 presents the performance profiles and

 of DESCON versus CG-DESCENT. From Table 5, for we see that

.10 3f

)1(
)(,10 3f

 15

DESCON is 6.589% more efficient than CG-DESCENT and 4.522% more robust. For

 DESCON is 1.540% more efficient than CG-DESCENT and 3.236% more
robust. In this case out of 800, only for 649 problems the criterion (8) holds. Observe that

DESCON is more efficient and more robust versus CG-DESCENT for every value of in

the set

,10 8f

f
 .10,, 83 10 In DESCON two important ingredients have been implemented: the

acceleration and the Beale-Powell restart iterations which are responsible with the
performances of it. On the other hand in CG-DESCENT the restart mechanism is very simple:
when the number of iterations is a multiple of n , then the direction is the negative gradient.
Since the number of iterations is much smaller than , the restart iterations are very rare
used.

n

Fig. 5. DESCON versus CG-DESCENT. () 310f

Table 5. Performance profiles)1(and)(of DESCON versus CG-DESCENT.

)1()(f Nrp

DESCON CG-DES DESCON CG-DES
310 774 0.69380 0.62791 0.99612 0.95090

410 762 0.69160 0.63517 0.99606 0.96063

510 729 0.68861 0.65295 0.99588 0.95885

610 705 0.68511 0.66525 0.99574 0.95887

710 686 0.68076 0.66910 0.99563 0.95918

810 649 0.69183 0.67643 0.99538 0.96302

Besides, we must emphasize that as approaches 0 and approaches 1, the Wolfe line

search terminates quicker. Therefore, the chosen values in CG-DESCENT 0.1 and

0.9 represent a compromise between the desire for rapid termination of line search and

 16

the desire to improve the function value. On the other hand, in DESCON in subroutine for
line search we chosen 0.0001 and we limited the number of line search iterations to 3. To
improve the function values the acceleration scheme is used which involves only one function
evaluation. These are the rationales DESCON is top performer versus CG-DESCENT in
Figure 5.

5.4. DESCON versus the hybrid conjugate gradient algorithm AHYBRIDM
Figure 6 presents the performance profiles of DESCON versus AHYBRIDM. It is worth
saying that AHYBRIDM is based on the concept of hybridization by convex combination of
HS and DY conjugate gradient algorithms in order to exploit their attractive features. On one
side DY has strong convergence properties and HS in numerical experiments performs better
than some other conjugate gradient algorithms, on the other side.
We see that out of 800 unconstrained optimization problems only for 773 problems does the
criterion (8) holds. Table 6 presents the performance profiles)1(and)(of DESCON
versus AHYBRIDM. From Table 6 we see that DESCON is 34.670% more efficient than
AHYBRIDM and 1.164 % more robust.

Fig. 6. DESCON versus AHYBRIDM. () 310f

Table 6. Performance profiles)1(and)(of DESCON versus AHYBRIDM.

)1()(f Nrp

DESCON AHYBRIDM DESCON AHYBRIDM
310 773 0.83829 0.49159 0.99741 0.98577

410 766 0.83943 0.48825 0.99739 0.98564

510 746 0.83914 0.49732 0.99732 0.98660

610 722 0.84211 0.50277 0.99723 0.99169

710 706 0.84136 0.50992 0.99717 0.99292

810 693 0.83838 0.51804 0.99711 0.99423

 17

Observe that DESCON is more efficient and more robust versus AHYBRIDM for every value

of in the set f .10,,10 83 In numerical experiments we noticed that in AHYBRIDM
the iterations often trigger between HS and DY and their convex combination very seldom are
used. Rephrased, the performance profile of AHYBRIDM is a little higher than the
corresponding profiles of HS and DY. This is the reason why DESCON is far away more
efficient than AHYBRIDM.

5.5. DESCON versus the three-term conjugate gradient algorithm THREECG
In Figure 7 we have the performance profiles of DESCON versus THREECG. Out of 800
unconstrained optimization test problems only for 778 problems does the criterion (8) holds.
Even that there is a discrepancy concerning the efficiency, the algorithms are very close
subject to robustness. In Table 7 we see the performance profiles)1(and of
DESCON versus THREECG.

)(

Fig. 7. DESCON versus THREECG. () 310f

Table 7. Performance profiles)1(and)(of DESCON versus THREECG.

)1()(f Nrp

DESCON THREECG DESCON THREECG
310 778 0.75193 0.62211 0.99743 0.99229

410 771 0.75097 0.61868 0.99741 0.99222

510 760 0.75395 0.62105 0.99737 0.99474

610 737 0.75984 0.62551 0.99729 0.99729

710 727 0.76754 0.62173 0.99725 0.99725

810 704 0.76562 0.63636 0.99716 0.99858

 18

For DESCON is 12.982% more efficient than THREECG and 0.514% more

robust. For we see that THREECG is slightly more robust than DESCON. Both
algorithms use the acceleration of iterations, the Beale-Powell restart and the same
implementation of the Wolfe line search conditions, but with parameter

310f
f 810

k in DESCON

modified at every step. Concerning the restart iterations, we noticed that the number of restart
iterations for both algorithms, are very close for all the problems considered in this numerical
study. For example, for problem #39 (BDQRTIC) with ,1000n to get the minimum
DESCON needs 77 iterations, out of which 12 (15.584%) are Beale-Powell restart iterations.
For the same problem THREECG needs again 77 iterations out of which this time 10
(12.987%) are Beale-Powell restart iterations. Observe that THREECG (15)-(17) is simpler
than DESCON (18)-(24), and this could be an advantage. However, both the sufficient
descent and the conjugacy conditions are natural properties of the THREECG. On the other
hand, in DESCON these properties are imposed through the values of the parameters v and

 which may have a positive influence on its performances. ,w

5.6. ASCALCG versus CG-DESCENT, AHYBRIDM and THREECG
These algorithms differ in many respects. For example, ASCALCG, AHYBRIDM and
THREECG use the acceleration scheme, the same line search procedure based on Wolfe
conditions, but different restart procedures. In both algorithms AHYBRIDM and THREECG

when the restart Beale-Powell test
2

11 2.0 kk
T
k ggg is satisfied then the

negative gradient. On the other hand, ASCALCG is an accelerated scaled conjugate gradient
algorithm, BFGS preconditioned, using an advanced restarting procedure. When the Beale-
Powell restart test is satisfied then the restart direction in ASCALCG is computed using again
a BFGS preconditioned scheme, which is time consuming in some cases. In our numerical
tests we observed that the number of restart iterations is completely unpredictable. For
example, for problem #29 (full Hessian) with

,11 kk gd

,1000n to get the minimum point
ASCALCG needs 480 iterations. The number of restart iterations in ASCALCG is 21 which
represent 4.375% out of the total number of iterations. On the other hand, in AHYBRIDM the
number of restart iteration to get the solution is 689, out of which 50 (7.256%) are restart
iterations. Finally, THREECG needs 610 iterations, out of which 52 (8.524%) are restart
iterations. There are some other problems for which the restart iterations are more frequent.
For example, for problem #3 (extended Rosenbrock) with 1000n the number of iterations
to get the minimum point is 49, out of which 42, i.e. 85.714%, are restart iterations. On the
other hand AHYBRIDM needs 55 iterations for solving this problem. The number of restart
iterations in this case is 20 which represent 36.363% out the total number of iterations.
THREECG takes 61 iterations to solve this problem. From these 22 are restart iterations
which represent 36.065%. In any case, in conjugate gradient algorithms restart is an important
ingredient representing a relaxation of algorithm.
In Figures 8, 9 and 10 we have the performance profiles of ASCALCG versus CG-
DESCENT, AHYBRIDM and THREECG, respectively. Observe that all these three
conjugate gradient algorithms CG-DESCENT, AHYBRIDM and THREECG are more

efficient than ASCALCG. For example, from Tables 8, 9 and 10, for CG-
DESCENT is 14.577% more efficient than ASCALCG; AHYBRIDM is 20.755% more
efficient than ASCALCG and finally THREECG is again 31.241% more efficient than
ASCALCG. Observe that the great discrepancy concerning efficiency is between ASCALCG
and THREECG.

,10 3f

Concerning robustness, ASCALCG is more robust than CG-DESCENT (0.817%) and
AHYBRIDM (0.135%). However, from Table 10 we see that THREECG is 0.267% more
robust than ASCALCG. The direction in ASCALCG is more complicated (more time
consuming) and this is the reason why its efficiency is smaller than the corresponding
efficiency of the algorithms we compare with.

 19

Fig. 8. ASCALCG versus CG-DESCENT. () 310f

Table 8. Performance profiles)1(and)(of ASCALCG versus CG-DESCENT.

)1()(f Nrp

ASCALCG CG-DESCENT ASCALCG CG-DESCENT
310 734 0.55586 0.70163 0.98501 0.97684

410 715 0.56364 0.69930 0.98462 0.97622

510 674 0.56528 0.69733 0.98516 0.97478

610 595 0.54622 0.70252 0.98655 0.97311

710 511 0.54795 0.69863 0.99022 0.97065

810 453 0.54967 0.69978 0.99117 0.98455

Besides the restart and the acceleration, the other profitable ingredient used in AHYBRIDM is
the second order information given by the modified secant condition. In contrast to
ASCALCG the second order information in AHYBRIDM is used in a very direct and simple
manner. Therefore, the algebraic expression of the direction is not complicated, this being
very easy to be computed. If the line search is exact, the direction reduces to a minor
modification of the HS algorithm. On the other hand, THREECG is a very simple three-term
conjugate gradient algorithm which uses the second order information as a minor
modification of the BFGS updating formula. In this algorithm the BFGS formula is restarted

with the identity matrix at every step and the sign in front of the term is changed in

order to get the descent property. Again observe that THREECG is a modification of HS

algorithm. This modification is dependent by which is going to zero along the

iterations. Apparently, this contribution to the HS direction determines a better direction in
THREECG. Concerning the robustness, observe that ASCALCG and THREECG are bunched

T
kk sy

1k
T
k gs

 20

closer together. This is because ASCALCG in its essence is a more complicated three-term
conjugate gradient algorithm (see (9)-(11)).

Fig. 9. ASCALCG versus AHYBRIDM. () 310f

Table 9. Performance profiles)1(and)(of ASCALCG versus AHYBRIDM.

)1()(f Nrp

ASCALCG AHYBRIDM ASCALCG AHYBRIDM
310 742 0.53908 0.74663 0.99461 0.99326

410 719 0.54242 0.74548 0.99444 0.99305

510 670 0.55224 0.74179 0.99552 0.99552

610 608 0.53947 0.74836 0.99507 0.99671

710 517 0.53772 0.74855 0.99807 0.99613

810 471 0.54140 0.74310 0.99788 0.99788

Together, Figures 8, 9 and 10 seem to imply that ASCALCG is the least efficient algorithm in
comparison to CG-DESCENT, AHYBRIDM and THREECG. The linear algebra in
ASCALCG code to update the search direction is more time consuming than the linear
algebra in the algorithms we compare with. Therefore, the CPU time of ASCALCG is
dominated by the cost of linear algebra. On the other hand, the number of iterations in line
search in ASCALCG, AHYBRIDM and THREECG is limited to 3 to get an acceptable step
length. Using the acceleration technique in these algorithms this value of the step length is
modified to reduce the value of the minimizing function. Also, it is interesting to observe that
the performances of these algorithms are dependent on this number, which limits the
iterations in line search. It seems that the smaller the number of line search iterations, the
more efficient the algorithms are. In CG-DESCENT, in the line search, more function
evaluations are needed to get the stopping criterion. However, the value of the step length in

 21

CG-DESCENT is more accurate, and this is the rationale concerning the efficiency of this
algorithm.

Fig. 10. ASCALCG versus THREECG. () 310f

Table 10. Performance profiles)1(and)(of ASCALCG versus THREECG.

)1()(f Nrp

ASCALCG THREECG ASCALCG THREECG
310 749 0.48198 0.79439 0.99199 0.99466

410 726 0.48623 0.79614 0.99174 0.99449

510 672 0.49405 0.79911 0.99256 0.99554

610 608 0.48191 0.80263 0.99342 0.99671

710 521 0.48369 0.80230 0.99616 0.99616

810 475 0.48421 0.79368 0.99789 0.99789

5.7. CG-DESCENT versus AHYBRIDM and THREECG

For , in Figures 11 and 12 we present the performance profiles of CG-DESCENT
versus AHYBRIDM and THREECG, respectively. Observe that, at least for this set of
problems, CG-DESCENT is more efficient than AHYBRIDM, and the difference is
significant, about 14.305%. However, in comparison with THREECG, observe that this time
THREECG is very little more efficient, about 1.428%. Concerning the robustness, both
AHYBRIDM and THREECG are more robust than CG-DESCENT. From Tables 11 and 12
we see that this characteristic of robustness of AHYBRIDM and THREECG is maintained for

all values of in the set For example, for , from Table 11 we see
that AHYBRIDM is about 0.918% more robust than CG-DESCENT. Again, from Table 12
observe that THREECG is 1.948% more robust than CG-DESCENT.

310f

f }.10,,10{ 83 310f

 22

Fig. 11. CG-DESCENT versus AHYBRIDM. () 310f

Table 11. Performance profiles)1(and)(of CG-DESCENT versus AHYBRIDM.

)1()(f Nrp

CG-DESCENT AHYBRIDM CG-DESCENT AHYBRIDM
310 762 0.71785 0.57480 0.97507 0.98425

410 754 0.72281 0.57162 0.97878 0.98408

510 731 0.73598 0.56772 0.97811 0.98632

610 703 0.74964 0.56330 0.97724 0.99147

710 680 0.75294 0.56324 0.97794 0.99118

810 643 0.75894 0.57543 0.98289 0.99222

We emphasize that in CG-DESCENT the mechanism of restarting the iterations is very
simple. Since is often larger than the number of iterations needed for solving a problem, it
follows that the algorithm performs no restarts in the vast majority of test runs. This is the
reason why the CG-DESCENT is more efficient than AHYBRIDM. The iterations in CG-
DESCENT are not relaxed as in AHYBRIDM and THREECG where the Beale-Powell restart
test is used.

n

As we know, AHYBRIDM is an accelerated hybrid conjugate gradient algorithm obtained as
a convex combination of HS and DY conjugate gradient algorithms. In our intensive
numerical experiments we observed that the AHYBRIDM have the propensity to use the HS
algorithm along the iterations. Besides, we notice that AHYBRIDM often triggers between
HS and DY, while their convex combination is seldom used. For example for problem #3
(extended Rosenbrock) with , AHYBRIDM needs 55 iterations. Out of these, the
HS algorithm is used in 39 (70.92%) iterations, the DY algorithm is used in 14 (25.45%), and
the convex combination of HS and DY is used in 2 (3.63%) iterations. This is a typical
behavior of AHYBRIDM. As we said, CG-DESCENT also is a modification of HS algorithm,

1000n

 23

but this modification is always used along the iterations without any possibility to change it at
least as the negative gradient in case of restart. This is the rationale for a better robustness of
AHYBRIDM versus CG-DESCENT.
From (12) and (16) observe that both CG-DESCENT and THREECG have in common the

expression 2
1)/()(k

T
kk

T
kk sygsy . When iterates jam, becomes tiny while ky kg is

bounded away from zero. Therefore, in CG-DESCENT when iterates jam, this expression

becomes negligible, i.e. However, in case of jamming, in THREECG there is the

third component

.HS
k

HZ
k

kk y (see 15) which compensate the lost of robustness of CG-DESCENT.

Fig. 12. CG-DESCENT versus THREECG. () 310f

Table 12. Performance profiles)1(and)(of CG-DESCENT versus THREECG.

)1()(f Nrp

CG-DESCENT THREECG CG-DESCENT THREECG
310 770 0.64286 0.65714 0.97143 0.99091

410 762 0.64567 0.65748 0.97507 0.99081

510 729 0.66255 0.65432 0.97394 0.99314

610 704 0.67756 0.64631 0.97301 0.99574

710 682 0.68182 0.64370 0.97507 0.99560

810 642 0.68692 0.65732 0.97975 0.99688

5.8. AHYBRIDM versus THREECG

In Figure 13 we have the performance profiles of these algorithms for Out of 800
problems only for 782 problems the criterion (8) holds. Observe that THREECG is about
30.563% more efficient and about 0.511% more robust then AHYBRIDM. Besides, from

.10 3f

 24

Table 13 we see that this characteristic of these algorithms is invariant at the variation of

in the set As we have already seen these algorithms are different in many
respects. Even that AHYBRIDM often triggers between HS and DY trying to exploit the
attractive features of these algorithms, THREECG is more efficient and more robust showing
the importance of three-term concept in conjugate gradient paradigm. On the other hand, the
algebraic expression of the search direction in THREECG is simpler then the search direction
in AHYBRIDM. This makes THREECG more efficient that AHYBRIDM.

f
}.10,,10{ 83

Fig. 13. AHYBRIDM versus THREECG. () 310f

Table 13. Performance profiles)1(and)(of AHYBRIDM versus THREECG.

)1()(f Nrp

AHYBRIDM THREECG AHYBRIDM THREECG
310 782 0.51662 0.82225 0.99361 0.99872

410 782 0.51662 0.82225 0.99361 0.99872

510 763 0.52425 0.82307 0.99345 0.99869

610 741 0.52632 0.82861 0.99595 1

710 726 0.53444 0.82782 0.99725 1

810 704 0.54403 0.82812 0.99716 1

5.9. The performance profiles of all algorithms
Firstly, in this section we present the performance profile of all eight algorithms considered in

this numerical study for The top solid curve in Figure 14 corresponds to
DESCON, the top performer among these algorithms. In Table 14 we can see the efficiency

 and the robustness of these algorithms, relative to the CPU time metric.
Concerning the efficiency CG-DESCENT is top performer. The second place is taken by

.10 3f

)()1(

 25

DESCON and the third by HS. Concerning the robustness on the first place is DESCON,
followed by THREECG and followed by ASCALCG.

Fig. 14. Performance profiles of all algorithms for and 610g .10 3f

Table 14. Performance profiles)1(and)(of all algorithms.

The first, the second and the third places of algorithms are shown in
bold, italic and underline, respectively.

)1()(

DESCON 0.35000 0.99853
HS 0.34118 0.87353
PRP 0.33382 0.85735

CONMIN 0.30294 0.95294
ASCALCG 0.25147 0.98529

CG-DESCENT 0.43529 0.97059
AHYBRIDM 0.23676 0.98382
THREECG 0.32059 0.99118

In Figure 14 observe that HS and PRP have the most reduced performance profiles.

Therefore, in Figure 15 we present the performance profiles of five algorithms for
Observe in Figure 15 that concerning the robustness the algorithms are grouped, but subject to
efficiency they are more dispersed, slightly fastest being CG-DESCENT. Again, the top solid
curve in Figure 15 corresponds to DESCON. Subject to the efficiency, from Table 15, we see
that CG-DESCENT is slightly faster, followed by DESCON and followed by THREECG.
Concerning the robustness, the DESCON is the most robust, followed by THREECG and
followed by ASCALCG. Since all these algorithms use the same line search procedure, based
on the Wolfe conditions, DESCON appears to generate the best search direction, on average.

.10 3f

In Figure 15, we have the computational evidence that these five algorithms are the best
conjugate gradient algorithms able to solve a large variety of large-scale unconstrained
optimization problems of different structures of their Hessian. Excepting CG-DESCENT all

 26

the algorithms considered in Figure 15 implement an acceleration procedure which proves to
be very efficient in reducing the values of the function values. On the other hand, these
algorithms contain in a way or another, the second order information which improve in a
certain way the computation of the search direction.

Fig. 15. Performance profiles of 5 algorithms for and 610g .10 3f

Table 15. Performance profiles)1(and)(of 5 algorithms.

The first, the second and the third places of algorithms are shown in
bold, italic and underline, respectively.

)1()(

DESCON 0.46379 0.99582
ASCALCG 0.29805 0.98329

CG-DESCENT 0.48886 0.97214
AHYBRIDM 0.27716 0.98050
THREECG 0.37326 0.98886

6. Discussion
6.1. Comparisons among algorithms for solving problems with different structure of the
Hessian matrix
In this numerical study we classified the problem according to the structure of their Hessian
matrix. Hence, out of 800 unconstrained optimization test problems, considered in this paper,
for 100 of them the Hessian is a diagonal matrix, for 190 the Hessian is a block-diagonal
matrix, for 220 the Hessian is tri-diagonal (or penta-diagonal) and for 160 the Hessian is a full
matrix. The rest of the problems have a bounded diagonal or a bounded block-diagonal
structure of the Hessian matrix we do not consider in our analysis. In this section we present a
comparison of AHYBRIDM, ASCALCG, CG-DESCENT, DESCON and THREECG
conjugate gradient algorithms for solving these four classes of unconstrained optimization test
problems. The below tables present the efficiency and the robustness of these algorithms.

 27

Table 16. The efficiency and robustness of algorithms for solving 100 test problems with

diagonal Hessian matrix. ,10 6g .10 3f
)1()(

AHYBRIDM 0.17582 0.97802
ASCALCG 0.17582 0.96703
CG-DESCENT 0.89011 1
DESCON 0.26374 1
THREECG 0.26374 1

Table 17. The efficiency and robustness of algorithms for solving 190 test problems with

block-diagonal Hessian matrix. ,10 6g .10 3f
)1()(

AHYBRIDM 0.31138 1
ASCALCG 0.27545 1
CG-DESCENT 0.55090 0.99401
DESCON 0.41317 1
THREECG 0.48503 1

Table 18. The efficiency and robustness of algorithms for solving 220 test problems with

tri-diagonal or penta-diagonal Hessian matrix. ,10 6g .10 3f
)1()(

AHYBRIDM 0.14894 0.99468
ASCALCG 0.06915 0.99468
CG-DESCENT 0.52128 1
DESCON 0.43085 1
THREECG 0.25000 0.99468

Table 19. The efficiency and robustness of algorithms for solving 160 test problems with

full Hessian matrix. ,10 6g .10 3f
)1()(

AHYBRIDM 0.27451 0.94118
ASCALCG 0.35948 0.94771
CG-DESCENT 0.36601 0.92810
DESCON 0.43137 0.98039
THREECG 0.31373 0.95425

Observe that CG-DESCENT is the most efficient algorithm for solving problems with
structured Hessian. On the other hand, DESCON is the most efficient and the most robust
algorithm for solving problems with full Hessian.

It is worth seeing the behavior of these algorithms for solving these four classes of
problems subject to the CPU time metric. In Table 20 we present the total CPU time for
solving these classes of problems with the Hessian matrix structured as: diagonal (DD),
block-diagonal (BD), tri-diagonal or penta-diagonal (TP) and full Hessian (FH). Observe that
for solving 100 unconstrained optimization problems with Hessian a diagonal matrix all
algorithms need a grand total of 958.85 seconds. AHYBRIDM needs 286.45 seconds.
Therefore, for AHYBRIDM, in average one problem in this class needs 286.45/100=2.8645
seconds. Observe that the fastest algorithm for solving problems in this class is CG-
DESCENT. For solving one problem, in average this algorithm needs 49.51/100=0.4951
seconds. For solving this class of problems DESCON is on the second place (in italics).

From Table 20 we have the computational evidence that all algorithms considered in
this study are fastest for solving problems whose Hessian is a bloc-diagonal matrix. For
solving 190 problems, with Hessian a block-diagonal matrix, all algorithms need a grand total
of 40.82 seconds. We see that, in average, for solving one problem, for which the Hessian is

 28

bloc-diagonal, THREECG needs 7.22/190=0.038 seconds, this algorithm being the fastest
among all the algorithms considered in this numerical study. Observe that DESCON again is
on the second place, etc.

Table 20. CPU time (seconds) for solving unconstrained optimization test problems

classified as: DD, BD, TP and FH. ,10 6g .10 3f
The first, the second places of algorithms are shown in bold and italic, respectively.

 DD BD TP FH
 100 190 220 160

AHYBRIDM 286.45
(2.8645)

8.26
(0.0434)

517.18
(2.3508)

594.77
(3.7173)

ASCALCG 299.96
(2.9996)

8.42
(0.0443)

795.11
(3.6141)

406.94
(2.5433)

CG-DESCENT 49.51
(0.4951)

9.39
(0.0492)

394.88
(1.7949)

1455.53
(9.0970)

DESCON 153.00
(1.53)

7.53
(0.0396)

363.78
(1.6535)

442.69
(2.7668)

THREECG 169.93
(1.6993)

7.22
(0.038)

379.18
(1.7235)

452.63
(2.8289)

TOTAL 958.85 40.82 2450.13 3352.56

Concerning the 220 problems with Hessian a tri-diagonal or a penta-diagonal matrix all
algorithms need a grand total of 2450.13 seconds. The fastest algorithm for solving the
problems from this class is DESCON. In average, it needs 363.78/220=1.6535 seconds. The
second place is taken by THREECG.

Subject to CPU time metric, the most difficult problems seem to be the problems with
full Hessian. For solving 160 problems with full Hessian all algorithms need a grand total of
3352.56 seconds, ASCALCG being the fastest for solving these problems. Again DESCON is
on the second place.

As we know the convergence of conjugate gradient algorithms is very dependent by
the entire spectrum of the Hessian. Suppose that the Hessian is a positive definite matrix. If
the eigenvalues of the Hessian matrix are contained in, let say, m disjoint intervals of very
small length on the real axis, then the conjugate gradient algorithms will produce very small
gradients after at most steps. In case of functions with Hessian a block-diagonal matrix the
eigenvalues of Hessian are clustered in a number of disjoint intervals. Therefore, for these
sorts of functions all the algorithms considered in this numerical study are faster versus
functions with some other structures of the Hessian.

m

6.2. The weakness of numerical experiments and comparisons using artificially test problems
From the above numerical experiments and comparisons we have the computational evidence
that the conjugate gradient algorithms considered in this numerical study are able to solve a
large variety of large-scale unconstrained optimization problems of different nonlinear
complexity and with different structures of their Hessian matrix. This is the main remark of
this numerical study.

Apparently some algorithms are more efficient, or more robust, or faster than others.
For example, from Figures 14 and 15, it seems that the algorithms DESCON and THREECG,
for which both the sufficient descent condition and the conjugacy condition are satisfied, are
the best in this class of algorithms. But this is not a definitive conclusion. This behavior is
obtained by means of a relatively large collection of artificially unconstrained optimization
test problems we have used in our numerical study. It is quite clear that in front of us we have
an infinite number of artificially unconstrained optimization test problems from which it is
always possible to assemble a set of problems for which completely different conclusions
about the efficiency and robustness of the algorithms considered in this numerical study are

 29

obtained. This is the weakness of numerical studies using artificially optimization test
problems, even that they are of different nonlinear complexity and with different structures of
their Hessian matrix.
 Therefore, in order to get a true conclusion at all the real unconstrained optimization
applications must be used in numerical experiments and comparisons. The main characteristic
of real optimization applications is that their mathematical model is written on the basis of the
conservation laws. In this respect the Noether theorem [39] shows that the conservation laws
are direct consequences of symmetries. But, in any time and any place we are surrounded by
concepts that appear in dual-symmetric pairs. Therefore, the conservation laws have very
solid fundamentals which are directly transmitted to the mathematical models of real
applications. For example [25] and [46] present plenty of optimization mathematical models
of real applications. This is the main reason why the real optimization applications give true
insights on behavior of optimization algorithms.

6.3. Solving MINPACK-2 applications
Now, we present comparisons between AHYBRIDM, ASCALCG, CG-DESCENT, DESCON
and THREECG conjugate gradient algorithms for solving five applications from MINPACK-
2 test problem collection [14]. In Table 21, we present these applications, as well as the
values of their parameters.

Table 21. Applications from MINPACK-2 collection.

A1 Elastic-Plastic Torsion [29, pp. 41-55], 5.c

A2 Pressure Distribution in a Journal Bearing [20], 10,b 0.1.

A3 Optimal Design with Composite Materials [30], 0.008.

A4 Steady-State Combustion [13, pp. 292-299], [17], 5.
A5 Minimal Surfaces with Enneper conditions [40, pp. 80-85].

The infinite-dimensional version of these problems is transformed into a finite element
approximation by triangulation. The discretization steps are nx = 1000 and ny = 1000, thus

obtaining minimization problems with 1,000,000 variables. Considering then the
number of iterations (#iter), or the number of function and its gradient evaluation (#fg), or the
CPU time (seconds), required by AHYBRIDM, ASCALCG, CG-DESCENT, DESCON and
THREECG conjugate gradient algorithms, for solving all these applications, is given in
Tables 22-24.

,10 6g

Table 22. Performances of AHYBRIDM, ASCALCG, CG-DESCENT, DESCON and THREECG

algorithms for solving applications A1 and A2. . CPU seconds. 610g
 A1 A2
 #iter #fg CPU #iter #fg CPU

AHYBRIDM 1113 1114 378.14 2845 2873 1209.13
ASCALCG 1110 1142 485.26 2842 2871 1473.58

CG-DESCENT 1145 2291 476.12 3370 6741 1838.77
DESCON 1113 2257 347.25 2845 5718 1122.64

THREECG 1111 2253 352.60 2845 5718 1140.19

Table 23. Performances of AHYBRIDM, ASCALCG, CG-DESCENT, DESCON and THREECG

algorithms for solving applications A3 and A4. . CPU seconds. 610g
 A3 A4
 #iter #fg CPU #iter #fg CPU

AHYBRIDM 4701 4738 2876.92 1413 1451 2050.96
ASCALCG 4701 4854 3362.16 1412 1451 2192.64

CG-DESCENT 4814 9630 3960.59 1802 3605 3796.39
DESCON 4693 9425 2715.07 1413 2864 2003.78

THREECG 4478 9045 2641.22 1413 2864 2059.80

 30

Table 24. Performances of AHYBRIDM, ASCALCG, CG-DESCENT, DESCON and THREECG

algorithms for solving application A5. . CPU seconds. 610g
 A5
 #iter #fg CPU

AHYBRIDM 1265 1293 600.54
ASCALCG 1280 1323 729.97

CG-DESCENT 1225 2451 756.21
DESCON 1277 2576 568.06

THREECG 1298 2619 582.29

Subject to the CPU time metric the first, the second and the third places of algorithms in
Tables 22-24 are shown in bold, italic and underline, respectively. The first place is gained by
DESCON being the fastest algorithm for applications A1, A2, A4 and A5.

7. Conclusions
Conjugate gradient algorithms have been subjected to intensive theoretical and computational
developments for over 60 years. The main ingredients used in these developments include:
scaled memoryless BFGS preconditioning (Perry [41], Shanno [47], Andrei [9]); restarting
the iterations (Beale [16], Powell [45], Birgin and Martínez [18]); acceleration of iterations
(Andrei [6]); hybridization by convex combination of classical conjugate gradients (Andrei
[8]); guaranteed sufficient descent condition and conjugacy conditions (Hager and Zhang
[32], Andrei [12]).

In this paper we have presented a comprehensive numerical study on efficiency and
robustness of the most well-known eight conjugate gradient algorithms for solving large-scale
nonlinear unconstrained optimization problems of different complexities and structures of the
Hessian matrix. Both the artificially test problems and real nonlinear optimization
applications have been included in this study. While the artificially test problems lead to
partial conclusions, the real nonlinear optimization applications give more true insights on
performances of optimization algorithms.

Detailed and meticulous numerical evaluation based on the performance profiles was
applied to the comparisons of the algorithms showing that all of them are able to solve a large
variety of large-scale unconstrained optimization problems. In our analysis all the problems
for which two different algorithms found different function values are removed. We have the

computational evidence that the threshold parameter deciding that an algorithm found a
solution or not does not have a great influence of the performance profiles of efficiency or
robustness.

f

At least for this collection of 800 artificially unconstrained optimization test
problems the CPU time performance profile for DESCON was higher than those of HS, PRP,
ASCALCG, CONMIN, AHYBRIDM, CG-DESCENT and THREECG. The second best
performance in the time metric was achieved by THREECG. It seems that the conjugate
gradient algorithms satisfying both the sufficient descent condition and the conjugacy
condition are the best. Apparently, introducing of the second order information in conjugate
gradient algorithms like CONMIN, ASCALCG and AHYBRIDM does not have too much
significance in efficiency or robustness of these algorithms. Additionally, hybridization by
convex combination of classical conjugate gradient algorithms does not lead us to more
efficient or more robust algorithms. Concerning the efficiency, due to its highly accurate
procedure for step length computation, CG-DESCENT is the best conjugate gradient
algorithm, especially for solving large-scale unconstrained optimization problems with
structured Hessian matrix. The second place is taken by DESCON. For solving problems for
which the Hessian matrix is full (unstructured), DESCON remains to be the best both subject
to efficiency and robustness. Concerning the robustness DESCON is by far the most robust,
followed by THREECG and followed by ASCALCG. For solving large-scale real nonlinear
unconstrained optimization applications, DESCON is the fastest conjugate gradient algorithm.

 31

All in all we can conclude that conjugate gradient algorithms represent one of the
most important mathematical optimization technologies able to solve both structured and
unstructured large-scale unconstrained optimization problems and applications.

References
[1] Andrei, N., An acceleration of gradient descent algorithm with backtracking for unconstrained

optimization. Numerical Algorithms, 42 (2006), 63-73.
[2] Andrei, N., Scaled conjugate gradient algorithms for unconstrained optimization. Computational

Optimization and Applications, 38 (2007), 401-416.
[3] Andrei, N., A hybrid conjugate gradient algorithm for unconstrained optimization as a convex

combination of Hestenes-Stiefel and Dai-Yuan. Studies in Informatics and Control, vol.17, no.1,
March 2008, pp. 55-70.

[4] Andrei, N., Another hybrid conjugate gradient algorithm for unconstrained optimization. Numer.
Algorithms 47 (2008) 143-156.

[5] Andrei, N., An unconstrained optimization test functions collection. Advanced Modeling and
Optimization, 10 (2008), pp. 147-161.

[6] Andrei, N., Acceleration of conjugate gradient algorithms for unconstrained optimization. Applied
Mathematics and Computation, 213 (2009), 361-369.

[7] Andrei, N., A hybrid conjugate gradient algorithm for unconstrained optimization. J. Optim.
Theory Appl. 141 (2009) 249-264.

[8] Andrei, N., Accelerated hybrid conjugate gradient algorithm with modified secant condition for
unconstrained optimization. Numerical Algorithms, 54 (2010), 23-46.

[9] Andrei, N., Accelerated scaled memoryless BFGS preconditioned conjugate gradient algorithm for
unconstrained optimization. European Journal of Operational Research, 204 (2010) 410-420.

[10] Andrei, N., A simple three-term conjugate gradient algorithm for unconstrained optimization.
Journal of Computational and Applied Mathematics, 241 (2013), 19-29.

[11] Andrei, N., On three-term conjugate gradient algorithms for unconstrained optimization. Applied
Mathematics and Computation, 219 (2013) 6316-6327.

[12] Andrei, N., Another conjugate gradient algorithm with guaranteed descent and conjugacy
conditions for large-scale unconstrained optimization. Journal of Optimization Theory and
Applications, DOI: 10.1007/s10957-013-0285-9

[13] Aris, R., The mathematical theory of diffusion and reaction in permeable catalysts. Oxford, 1975.
[14] Averick, B.M., Carter, R.G., Moré, J.J., Xue, G.L. The MINPACK-2 test problem collection.

Mathematics and Computer Science Division, Argonne National Laboratory, Preprint MCS-
P153-0692, June 1992.

[15] Babaie-Kafaki, S., A note on the global convergence theorem of the scaled conjugate gradient
algorithm proposed by Andrei, Computational Optimization and Applications, 52 (2012) 409-
414.

[16] Beale. E.M.L., A derivation of conjugate gradients. In F.A. Lootsma (Ed.), Numerical Methods for
Nonlinear Optimization, Academic Press, London, 1972, 39-43.

[17] Bebernes, J., Eberly, D., Mahematical problems from combustion theory. Applied Mathematical
Sciences 83, Springer-Verlag, 1989.

[18] Birgin, E., Martínez, J.M., A spectral conjugate gradient method for unconstrained optimization.
Appl. Math. Optim. 43 (2001) 117-128.

[19] Bongartz, I., Conn, A.R., Gould, N.I.M., Toint, Ph.L., CUTE: constrained and unconstrained
testing environment. ACM Trans. Math. Softw. 21 (1995), 123-160.

[20] Cimatti, G., On a problem of the theory of lubrication governed by a variational inequality. Appl.
Math. Potim., 3 (1977) 227-242.

[21] Daniel, J.W., The conjugate gradient method for linear and nonlinear operator equations. SIAM
J. Numer. Anal., 4 (1967) 10-26.

[22] Dai, Y.H., Yuan, Y., A nonlinear conjugate gradient method with a strong global convergence
property, SIAM J. Optim., 10 (1999), pp. 177-182.

[23] Dai, Y.H., Yuan, Y., An efficient hybrid conjugate gradient method for unconstrained
optimization. Ann. Oper. Res. 103 (2001), 33-47.

[24] Dolan, E.D., Moré, J.J., Benchmarking optimization software with performance profiles, Math.
Programming 91, (2002), 201-213

[25] Filip. F.G. Sisteme suport pentru decizii. Editura Tehnică, Bucharest, 2004. (Editia II completată
şi revizuită, 2007.)

 32

http://www.ici.ro/eng/sic.html

 33

[26] Fletcher, R. and Reeves, C.M., Function minimization by conjugate gradients Comput. J. 7, 149-
154 (1964)

[27] Fletcher, R., Practical Methods of Optimization, vol. 1: Unconstrained Optimization, John Wiley
& Sons, New York, 1987.

[28] Gilbert, J.C. Nocedal, J., Global convergence properties of conjugate gradient methods for
optimization, SIAM J. Optim., 2 (1992), pp. 21-42.

[29] Glowinski, R., Numerical Methods for Nonlinear Variational Problems. Springer-Verlag, Berlin,
1984.

[30] Goodman, J., Kohn, R., Reyna, L., Numerical study of a relaxed variational problem from optimal
design. Comput. Methods Appl. Mech. Engrg., 57, 1986, pp.107-127.

[31] Griewank, A., Toint, Ph.L., Partitioned variable metric update for large structured optimization
problems.Numer. Math., 39 (1982), 119-137.

[32] Hager, W.W. and Zhang, H., A new conjugate gradient method with guaranteed descent and an
efficient line search, SIAM Journal on Optimization, Vol. 16, pp. 170-192, 2005.

[33] Hestenes, M.R., Stiefel, E.L.: Methods of conjugate gradients for solving linear systems. J.
Research Nat. Bur. Standards 49 (1952), 409-436.

[34] Hu, Y.F., Storey, C., Global convergence result for conjugate gradient methods. J. Optim. Theory
Appl. 71 (1991) 399-405.

[35] Li, G., Tang, C., Wei, Z., New conjugacy condition and related new conjugate gradient methods
for unconstrained optimization. J. Comput. Appl. Math. 202 (2007), pp.523-539.

[36] Liu, Y., Storey, C., Efficient generalized conjugate gradient algorithms, Part 1: Theory. J. Optim.
Theory Appl., 69 (1991) 129-137.

[37] Moré, J.J., Wild, S.M., Benchmarking derivative-free optimization algorithms. SIAM J. Optim.
20, (2009), 172-191.

[38] Nash, S.G., Nocedal, J., A numerical study of the limited memory BFGS method and the truncated-
Newton method for large scale optimization. SIAM J. Optimization, 1 (1991), pp.358-372.

[39] Noether, E., Invariante Varlationsprobleme. Nach. D. Könighche Gesellschaft der Wissenschaften
zu Göttingen, Math-phys. Klasse, 1918, 235-257.

[40] Nitsche, J.C.C. Lectures on minimal surfaces. Vol.1, Cambridge University Press, 1989.
[41] Perry, A., A class of conjugate gradient algorithms with a two step variable metric mamory.

Discussion Paper No. 269, Center for Mathematical Studies in Economics and Management
Science, Northwestern University, 1977.

[42] Polak, E., Ribière, G., Note sur la convergence de directions conjuguée, Rev. Francaise Informat
Recherche Operationelle, 3e Année 16 (1969) 35-43.

[43] Polyak, B.T., The conjugate gradient method in extreme problems. USSR Comp. Math. Math.
Phys. 9, 94-112 (1969)

[44] Powell, M.J.D., Nonconvex minimization calculations and the conjugate gradient method.
Numerical Analysis (Dundee, 1983), Lecture Notes in Mathematics, Vol. 1066, Springer,
Berlin, 1984, pp.122-141.

[45] Powell, M.J.D., Restart procedures of the conjugate gradient method. Mathematical
Programming, 2 (1977), pp. 241-254.

[46] Rădulescu, C.Z., Rădulescu, M., A Decision Support Tool Based on a Portfolio Selection Model
for Crop Planning under Risk, Studies in Informatics and Control, ISSN 1220-1766, vol. 21 (4),
pp. 377-382, 2012.

[47] Shanno, D.F., On the convergence of a new conjugate gradient algorithm. SIAM J. Numer. Anal.,
15 (1978), pp. 1247-1257.

[48] Shanno, D.F. Conjugate gradient methods with inexact searches. Mathematics of Operations
Research, vol.3, No.3, (1978), 244-256.

[49] Shanno, D.F., Phua, K.H., Algorithm 500, Minimization of unconstrained multivariate functions,
ACM Trans. on Math. Soft., 2 (1976) 87-94.

[50] Touati-Ahmed, D., Storey, C., Efficient hybrid conjugate gradient techniques. J. Optim. Theory
Appl. 64 (1990) 379-397.

[51] Wolfe, P., Convergence conditions for ascent methods, SIAM Rev., Vol. 11, pp.226-235, 1968.
[52] Wolfe, P., Convergence conditions for ascent methods, (II): some corrections. SIAM Review 13

(1971) 185-188.

November 7, 2013

