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Abstract. A numerical evaluation and comparisons using performance profiles of some 
representative conjugate gradient algorithms for solving a large variety of large-scale 
unconstrained optimization problems are carried on. In this intensive numerical study we 
selected eight known conjugate gradient algorithms: Hestenes and Stiefel (HS), Polak-Ribière-
Polyak (PRP), CONMIN, ASCALCG, CG-DESCENT, AHYBRIDM, THREECG and 
DESCON. These algorithms are different in many respects. However, they have a lot of 
concepts in common, which give the numerical comparisons sense and confident expectations. 
The initial search direction in all algorithms is the negative gradient computed in the initial 
point and the step length is computed by the Wolfe line search conditions. Excepting 
CONMIN and CG-DESCENT, all the algorithms from this numerical study implement an 
acceleration scheme which modifies the step length in a multiplicative manner to improve the 
reduction of the functions values along the iterations. The numerical study is based on a set of 
800 artificially large-scale unconstrained optimization test functions of different complexity 
and with different structures of their Hessian matrix. A detailed numerical evaluation based on 
performance profiles is applied to the comparisons of these algorithms showing that all of 
them are able to solve difficult large-scale unconstrained optimization problems. However, 
comparisons using only artificially test problems are weak and dependent by arbitrary choices 
concerning the stopping criteria of the algorithms and on decision of whether an algorithm 
found a solution or not. To get definitive conclusions using this sort of comparisons based only 
on artificially test problems is an illusion. However, using some real unconstrained 
optimization applications we can get a more confident conclusion about the efficiency and 
robustness of optimization algorithms considered in this numerical study. 
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1. Introduction 
Conjugate gradient method represents an important computational innovation for 
continuously differentiable large scale unconstrained optimization with strong local and 
global convergence properties and very modest and predictable memory requirements. This 
family of algorithms includes a lot of variants and extensions with important convergence 
properties and numerical efficiency. Different from the Newton or quasi-Newton methods 
(including here the limited-memory quasi-Newton methods), the descent condition plays a 
crucial role in convergence of the conjugate gradient algorithms. As a characteristic the 
searching directions in conjugate gradient algorithms are selected in such a way that, when 
applied to minimize a strongly quadratic convex function, two successive directions are 
conjugate, subject to the Hessian of the quadratic function. Therefore, to minimize a convex 
quadratic function in a subspace spanned by a set of mutually conjugate directions is 
equivalent to minimize this function along each conjugate direction in turn. This is a very 
good and productive idea, leading us to many variants of conjugate gradient algorithms, but 
the performance of these algorithms is strongly dependent on the accuracy of the line search.  

For solving the nonlinear unconstrained optimization problem: 
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where : nf R  R  is a continuously differentiable function, bounded from below, starting 

from an initial guess  a nonlinear conjugate gradient algorithm generates a sequence of 

points 
,0x

kx , according to the following recurrence formula  

                                                             1k k k kx x d   ,                                                       (2) 

where k  is the step length, usually obtained by Wolfe line search [51, 52],  
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with 0 1/ 2 1,      and the directions  are computed as: kd
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Here k  is a scalar known as the conjugate gradient parameter,  and 

 In the following 

( )kg f x  k

1k k .ks x x 1 .k k ky g g   Even that the conjugate gradient algorithms 

correspond to different choices for the parameter k , often they are designed in a specific 

manner in such a way that the search direction d  satisfies the sufficient descent condition k
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k 

 for some arbitrary positive constant  In these algorithms, the 

conjugacy condition, or the modified conjugacy condition, is  or 

 where  is a scalar. When applied to general nonlinear functions, 

often, the searching directions in conjugate gradient algorithms are computed using some 
formulas which do not satisfy the conjugacy condition. However, by extension we call they 
conjugate gradient algorithms. 
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 The elaboration of nonlinear optimization software using nonlinear conjugate 
gradient algorithms is a very active field of research. On one hand, many conjugate gradient 
algorithms have achieved a maturity stage and are frequently used for solving a wide range of 
real applied problems in a large variety of areas. On the other hand, plenty of conjugate 
gradient algorithms are continuously elaborated and therefore their efficiency and robustness 
need to be established. The development of different versions of nonlinear conjugate gradient 
algorithms can be presented as follows. Classical conjugate gradient algorithms: Hestenes 
and Stiefel [33], Fletcher and Reeves [26], Daniel [21], Polak and Ribière [42] and Polyak 
[43], conjugate descent by Fletcher [27], Liu and Storey [36] and Day and Yuan [22]. Hybrid 
conjugate gradient algorithms using projections: hybrid Dai-Yuan [23], Gilbert and Nocedal 
[28], Hu and Storey [34], Touati-Ahmed and Storey [50], hybrid Liu and Storey [36], and 
hybrid conjugate gradient algorithms using the concept of convex combination of classical 
schemes: convex combination of Hestenes-Stiefel and Dai-Yuan with Newton direction [3, 4, 
8], convex combination of Polak-Ribière-Polyak and Dai-Yuan with conjugacy condition [7]. 
Scaled BFGS preconditioned conjugate gradient algorithms by Shanno [47, 48], Birgin and 
Martínez [18] and Andrei [2, 9]. Conjugate gradient algorithms with guaranteed descent and 
guaranteed conjugacy conditions by Hager and Zhang [32] and Andrei [12]. Three-term 
conjugate gradient algorithms [10, 11]. 

The purpose of this paper is to study the performance of some conjugate gradient 
algorithms in a controlled numerical environment to highlight the main differences among 
them and to indicate the developer of algorithms and practitioner the best algorithms and the 
types of problems that are well suited to each algorithm. Therefore, we are interested to see 
the efficiency and robustness of some conjugate gradient algorithms for solving a large class 
of large-scale unconstrained optimization problems. For this purposes from the above classes 
of algorithms we selected a number of eight conjugate gradient algorithms, which seem to be 
the most representative: Hestenes and Stiefel, (HS) [33], Polak-Ribière-Polyak (PRP) [42, 
43], CONMIN [47-49], ASCALCG [2, 9], CG-DESCENT [32], AHYBRIDM [3, 8], 
THREECG [10] and DESCON [12]. For a numerical evaluation of these algorithms the 
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performance profiles [24] or the data profiles [37] are now standards for presenting efficiency 
and robustness as well as the numerical comparisons. Besides, the collection of unconstrained 
optimization test problems used in evaluation may have a great influence on the conclusions 
of the numerical study of these algorithms. In order to see the performances of these 
algorithms we assembled a collection of 800 large-scale unconstrained optimization test 
problems of a large variety and of different complexity and different structures of their 
Hessian matrix. The comparisons among algorithms are presented using the performance 
profiles. Besides, a number of five applications from MINPACK-2 collection [14] have been 
used to see the performances of the conjugate gradient algorithms considered in this 
numerical study. Our study is limited by this collection of test problems we used. However, 
we have tried to consider a test set of considerable diversity. Some of the artificially test 
problems are quadratic or nearly quadratic, while others are cubic or cubic perturbed with 
quadratic and linear. Some are combinations of quadratics including exp, sin or cos functions. 
There are varying degrees of nonlinearity and ill-conditioning. The functions are expressed in 
extended or generalized form as a sum or difference of element functions [31]. It is worth 
saying that the Hessian of the functions from this collection has different structure: diagonal, 
block-diagonal, tri-diagonal or penta-diagonal, bounded-diagonal, bounded-block-diagonal, 
etc. or full Hessian. The numerical conclusions concerning the efficiency and robustness of 
algorithms are based on this sample of functions, but we hope that they may be more 
generally useful for both the developer of algorithms for unconstrained optimization or 
practitioners faced with solving practical applications. 

All these eight Fortran codes, which implement the conjugate gradient algorithms 
considered in this numerical study, are not new. The oldest is CONMIN, the 1978 version 
written by Shanno and Phua [49]. CG-DESCENT is version 1.4, (2005) written by Hager and 
Zhang [32]. The most recent are ASCALCG (2010) [9], AHYBRIDM (2010) [8], THREECG 
(2013) [10] and DESCON (2013) [12], all written by Andrei. In our numerical experiments 
we do not try to tune the algorithms to a particular set of test problems, and a single fixed 
version of each algorithm with fixed parameters was used.  

As a general conclusion of this numerical study we can indicate that the conjugate 
gradient software analyzed in this numerical study is able to solve a very large diversity of 
unconstrained optimization problems of different complexity and with different structures of 
the Hessian matrix. At least for this set of artificially test problems, concerning the efficiency, 
CG-DESCENT is slightly more efficient, followed by DESCON and followed by THREECG. 
Subject to robustness by far DESCON is the most robust, followed by THREECG and 
followed by ASCALCG. It seems that the conjugate gradient algorithms implementing both 
the sufficient descent condition and the conjugacy condition are the best. However, this is not 
a definitive conclusion. In front of us there are an infinite number of artificially unconstrained 
optimization test problems and it is always possible to assemble a set of problems for which 
the efficiency and robustness of the considered algorithms are completely different. However, 
in order to have a true conclusion at all we compared the above algorithms on five 

applications from MINPACK-2 collection with  variables. In this case DESCON proved 
to be the fastest and the most reliable algorithm.  

610

 The structure of the paper is as follows. In section 2 the main characteristics of 
unconstrained optimization test problems considered in this numerical study are presented. A 
detailed presentation of the comparison framework including the performance profiles and the 
data profiles, their advantages and weakness, and the efficiency and the robustness of an 
algorithm is given in section 3. In section 4 we present the conjugate gradient algorithms 
considered in this numerical study insisting on their definition and convergence properties. 
Section 5 is devoted to present the numerical experiments and comparisons using the 
performance profiles. In section 6 some discussions are given including some comparisons 
among algorithms for solving problems with different structures of the Hessian, the weakness 
of the numerical experiments and comparisons using artificially test problems and some 
results and comparisons for solving five MINPACK-2 applications. Conclusions are drawn in 
the last section.  
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2. Unconstrained optimization test problems considered in this numerical study 
In this numerical study, we have considered 80 large-scale unconstrained optimization test 
functions, in extended or generalized form we presented in [5], some of them being taken 
from Cuter collection [19]. Each problem was tested 10 times for a gradually increasing 
number of variables:  Therefore, we obtained a set of 800 
unconstrained optimization test problems of different complexity and with different structures 
of their Hessian. The problems considered in this numerical study are in generalized or 
extended form as a sum or difference of element functions [31] of different nonlinear 
complexity. The structure of the Hessian matrix of the generalized functions is tri-diagonal or 
multi-diagonal. The structure of the Hessian matrix of the extended function is block-
diagonal. Some functions are highly nonlinear and ill-conditioned. 

.10000,,2000,1000 n

In [38] Nash and Nocedal suggested some criteria to classify the test problems used in 
numerical studies. For the various function characteristics that are relevant to the convergence 
theory or computational performances of algorithms they selected the following criteria: 
deviation from quadratic (degree of nonlinearity), condition number of the Hessian, 
convexity, eigenvalue structure, cost of evaluating the function and its gradient, etc. None of 
these criteria is operational for large-scale unconstrained optimization. For example, the 
deviation from quadratic involves the computation of the Hessian which is a very difficult 
task for functions with a large number of variables. Probably, the most important criterion is 
the eigenvalue structure of the Hessian. The eigenvalue distribution greatly affects the 
performance of conjugate gradient algorithms. However, in case of large-scale optimization 
computation of eigenvalue structure of the Hessian is not tractable. Also, convexity, an 
important concept in optimization, is difficult to be established. Hence, we do not classify the 
problems according to these criteria because we believe that they are not relevant for our 
purpose and, besides, there is not a clear conclusion concerning the performances of 
algorithms subject to the criteria considered in [38]. 

However, we can classify the problems according to the structure of their Hessian. 
Knowing the analytical expression of the gradient it is very easy to get the structure of the 
Hessian. In this numerical study, out of 80 functions for 10 of them the Hessian is a diagonal 
matrix, for 19 the Hessian is a block-diagonal matrix, for 22 the Hessian is tri-diagonal (or 
penta-diagonal) and finally for 16 of them the Hessian is a full matrix. Therefore, in the last 
section of the paper we present some comments about the performances of the above 
conjugate gradient algorithms for solving problems with different structures of the Hessian. 
  
3. Comparison framework 
3.1. Performance profiles versus data profiles 
Both performance profiles [24] and data profiles [37] are common standards for presenting 
the numerical comparisons among algorithms. In the following we shall present them 
insisting both on their importance and the main differences. Let us consider a number  of 
methods  used for solving 

m

mMM ,,1  p  problems  and let  be a metric 

representing the effort method  made for solving problem  in order to get a point in 

which the value of the function is  We assume that the metric  is such that the smaller 

its value, the higher the performance of the method  for solving the problem  Consider 

 the smallest value among all the  required by each method  that get a solution for 

problem  With these elements let us define the performance profile of method  as: 
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where  is the cardinality of the set  Observe that the performance profiles, as defined 
in (5), represent a curve very useful for graphical representation of comparisons among 
several methods for solving large sets of problems.  Mainly, 

A# .A

)(i  represents the fraction of 

problems a method  solved within a prescribed limit on its performance measurement like, 

for example, the number of iterations, or the number of functions evaluation or the CPU time. 
The main characteristic of the performance profile is that for each problem, the imposed limit 
is a proportion 

iM

1  of the performance measurement of the most efficient method for 
solving this particular problem.  Therefore, for a given method  ,iM )1(  i  represents the 

fraction of problems for which the method was the most efficient over all methods. On the 
other hand, )(  i  represents the fraction of problems solved by method  irrespective 

of the required effort. In this context, 

,iM

)1(  i  is associated to the efficiency of method  

while 
,iM

)(i  is associated to the robustness of method  .iM
 It is worth saying that the performance profile gives the same importance both to the 
problems easy to be solved and to the problems hard to be solved, where by easy we 
understand that the problem can be solved without a consistent effort (number of iterations, or 
number of functions evaluation or CPU time).  
 In order to make a difference between the easy problems and the hard ones the data 
profiles has been introduced as: 
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As we can see, )(i  represents the fraction of problems method  is able to solve within a 

prescribed limit on its performance measurement like the number of iterations, or the number 
of function evaluations, or CPU time. Observe that in this case the limit is independent of the 
performances of the other methods considered in a numerical study. 

iM

The difference between these two profiles is major and there is not a clear answer 
which one from these two to prefer. However, in this paper we select the performance profiles 
as the main instrument for comparing the algorithms. The motivation behind this selection is 
that we consider the easy and the hard problem have the same importance within a set of test 
problems.  
 
3.2. Solving an unconstrained optimization problem and comparison framework 
In this numerical study by solving an unconstrained optimization problem we understand that 
the methods  determine local solutions of the problems . For a given 

problem it is quite possible that two different methods determine two different local 
minimizers with different function values. There is a great discussion whether all these 
problems should be removed from the performance evaluation process or not. In our analysis 
all the problems for which two different methods found different function values are removed. 
The motivation behind this selection is that we are interested to compare algorithms which 
find the same function values (in a given tolerance) to see the main characteristics of the 
optimization processes concerning the number of iterations, the number of function and its 
gradient evaluations and the CPU running time. 

mMM ,,1  pPP ,1

In case of the unconstrained optimization the quality of solutions can be very simple 
evaluated by comparing only the values of function to be minimized. Since we are working in 
floating-point arithmetic we must compare two function values using relative errors, as 
follows. Let us consider that when the methods  are applied for solving a 

particular problem, the following function values  are obtained. Let 

 and consider 

mMM ,,1 

f ,1  mf,

 mfff ,,min 1
min  
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Therefore, for a given tolerance  we say that the method  found a solution if  ,0f iM

                                                                                                                                   (8) ,f
i  

i.e. in comparisons when 1min f  we consider “small absolute errors”, and “small relative 

errors” otherwise. It is quite clear that using relative errors in this manner, the question is the 

value of the threshold parameter  Arbitrary small or large value choices of this parameter 
will have some influence in the comparison of algorithms. Since we do not have any 

possibility to fix a “good” value for  in this numerical study we compare the algorithms 

using the performance profiles  (efficiency) and 

.f

)1(
,f

)(  (robustness) for 6 different 

values of :  From our intensive numerical experiments we observed 

that the value of the threshold parameter does not have a great influence on the 
performance profiles  and 

f .8

(

10,,10 3 f

)1(

f
)  of the algorithms. In order to have a better 

understanding of the efficiency and the robustness of algorithms we present the performance 

profiles for 16,,1  and  .310f
 
4. Conjugate gradient algorithms considered in this numerical study 
In this work we focus on unconstrained optimization software which implements conjugate 
gradient algorithms. The eight solvers considered in this numerical study include: the classical 

conjugate gradient algorithms Hestenes and Stiefel (HS) ( ) [33] and 

Polak-Ribière-Polyak (PRP) ( ) [42, 43]; the BFGS preconditioned 

conjugate gradient algorithms CONMIN [49] and ASCALCG [9]; a conjugate gradient 
algorithm with guaranteed descent CG-DESCENT [32]; a hybrid conjugate gradient 
algorithm as a convex combination of HS, and Day and Yuan conjugate gradient algorithms 
AHYBRIDM [3, 8]; a simple three-term conjugate gradient algorithm which satisfy both the 
descent and the conjugacy conditions THREECG [10], and a conjugate gradient algorithm for 
which both the descent and the conjugacy conditions are guaranteed with modified second 
Wolfe line search condition DESCON [12]. In this study we are interested to see the 
efficiency and the robustness of these algorithms and to compare their performances subject to 
a large class of artificially test problems and real unconstrained optimization applications.  
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 Intensive numerical experiments proved that in conjugate gradient algorithms the step 
length may differ from 1 in a very unpredictable manner. They can be larger or smaller than 1 
depending on how the problem is scaled. This is in very sharp contrast to the Newton and 
quasi-Newton algorithms, including the limited memory quasi-Newton algorithms, which 
accept the unit step length most of the time along the iterations, thus requiring only few 
function evaluations per search direction. Therefore, excepting CONMIN and CG-
DESCENT, all the algorithms from this numerical study implement an acceleration scheme 
which modifies the step length in a multiplicative manner to improve the reduction of the 
functions values along the iterations [1, 6]. The initial search direction in all algorithms is 

 and the step length is computed by the Wolfe line search conditions implemented 

in the same manner. The initial guess of the step length at the first iteration is 

00 gd 

./1 00 g  At 

the following iterations, in all algorithms, the starting guess for step k  is computed as 

./
2211 kkk dd   This strategy proved to be one of the best selection of the initial guess of 

the step length. 
The HS and PRP conjugate gradient algorithms are very well known in literature. 

Both of them have  in numerator and possess a built-in restart feature that directly k
T
k yg 1
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addresses the jamming, which is a very important property. When the step  is 

small, the factor  in the numerator of and  tends to zero. Therefore, and 

 become small and the direction  corresponding to HS or PRP algorithms is 

essentially the steepest descent direction 

kkk xxs  1

HS
kky HS

k

1kd

PRP
k

.1

PRP
k

 kg  Hence, the HS and PRP methods 

automatically adjust the parameter k  to avoid jamming. The HS method has the property 

that the conjugacy condition 1 0T
k ky d    always holds, independent by the line search. If  

is uniformly convex and the line search is exact, Polak and Ribière [42] proved the global 
convergence of PRP algorithm. On the other hand, for general nonlinear function Powell [45] 
proved the global convergence of PRP algorithm if the step size tends to zero, the line 

search is exact and the gradient is Lipschitz continuous. Using an exact line search, 

f

ks

.HS
k  PR

k
P  Therefore, the convergence properties of the HS algorithm should be similar to 

the convergence properties of the PRP algorithm. But, for general nonlinear functions the 
convergence of the PRP method is uncertain. The classical Powell’s example shows that when 
the function is not strongly convex, the PRP algorithm may not converge, even with an exact 
line search [44]. Hence, the HS algorithm with an exact line search may not converge for 
general nonlinear functions. However, although HS and PRP may not converge in general, 
they often perform better than some other conjugate gradient algorithms like Fletcher and 

Reeves (FR) (
2

/ k

2

1k gg  FR
k  ) [26], Dai and Yuan (DY) ( k

T
kk

DY
k syg /

2

1 ) [22] 

and the Fletcher’s algorithm CD ( )k
T
k sg/(

2

1kg 
CD
k ) [27]. The line search in both HS 

and PRP is based on the Wolfe conditions implemented in the same manner. 
Both CONMIN and ASCALCG belong to the same class of conjugate gradient 

algorithms based on scaled BFGS preconditioning. CONMIN elaborated by Shanno and Phua 
[49] incorporates two nonlinear optimization algorithms, a conjugate gradient algorithm and a 
variable metric BFGS one. The conjugate gradient algorithm in CONMIN, we consider in our 
numerical study, is the Beale restarted memoryless BFGS updating algorithm, which in fact is 
a modification of Perry algorithm [41]. Shanno [47] observed that the conjugate gradient 
algorithms are exactly the BFGS quasi-Newton algorithm where the approximation to the 
inverse Hessian is restarted as the scaled identity matrix at every step, as no additional storage 
is used to develop a better approximation to the inverse Hessian. The scaling factor is 

computed as ./
2

kk
T
k ydy The algorithm implemented in CONMIN is a composite conjugate 

gradient algorithm in which the same philosophy used in BFGS of modifying the negative 
gradient with a positive definite matrix which best estimates the inverse Hessian without 
adding anything to storage requirements [47] is implemented at restarting, i.e. when the 
Beale-Powell restart criterion is satisfied. The linear search uses Davidon’s cubic 
interpolation to find a step-length satisfying the Wolfe line search conditions. Shanno [47] 

proved that under the assumptions on  that ,)(
22 uM)(xf u xfuT   and 

 uniformly in 

M 0

Lxf )( ,x  either 0lim  kgk  or .0lim k s k  Under the further 

assumption that for any  the level set 0R  RxfxS )(
*x

:  is bounded, then the 

sequence  generated by the algorithm converges to a point  at which  kx  ,0)( * xg  or 

the sequence cycles.  
On the other hand, ASCALCG elaborated by Andrei [9] is an accelerated scaled conjugate 
gradient algorithm which combines the scaled memoryless BFGS algorithm and the 
preconditioning technique. The preconditioner, which is also a scaled memoryless BFGS 
matrix, is reset when the Beale-Powell restart criterion [16] holds. The parameter scaling the 

gradient is selected as a spectral gradient:  The search direction in 

ASCALCG is computed as a double quasi-Newton update scheme: 

./ k
T
kkk sy 1
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where  and  and  is the BFGS approximation to the inverse 

Hessian initialized with the identity matrix and scaled by the scalar 
11  kr gHv kr yHw 1 1rH

1r  at the r th iteration 
where the Beale-Powell restart test is satisfied: 
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The restart direction is computed as where  is exactly the BFGS 

quasi-Newton matrix, and at every step the approximation of the inverse Hessian is the 
identity matrix multiplied by the scalar 
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For the step-length computation the algorithm implements the Wolfe line search conditions in 
the same manner as in CONMIN. The global convergence of ASCALCG was established by 
Babaie-Kafaki [15]. For uniformly convex function if the gradient of the function  is 

Lipschitz continuous on the level set 

f

 )()(: 0xfxfxS  , then the search directions 

generated by ASCALCG satisfy the sufficient descent condition. For general nonlinear 
functions under exact line search and if the gradient of the function  is Lipschitz 
continuous, then the algorithm satisfies the sufficient descent condition, i.e. it is globally 
convergent. 

f

CG-DESCENT algorithm was elaborated by Hager and Zhang [32] in order to ensure 
sufficient descent, independent of the accuracy of the line search. In CG_DESCENT the 

search direction , where 1 1
HZ

k k kd g     ks
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satisfies the sufficient descent condition 
2

(7 / 8) .T
k k kg d g   If the function f  is a 

quadratic and the line search is exact, then CG_DESCENT reduces to HS. In fact, 
CG_DESCENT is a modification of HS algorithm. However, in CG_DESCENT the search 
directions do not satisfy the conjugacy condition. Again, when iterates jam the expression 

2 2
1( ( )) / (T T

k k k k k )y s g y s  in the above formulation of HZ
k  becomes negligible. This 

modification of the HS scheme makes CG_DESCENT to perform better than HS [32]. In 
order to obtain global convergence for general nonlinear functions, the algorithm truncates the 

parameter  in a manner similar to PRP+ [28]. It is not clearly known that this truncation 

mechanism is benefic in the economy of the algorithm. Under standard assumptions the 
algorithm that satisfies the Wolfe line search is convergent in the sense that either  for 

some  or 

HZ
k

0kg 

k 0inflim  kk g  [32]. A very simple restart scheme is implemented in CG-

DESCENT: when the number of iterations is a multiple of n , then the searching direction is 
reset to the negative gradient. However, for the vast majority of problems the number of 
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iterations for solving a problem is much smaller that its dimension. Therefore, the restart 
iterations are very seldom used.  

AHYBRIDM, elaborated by Andrei [3, 8], is an accelerated hybrid conjugate gradient 

algorithm in which the parameter k  is computed as a convex combination of  and  

where the parameter 

HS
k

DY
k

k  in the convex combination is computed in such a way the direction 

corresponding to the conjugate gradient algorithm is the best direction we know, i.e. the 
Newton direction, while the pair  satisfies the modified secant given by Li et al. [35] 

 where 
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 is a scalar parameter ( 1  in our numerical experiments). In [8] we have the 
computational evidence that AHYBRIDM, as a convex combination of HS and DY conjugate 
gradient algorithms, is top performer versus the hybrid conjugate gradient algorithms obtained 

by projections, like hybrid Dai and Yuan [23] (   ,,min,max DY
k

HS
k

DY
k

hDY
k c    where 

)1/()1(  c ), Gilbert and Nocedal [28] (   FR
k

PRP
k

FR
k

GN
k  ,min,max  ) or 

hybrid Liu and Storey [36] (   CD
k

LS
k  ,min /()( 1 k

T
k

LS
k gyg CD ,0maxLS

k
 , ). 

This is the reason we selected AHYBRIDM in this numerical study on the efficiency and 
robustness of conjugate gradient algorithms. The step-length is computed using the Wolfe line 
search. An acceleration scheme is implemented by modifying the step-length in order to 
improve de reduction of function values along the iterations. Under classical assumptions, 
both for uniformly convex functions and for general nonlinear functions the algorithm with 
strong Wolfe line search is globally convergent [8]. 

)k
T
k s

THREECG is a simple three-term conjugate gradient algorithm developed by Andrei 
[10]. The algorithm is a modification of the HS algorithm or of CG-DESCENT in such a way 
that the search direction is descent and it satisfies the conjugacy condition. These properties 
are independent of the line search. Also, the algorithm could be considered as a very simple 
modification of the memoryless BFGS quasi-Newton method. The search direction is 
computed as: 
                                                     1 1 ,k k k k kd g s yk                                                   (15) 

where 
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The new approximation of the minimum is obtained by the general Wolfe line search 
conditions and the acceleration technique. For uniformly convex functions, under standard 
assumptions, the algorithm is globally convergent [10].  
 Finally DESCON [12] is a conjugate gradient algorithm for which both the descent 
and the conjugacy conditions are guaranteed. The search direction is selected as  
                                                         1 1k k kd g k ks     ,                                                 (18)                      

where  
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0w and  are arbitrary positive constants which specify the sufficient descent 

condition 

0v
2

1!1 k
T
k dg   kgw  and the conjugacy condition  

respectively. The algorithm introduces the modified Wolfe line search conditions, in which 
the parameter in the second Wolfe condition is modified at every step as: 

),( 11 k
T
kk

T
k sgvyd  

                                               
2

1 1/ ( )T
k k k k kg y g g    2

1 .                                         (24) 

The algorithm implements the acceleration scheme. Both for uniformly convex functions and 
for general nonlinear functions, the algorithm with strong Wolfe line search generates 
directions bounded away from infinite. Therefore, the algorithm is globally convergent [12]. 
 HS, PRP, AHYBRIDM, THREECG and DESCON use the Beale-Powell [16, 45] 

restart mechanism: if 
2

11 2.0   kk
T
k ggg is satisfied, then .11   kk gd  In our numerical 

experiments we noticed that for solving a problem this test is used in many iterations 
representing a sort of relaxation of the algorithm.  
 Excepting CG-DESCENT all the algorithms considered in this numerical study use 
exactly the same implementation of the Wolfe line search (3). This is an advanced 
implementation with Davidon’s cubic interpolation and different safeguards to ensure that the 
search procedure cannot be stuck or attempt to move away past a local maximum to a more 
distant local minimum.  
 
5. Numerical experiments and comparisons 
In the present numerical experiments we considered 800 large-scale unconstrained 

optimization test problems of the form . The stopping criterion associated 
with successful convergence of the algorithms, very used in large-scale optimization, was 

}:)(min{ nRxxf 

                                                                 ,g
kg 


                                                           (25) 

where 


.  is the maximum absolute component of a vector. Concerning the threshold 

parameter  there is not a clear rule to establish its value. However, in order to achieve 

small values of the sup-norm of the gradient we selected in (25). We see that for 

problems with variables (25) implies that 

g
610g

410n .10 4
2
kg  In all algorithms considered 

in this numerical study, for the step length k computation, the same implementation of the 

Wolfe line searches conditions (3) is used, where and 410 .8.0  In DESCON the 

parameter   is computed at every step as in (24). At the same time, even CG-DESCENT has 
two procedures for the step length k  computation, the classical Wolfe line search (3) and the 

approximate Wolfe line search, in our numerical experiments we have considered only the 
classical Wolfe conditions. In all cases we preserved the software’s default parameters. 
Software was compiled with Fortran 77, option –O4. The numerical experiments were 
executed on a Workstation Intel Pentium 4 with 1.8 GHz. Excepting CONMIN, all algorithms 
use the loop unrolling of depth 5. 
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 In all the numerical comparisons we selected to use the performance profiles [24] to 
present the results of the numerical experiments. This is motivated by the fact that using a 
large set of test problems, the easy-to-solve problems have the same importance as the harder 
ones. Besides, the performance profiles illustrate both the efficiency and the robustness of a 
method versus some other methods considered in this numerical study. The performance 
profiles correspond to the CPU time metric in which all the problems that do not satisfy the 
criterion (8) have been ignored. It is worth saying that the performance profiles refer to a 
comparative analysis of eight conjugate gradient algorithms using only two algorithms each 
time.  
 
5.1. DESCON versus classical conjugate gradient algorithms HS and PRP 

Considering  in (8), in Figures 1 and 2 we present the performance profile of 
DESCON versus HS and PRP subject to CPU time metric, respectively. Observe that the best 
performance, relative to the CPU time metric, was obtained by DESCON, the solid top curve 
in Figures 1 and 2. The figures indicate that relative to CPU time metric, DESCON is fastest. 
Since all these three codes use the same line search based on Wolfe conditions (implemented 
in exactly the same manner), these codes only differ in their choice of the search direction.  

310f

Comparing, for example, DESCON versus HS (see Figure 1), subject to the number 
of iterations, we see that DESCON was better in 610 problems (i.e. it achieved the minimum 
number of iterations in 610 problems). HS was better in 84 problems and they achieved the 
same number of iterations in 62 problems, etc. Out of 800 problems, only for 756 problems 

does the criterion (8) holds with  Therefore in comparison with HS (see Figure 1) 
and PRP (see Figure 2) DESCON appear to generate the best search direction on average.  

.10 3f

 Tables 1 and 2 present the efficiency and robustness rates of DESCON versus HS and 

of DESCON versus PRP respectively, for  and 610g  .10,,10 83  f  From these 
Tables we have the computational evidence that DESCON is the most efficient and the most 

robust method for every value of in the set: f  .8

)1(

10,,10 3  For example, for  
from Table 1 we see that DESCON is 8.069% more efficient than HS and 12.037% more 
robust. Concerning PRP, DESCON is 9.272% more efficient and 12.848% more robust. In 
Tables 1 and 2 Nrp is the number of problems, out of 800 used in these numerical studies that 
satisfy criterion (8). Again, from Tables 1 and 2 observe that the value of the threshold 

parameter  does not have a great influence on performance profiles 

,10 3f

f   and  of 
DESCON versus HS and PRP. All these three algorithms use the Beale-Powell restart 

procedure. If 

)(

2

11 2.0   kk
T
k ggg is satisfied, then ,11  kgkd

1000

 i.e. the current direction is 

the negative gradient. This is an important ingredient in conjugate gradient algorithms 
representing a sort of relaxation of iterations. It is worth seeing the restart iterations in these 
algorithms for a particular problem. Let us consider the problem #3 (extended Rosenbrock 
function). This problem was chosen because it illustrates the typical performance that we 
observed in numerical experiments. For n  to get the optimal solution, DESCON 
needs 57 iterations out of which 21 are restart iterations, i.e. 36.842% are restart iterations. On 
the other hand, HS needs 79 iterations, out of which 46 are restart iterations, i.e. 58.227% are 
restart iterations. In the same context, PRP needs 78 iterations, 42 from these being restart 
iterations, i.e. 53.846% are restart iterations that use the negative gradient as the searching 
direction. Observe that DESCON needs the least number of restart iterations, and this is the 
reason of its efficiency and robustness in comparisons with HS and PRP.  
HS and PRP conjugate gradient algorithms use the Wolfe line search conditions (3) where 

and .410 8.0  On the other hand, DESCON again use the Wolfe line search (3), but 

at every step modifies k  as in (24). 
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Fig. 1. DESCON versus HS. ( ) 310f

 

 
Fig. 2. DESCON versus PRP. ( ) 310f
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Table 1. Performance profiles )1(  and )(  of DESCON versus HS. 

)1(  )(  f  Nrp 

DESCON HS DESCON HS 
310  756 0.69841 0.61772 0.99735 0.87698 

410  727 0.69876 0.62173 0.99725 0.87208 

510  700 0.70143 0.62857 0.99714 0.86714 

610  677 0.70901 0.62925 0.99705 0.86263 

710  647 0.71252 0.63679 0.99691 0.85781 

810  620 0.71613 0.64677 0.99677 0.85806 

 
 

Table 2. Performance profiles )1(  and )(  of DESCON versus PRP. 

)1(  )(  f  Nrp 

DESCON PRP DESCON PRP 
310  755 0.70861 0.61589 0.99735 0.86887 

410  724 0.71685 0.61326 0.99724 0.86326 

510  697 0.71736 0.62267 0.99713 0.85796 

610  673 0.72511 0.62407 0.99703 0.85290 

710  629 0.72019 0.64865 0.99682 0.85056 

810  604 0.72351 0.64404 0.99669 0.85099 

 
 
5.2. DESCON versus CONMIN and ASCALCG 

For  Figures 3 and 4 present the performance profiles of DESCON versus 
CONMIN and ASCALCG, respectively. The best performance, relative to the CPU time 
metric, again was obtained by DESCON, the solid top curve in Figures 3 and 4. We see that 
out of 800 problems used in these numerical experiments in case of CONMIN only 730 
satisfy criterion (8). In case of ASCALCG only 743 problems satisfy the same criterion. 
Tables 3 and 4 present the performance profiles 

310f

)1(  and )(  of DESCON versus 

CONMIN and ASCALCG, respectively. From Tables 3 and 4, for  observe that 
DESCON is 23.287% more efficient than CONMIN and 35.262% more efficient than 
ASCALCG. Concerning the robustness, from the same tables we see that DESCON is 3.151% 
more robust than CONMIN and 1.076% more robust than ASCALCG. Observe that 
DESCON is more efficient and more robust versus CONMIN and ASCALCG, respectively, 

for every value of  in the considered set 

,10 3f

f  .10 8,,10 3   
It is worth saying that CONMIN uses the second order information as the BFGS update 
initialized with the identity matrix at every step. On the other hand, ASCALCG uses the 
second order information as the BFGS update in which, at every step, the approximate of the 

inverse Hessian is restarted as ,1Ik  where  (  by Wolfe line 

search conditions.) Both CONMIN and ASCALCG satisfy the sufficient descent condition, 
but do not satisfy the conjugacy condition. On the other hand, DESCON satisfies both the 
sufficient descent and the conjugacy conditions. Besides, DESCON uses the second order 

information by using the modified conjugacy condition  with .  

./1 k
T
kk

T
kk syss

1 k
T
k yd  

0k
T
k sy

)( 1 k
T
k sgv  05.0v

ASCALCG, is more elaborated than CONMIN. Therefore, subject to robustness, it is closer to 
DESCON than CONMIN is (see Figure 4). 
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Fig. 3. DESCON versus CONMIN. ( ) 310f

 

 
Fig. 4. DESCON versus ASCALCG. ( ) 310f
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Table 3. Performance profiles )1(  and )(  of DESCON versus CONMIN. 

)1(  )(  f  Nrp 

DESCON CONMIN DESCON CONMIN 
310  730 0.78219 0.54932 0.99863 0.96712 

410  720 0.77917 0.55417 0.99861 0.96667 

510  682 0.77273 0.57918 0.99853 0.96481 

610  660 0.77273 0.59091 0.99848 0.96515 

710  614 0.78013 0.60098 1 0.96254 

810  592 0.77365 0.61318 1 0.96284 

 
 

Table 4. Performance profiles )1(  and )(  of DESCON versus ASCALCG. 

)1(  )(  f  Nrp 

DESCON ASCALCG DESCON ASCALCG 
310  743 0.81292 0.46030 0.99596 0.98520 

410  721 0.81415 0.46186 0.99584 0.98474 

510  671 0.81669 0.46796 0.99553 0.98510 

610  603 0.81758 0.45439 0.99502 0.98673 

710  518 0.80888 0.45946 0.99421 0.99035 

810  478 0.80335 0.45816 0.99372 0.99163 

 
There are problems for which ASCALCG takes very few Beale-Powell restart iterations. For 
example, for problem #13 (Hager), with ,1000n

,1000

 ASCALCG needs 42 iterations, out of 
which 1 iteration is a restart one. On the other hand, DESCON needs 44 iterations, out of 
which 2 iterations are restart iterations. But, for some other problems (not so many in this 
collection) ASCALCG takes a large number of Beale-Powell restart iterations. For example, 
for problem #32 (White & Holst), with n  ASCALCG needs 3111 iterations, out of 
which 1281 (41.176%) are Beale-Powell restart iterations. In this case, DESCON takes only 
148 iterations, out of which 12 (8.108%) are restart iterations. This is the weakness of 
ASCALCG. 
 
5.3. DESCON versus CG-DESCENT 
These two algorithms differ in many respects. CG-DESCENT was designed to guarantee the 

sufficient descent condition 
2

(7 / 8) .T
k k kg d g   On the other hand, DESCON is more 

elaborated it uses the second order information by satisfying the modified conjugacy 

condition  with )( 11 k
T
kk

T
k sgvyd   05.0v  and the sufficient descent condition 

2

1!1   kk
T
k gwdg  with  Observe that we consider .8/7w 8/7w

.w

 in DESCON as in 

CG-DESCENT. Intensive numerical studies and sensitivity analysis [12] proved that 
DESCON is very little sensitive to the numerical values of  and  Besides, DESCON is 
equipped with an acceleration scheme very efficient for improving the values of the 
minimizing function.  

v

Figure 5 presents the performance profile of DESCON versus CG-DESCENT for  
Observe that DESCON is more efficient and more robust versus CG-DESCENT. Out of 800 
unconstrained optimization problems considered in this numerical study, only for 774 
problems does the criterion (8) holds. Table 5 presents the performance profiles  and 

 of DESCON versus CG-DESCENT. From Table 5, for  we see that 

.10 3f

)1(
)( ,10 3f
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DESCON is 6.589% more efficient than CG-DESCENT and 4.522% more robust. For 

 DESCON is 1.540% more efficient than CG-DESCENT and 3.236% more 
robust. In this case out of 800, only for 649 problems the criterion (8) holds. Observe that 

DESCON is more efficient and more robust versus CG-DESCENT for every value of  in 

the set 

,10 8f

f
 .10,, 83 10  In DESCON two important ingredients have been implemented: the 

acceleration and the Beale-Powell restart iterations which are responsible with the 
performances of it. On the other hand in CG-DESCENT the restart mechanism is very simple: 
when the number of iterations is a multiple of n , then the direction is the negative gradient. 
Since the number of iterations is much smaller than , the restart iterations are very rare 
used.  

n

 
Fig. 5. DESCON versus CG-DESCENT. ( ) 310f

 
 

Table 5. Performance profiles )1(  and )(  of DESCON versus CG-DESCENT. 

)1(  )(  f  Nrp 

DESCON CG-DES DESCON CG-DES 
310  774 0.69380 0.62791 0.99612 0.95090 

410  762 0.69160 0.63517 0.99606 0.96063 

510  729 0.68861 0.65295 0.99588 0.95885 

610  705 0.68511 0.66525 0.99574 0.95887 

710  686 0.68076 0.66910 0.99563 0.95918 

810  649 0.69183 0.67643 0.99538 0.96302 

 
Besides, we must emphasize that as   approaches 0 and   approaches 1, the Wolfe line 

search terminates quicker. Therefore, the chosen values in CG-DESCENT 0.1   and 

0.9   represent a compromise between the desire for rapid termination of line search and 
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the desire to improve the function value. On the other hand, in DESCON in subroutine for 
line search we chosen 0.0001   and we limited the number of line search iterations to 3. To 
improve the function values the acceleration scheme is used which involves only one function 
evaluation. These are the rationales DESCON is top performer versus CG-DESCENT in 
Figure 5. 
 
5.4. DESCON versus the hybrid conjugate gradient algorithm AHYBRIDM 
Figure 6 presents the performance profiles of DESCON versus AHYBRIDM. It is worth 
saying that AHYBRIDM is based on the concept of hybridization by convex combination of 
HS and DY conjugate gradient algorithms in order to exploit their attractive features. On one 
side DY has strong convergence properties and HS in numerical experiments performs better 
than some other conjugate gradient algorithms, on the other side. 
We see that out of 800 unconstrained optimization problems only for 773 problems does the 
criterion (8) holds. Table 6 presents the performance profiles )1(  and )(  of DESCON 
versus AHYBRIDM. From Table 6 we see that DESCON is 34.670% more efficient than 
AHYBRIDM and 1.164 % more robust.  

 
Fig. 6. DESCON versus AHYBRIDM. ( ) 310f

 
Table 6. Performance profiles )1(  and )(  of DESCON versus AHYBRIDM. 

)1(  )(  f  Nrp 

DESCON AHYBRIDM DESCON AHYBRIDM 
310  773 0.83829 0.49159 0.99741 0.98577 

410  766 0.83943 0.48825 0.99739 0.98564 

510  746 0.83914 0.49732 0.99732 0.98660 

610  722 0.84211 0.50277 0.99723 0.99169 

710  706 0.84136 0.50992 0.99717 0.99292 

810  693 0.83838 0.51804 0.99711 0.99423 
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Observe that DESCON is more efficient and more robust versus AHYBRIDM for every value 

of  in the set f  .10,,10 83    In numerical experiments we noticed that in AHYBRIDM 
the iterations often trigger between HS and DY and their convex combination very seldom are 
used. Rephrased, the performance profile of AHYBRIDM is a little higher than the 
corresponding profiles of HS and DY. This is the reason why DESCON is far away more 
efficient than AHYBRIDM.   
 
5.5. DESCON versus the three-term conjugate gradient algorithm THREECG 
In Figure 7 we have the performance profiles of DESCON versus THREECG. Out of 800 
unconstrained optimization test problems only for 778 problems does the criterion (8) holds. 
Even that there is a discrepancy concerning the efficiency, the algorithms are very close 
subject to robustness. In Table 7 we see the performance profiles )1( and  of 
DESCON versus THREECG.  

)(

 
Fig. 7. DESCON versus THREECG. ( ) 310f

 
Table 7. Performance profiles )1(  and )(  of DESCON versus THREECG. 

)1(  )(  f  Nrp 

DESCON THREECG DESCON THREECG 
310  778 0.75193 0.62211 0.99743 0.99229 

410  771 0.75097 0.61868 0.99741 0.99222 

510  760 0.75395 0.62105 0.99737 0.99474 

610  737 0.75984 0.62551 0.99729 0.99729 

710  727 0.76754 0.62173 0.99725 0.99725 

810  704 0.76562 0.63636 0.99716 0.99858 
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For  DESCON is 12.982% more efficient than THREECG and 0.514% more 

robust. For  we see that THREECG is slightly more robust than DESCON. Both 
algorithms use the acceleration of iterations, the Beale-Powell restart and the same 
implementation of the Wolfe line search conditions, but with parameter 

310f
f 810

k  in DESCON 

modified at every step. Concerning the restart iterations, we noticed that the number of restart 
iterations for both algorithms, are very close for all the problems considered in this numerical 
study. For example, for problem #39 (BDQRTIC) with ,1000n  to get the minimum 
DESCON needs 77 iterations, out of which 12 (15.584%) are Beale-Powell restart iterations. 
For the same problem THREECG needs again 77 iterations out of which this time 10 
(12.987%) are Beale-Powell restart iterations. Observe that THREECG (15)-(17) is simpler 
than DESCON (18)-(24), and this could be an advantage. However, both the sufficient 
descent and the conjugacy conditions are natural properties of the THREECG. On the other 
hand, in DESCON these properties are imposed through the values of the parameters v  and 

 which may have a positive influence on its performances. ,w
 
5.6. ASCALCG versus CG-DESCENT, AHYBRIDM and THREECG 
These algorithms differ in many respects. For example, ASCALCG, AHYBRIDM and 
THREECG use the acceleration scheme, the same line search procedure based on Wolfe 
conditions, but different restart procedures. In both algorithms AHYBRIDM and THREECG 

when the restart Beale-Powell test 
2

11 2.0   kk
T
k ggg is satisfied then  the 

negative gradient. On the other hand, ASCALCG is an accelerated scaled conjugate gradient 
algorithm, BFGS preconditioned, using an advanced restarting procedure. When the Beale-
Powell restart test is satisfied then the restart direction in ASCALCG is computed using again 
a BFGS preconditioned scheme, which is time consuming in some cases. In our numerical 
tests we observed that the number of restart iterations is completely unpredictable. For 
example, for problem #29 (full Hessian) with 

,11   kk gd

,1000n  to get the minimum point 
ASCALCG needs 480 iterations. The number of restart iterations in ASCALCG is 21 which 
represent 4.375% out of the total number of iterations. On the other hand, in AHYBRIDM the 
number of restart iteration to get the solution is 689, out of which 50 (7.256%) are restart 
iterations. Finally, THREECG needs 610 iterations, out of which 52 (8.524%) are restart 
iterations. There are some other problems for which the restart iterations are more frequent. 
For example, for problem #3 (extended Rosenbrock) with 1000n  the number of iterations 
to get the minimum point is 49, out of which 42, i.e. 85.714%, are restart iterations. On the 
other hand AHYBRIDM needs 55 iterations for solving this problem. The number of restart 
iterations in this case is 20 which represent 36.363% out the total number of iterations. 
THREECG takes 61 iterations to solve this problem. From these 22 are restart iterations 
which represent 36.065%. In any case, in conjugate gradient algorithms restart is an important 
ingredient representing a relaxation of algorithm.  
In Figures 8, 9 and 10 we have the performance profiles of ASCALCG versus CG-
DESCENT, AHYBRIDM and THREECG, respectively. Observe that all these three 
conjugate gradient algorithms CG-DESCENT, AHYBRIDM and THREECG are more 

efficient than ASCALCG. For example, from Tables 8, 9 and 10, for  CG-
DESCENT is 14.577% more efficient than ASCALCG; AHYBRIDM is 20.755% more 
efficient than ASCALCG and finally THREECG is again 31.241% more efficient than 
ASCALCG. Observe that the great discrepancy concerning efficiency is between ASCALCG 
and THREECG.  

,10 3f

Concerning robustness, ASCALCG is more robust than CG-DESCENT (0.817%) and 
AHYBRIDM (0.135%). However, from Table 10 we see that THREECG is 0.267% more 
robust than ASCALCG. The direction in ASCALCG is more complicated (more time 
consuming) and this is the reason why its efficiency is smaller than the corresponding 
efficiency of the algorithms we compare with. 
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Fig. 8. ASCALCG versus CG-DESCENT. ( ) 310f

 
Table 8. Performance profiles )1(  and )(  of ASCALCG versus CG-DESCENT. 

)1(  )(  f  Nrp 

ASCALCG CG-DESCENT ASCALCG CG-DESCENT 
310  734 0.55586 0.70163 0.98501 0.97684 

410  715 0.56364 0.69930 0.98462 0.97622 

510  674 0.56528 0.69733 0.98516 0.97478 

610  595 0.54622 0.70252 0.98655 0.97311 

710  511 0.54795 0.69863 0.99022 0.97065 

810  453 0.54967 0.69978 0.99117 0.98455 

 
Besides the restart and the acceleration, the other profitable ingredient used in AHYBRIDM is 
the second order information given by the modified secant condition. In contrast to 
ASCALCG the second order information in AHYBRIDM is used in a very direct and simple 
manner. Therefore, the algebraic expression of the direction is not complicated, this being 
very easy to be computed. If the line search is exact, the direction reduces to a minor 
modification of the HS algorithm. On the other hand, THREECG is a very simple three-term 
conjugate gradient algorithm which uses the second order information as a minor 
modification of the BFGS updating formula. In this algorithm the BFGS formula is restarted 

with the identity matrix at every step and the sign in front of the  term is changed in 

order to get the descent property. Again observe that THREECG is a modification of HS 

algorithm. This modification is dependent by which is going to zero along the 

iterations. Apparently, this contribution to the HS direction determines a better direction in 
THREECG. Concerning the robustness, observe that ASCALCG and THREECG are bunched 

T
kk sy

1k
T
k gs
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closer together. This is because ASCALCG in its essence is a more complicated three-term 
conjugate gradient algorithm (see (9)-(11)). 

 
Fig. 9. ASCALCG versus AHYBRIDM. ( ) 310f

 
Table 9. Performance profiles )1(  and )(  of ASCALCG versus AHYBRIDM. 

)1(  )(  f  Nrp 

ASCALCG AHYBRIDM ASCALCG AHYBRIDM 
310  742 0.53908 0.74663 0.99461 0.99326 

410  719 0.54242 0.74548 0.99444 0.99305 

510  670 0.55224 0.74179 0.99552 0.99552 

610  608 0.53947 0.74836 0.99507 0.99671 

710  517 0.53772 0.74855 0.99807 0.99613 

810  471 0.54140 0.74310 0.99788 0.99788 

 
Together, Figures 8, 9 and 10 seem to imply that ASCALCG is the least efficient algorithm in 
comparison to CG-DESCENT, AHYBRIDM and THREECG. The linear algebra in 
ASCALCG code to update the search direction is more time consuming than the linear 
algebra in the algorithms we compare with. Therefore, the CPU time of ASCALCG is 
dominated by the cost of linear algebra.  On the other hand, the number of iterations in line 
search in ASCALCG, AHYBRIDM and THREECG is limited to 3 to get an acceptable step 
length. Using the acceleration technique in these algorithms this value of the step length is 
modified to reduce the value of the minimizing function. Also, it is interesting to observe that 
the performances of these algorithms are dependent on this number, which limits the 
iterations in line search. It seems that the smaller the number of line search iterations, the 
more efficient the algorithms are. In CG-DESCENT, in the line search, more function 
evaluations are needed to get the stopping criterion. However, the value of the step length in 
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CG-DESCENT is more accurate, and this is the rationale concerning the efficiency of this 
algorithm. 

 
Fig. 10. ASCALCG versus THREECG. ( ) 310f

 
Table 10. Performance profiles )1(  and )(  of ASCALCG versus THREECG. 

)1(  )(  f  Nrp 

ASCALCG THREECG ASCALCG THREECG 
310  749 0.48198 0.79439 0.99199 0.99466 

410  726 0.48623 0.79614 0.99174 0.99449 

510  672 0.49405 0.79911 0.99256 0.99554 

610  608 0.48191 0.80263 0.99342 0.99671 

710  521 0.48369 0.80230 0.99616 0.99616 

810  475 0.48421 0.79368 0.99789 0.99789 

 
 
5.7. CG-DESCENT versus AHYBRIDM and THREECG 

For , in Figures 11 and 12 we present the performance profiles of CG-DESCENT 
versus AHYBRIDM and THREECG, respectively. Observe that, at least for this set of 
problems, CG-DESCENT is more efficient than AHYBRIDM, and the difference is 
significant, about 14.305%. However, in comparison with THREECG, observe that this time 
THREECG is very little more efficient, about 1.428%. Concerning the robustness, both 
AHYBRIDM and THREECG are more robust than CG-DESCENT. From Tables 11 and 12 
we see that this characteristic of robustness of AHYBRIDM and THREECG is maintained for 

all values of in the set  For example, for , from Table 11 we see 
that AHYBRIDM is about 0.918% more robust than CG-DESCENT. Again, from Table 12 
observe that THREECG is 1.948% more robust than CG-DESCENT. 

310f

f }.10,,10{ 83   310f
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Fig. 11. CG-DESCENT versus AHYBRIDM. ( ) 310f

 
Table 11. Performance profiles )1(  and )(  of CG-DESCENT versus AHYBRIDM. 

)1(  )(  f  Nrp 

CG-DESCENT AHYBRIDM CG-DESCENT AHYBRIDM 
310  762 0.71785 0.57480 0.97507 0.98425 

410  754 0.72281 0.57162 0.97878 0.98408 

510  731 0.73598 0.56772 0.97811 0.98632 

610  703 0.74964 0.56330 0.97724 0.99147 

710  680 0.75294 0.56324 0.97794 0.99118 

810  643 0.75894 0.57543 0.98289 0.99222 

 
We emphasize that in CG-DESCENT the mechanism of restarting the iterations is very 
simple. Since  is often larger than the number of iterations needed for solving a problem, it 
follows that the algorithm performs no restarts in the vast majority of test runs. This is the 
reason why the CG-DESCENT is more efficient than AHYBRIDM. The iterations in CG-
DESCENT are not relaxed as in AHYBRIDM and THREECG where the Beale-Powell restart 
test is used. 

n

As we know, AHYBRIDM is an accelerated hybrid conjugate gradient algorithm obtained as 
a convex combination of HS and DY conjugate gradient algorithms. In our intensive 
numerical experiments we observed that the AHYBRIDM have the propensity to use the HS 
algorithm along the iterations. Besides, we notice that AHYBRIDM often triggers between 
HS and DY, while their convex combination is seldom used. For example for problem #3 
(extended Rosenbrock) with , AHYBRIDM needs 55 iterations. Out of these, the 
HS algorithm is used in 39 (70.92%) iterations, the DY algorithm is used in 14 (25.45%), and 
the convex combination of HS and DY is used in 2 (3.63%) iterations. This is a typical 
behavior of AHYBRIDM. As we said, CG-DESCENT also is a modification of HS algorithm, 

1000n
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but this modification is always used along the iterations without any possibility to change it at 
least as the negative gradient in case of restart. This is the rationale for a better robustness of 
AHYBRIDM versus CG-DESCENT.  
From (12) and (16) observe that both CG-DESCENT and THREECG have in common the 

expression 2
1 )/()( k

T
kk

T
kk sygsy  . When iterates jam,  becomes tiny while ky kg  is 

bounded away from zero. Therefore, in CG-DESCENT when iterates jam, this expression 

becomes negligible, i.e.  However, in case of jamming, in THREECG there is the 

third component 

.HS
k

HZ
k  

kk y  (see 15) which compensate the lost of robustness of CG-DESCENT. 

 
Fig. 12. CG-DESCENT versus THREECG. ( ) 310f

 
Table 12. Performance profiles )1(  and )(  of CG-DESCENT versus THREECG. 

)1(  )(  f  Nrp 

CG-DESCENT THREECG CG-DESCENT THREECG 
310  770 0.64286 0.65714 0.97143 0.99091 

410  762 0.64567 0.65748 0.97507 0.99081 

510  729 0.66255 0.65432 0.97394 0.99314 

610  704 0.67756 0.64631 0.97301 0.99574 

710  682 0.68182 0.64370 0.97507 0.99560 

810  642 0.68692 0.65732 0.97975 0.99688 

 
 
5.8. AHYBRIDM versus THREECG 

In Figure 13 we have the performance profiles of these algorithms for  Out of 800 
problems only for 782 problems the criterion (8) holds. Observe that THREECG is about 
30.563% more efficient and about 0.511% more robust then AHYBRIDM. Besides, from 

.10 3f
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Table 13 we see that this characteristic of these algorithms is invariant at the variation of  

in the set  As we have already seen these algorithms are different in many 
respects. Even that AHYBRIDM often triggers between HS and DY trying to exploit the 
attractive features of these algorithms, THREECG is more efficient and more robust showing 
the importance of three-term concept in conjugate gradient paradigm. On the other hand, the 
algebraic expression of the search direction in THREECG is simpler then the search direction 
in AHYBRIDM. This makes THREECG more efficient that AHYBRIDM. 

f
}.10,,10{ 83  

 
Fig. 13. AHYBRIDM versus THREECG. ( ) 310f

 
Table 13. Performance profiles )1(  and )(  of AHYBRIDM versus THREECG. 

)1(  )(  f  Nrp 

AHYBRIDM THREECG AHYBRIDM THREECG 
310  782 0.51662 0.82225 0.99361 0.99872 

410  782 0.51662 0.82225 0.99361 0.99872 

510  763 0.52425 0.82307 0.99345 0.99869 

610  741 0.52632 0.82861 0.99595 1 

710  726 0.53444 0.82782 0.99725 1 

810  704 0.54403 0.82812 0.99716 1 

 
 
5.9. The performance profiles of all algorithms 
Firstly, in this section we present the performance profile of all eight algorithms considered in 

this numerical study for  The top solid curve in Figure 14 corresponds to 
DESCON, the top performer among these algorithms. In Table 14 we can see the efficiency 

 and the robustness  of these algorithms, relative to the CPU time metric. 
Concerning the efficiency CG-DESCENT is top performer. The second place is taken by 

.10 3f

)()1(
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DESCON and the third by HS. Concerning the robustness on the first place is DESCON, 
followed by THREECG and followed by ASCALCG.  
 

 
Fig. 14. Performance profiles of all algorithms for  and  610g .10 3f

 
Table 14. Performance profiles )1(  and )(  of all algorithms. 

The first, the second and the third places of algorithms are shown in  
bold, italic and underline, respectively. 

 )1(  )(  

DESCON 0.35000 0.99853 
HS 0.34118 0.87353 
PRP 0.33382 0.85735 

CONMIN 0.30294 0.95294 
ASCALCG 0.25147 0.98529 

CG-DESCENT 0.43529 0.97059 
AHYBRIDM 0.23676 0.98382 
THREECG 0.32059 0.99118 

 
In Figure 14 observe that HS and PRP have the most reduced performance profiles. 

Therefore, in Figure 15 we present the performance profiles of five algorithms for  
Observe in Figure 15 that concerning the robustness the algorithms are grouped, but subject to 
efficiency they are more dispersed, slightly fastest being CG-DESCENT. Again, the top solid 
curve in Figure 15 corresponds to DESCON. Subject to the efficiency, from Table 15, we see 
that CG-DESCENT is slightly faster, followed by DESCON and followed by THREECG. 
Concerning the robustness, the DESCON is the most robust, followed by THREECG and 
followed by ASCALCG. Since all these algorithms use the same line search procedure, based 
on the Wolfe conditions, DESCON appears to generate the best search direction, on average.  

.10 3f

In Figure 15, we have the computational evidence that these five algorithms are the best 
conjugate gradient algorithms able to solve a large variety of large-scale unconstrained 
optimization problems of different structures of their Hessian. Excepting CG-DESCENT all 
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the algorithms considered in Figure 15 implement an acceleration procedure which proves to 
be very efficient in reducing the values of the function values. On the other hand, these 
algorithms contain in a way or another, the second order information which improve in a 
certain way the computation of the search direction. 

 
Fig. 15. Performance profiles of 5 algorithms for  and  610g .10 3f

 
 

Table 15. Performance profiles )1(  and )(  of 5 algorithms. 

The first, the second and the third places of algorithms are shown in  
bold, italic and underline, respectively. 

 )1(  )(  

DESCON 0.46379 0.99582 
ASCALCG 0.29805 0.98329 

CG-DESCENT 0.48886 0.97214 
AHYBRIDM 0.27716 0.98050 
THREECG 0.37326 0.98886 

 
 
6. Discussion 
6.1. Comparisons among algorithms for solving problems with different structure of the 
Hessian matrix 
In this numerical study we classified the problem according to the structure of their Hessian 
matrix. Hence, out of 800 unconstrained optimization test problems, considered in this paper, 
for 100 of them the Hessian is a diagonal matrix, for 190 the Hessian is a block-diagonal 
matrix, for 220 the Hessian is tri-diagonal (or penta-diagonal) and for 160 the Hessian is a full 
matrix. The rest of the problems have a bounded diagonal or a bounded block-diagonal 
structure of the Hessian matrix we do not consider in our analysis. In this section we present a 
comparison of AHYBRIDM, ASCALCG, CG-DESCENT, DESCON and THREECG 
conjugate gradient algorithms for solving these four classes of unconstrained optimization test 
problems. The below tables present the efficiency and the robustness of these algorithms. 
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Table 16. The efficiency and robustness of algorithms for solving 100 test problems with  

diagonal Hessian matrix.   ,10 6g .10 3f
  )1(  )(  

AHYBRIDM 0.17582 0.97802 
ASCALCG 0.17582 0.96703 
CG-DESCENT 0.89011 1 
DESCON 0.26374 1 
THREECG 0.26374 1 

 
Table 17. The efficiency and robustness of algorithms for solving 190 test problems with  

block-diagonal Hessian matrix.   ,10 6g .10 3f
  )1(  )(  

AHYBRIDM 0.31138 1 
ASCALCG 0.27545 1 
CG-DESCENT 0.55090 0.99401 
DESCON 0.41317 1 
THREECG 0.48503 1 

 
Table 18. The efficiency and robustness of algorithms for solving 220 test problems with  

tri-diagonal or penta-diagonal Hessian matrix.   ,10 6g .10 3f
  )1(  )(  

AHYBRIDM 0.14894 0.99468 
ASCALCG 0.06915 0.99468 
CG-DESCENT 0.52128 1 
DESCON 0.43085 1 
THREECG 0.25000 0.99468 

 
Table 19. The efficiency and robustness of algorithms for solving 160 test problems with  

full Hessian matrix.   ,10 6g .10 3f
  )1(  )(  

AHYBRIDM 0.27451 0.94118 
ASCALCG 0.35948 0.94771 
CG-DESCENT 0.36601 0.92810 
DESCON 0.43137 0.98039 
THREECG 0.31373 0.95425 

 
Observe that CG-DESCENT is the most efficient algorithm for solving problems with 
structured Hessian. On the other hand, DESCON is the most efficient and the most robust 
algorithm for solving problems with full Hessian.  

It is worth seeing the behavior of these algorithms for solving these four classes of 
problems subject to the CPU time metric. In Table 20 we present the total CPU time for 
solving these classes of problems with the Hessian matrix structured as: diagonal (DD), 
block-diagonal (BD), tri-diagonal or penta-diagonal (TP) and full Hessian (FH). Observe that 
for solving 100 unconstrained optimization problems with Hessian a diagonal matrix all 
algorithms need a grand total of 958.85 seconds. AHYBRIDM needs 286.45 seconds. 
Therefore, for AHYBRIDM, in average one problem in this class needs 286.45/100=2.8645 
seconds. Observe that the fastest algorithm for solving problems in this class is CG-
DESCENT. For solving one problem, in average this algorithm needs 49.51/100=0.4951 
seconds. For solving this class of problems DESCON is on the second place (in italics). 

From Table 20 we have the computational evidence that all algorithms considered in 
this study are fastest for solving problems whose Hessian is a bloc-diagonal matrix. For 
solving 190 problems, with Hessian a block-diagonal matrix, all algorithms need a grand total 
of 40.82 seconds. We see that, in average, for solving one problem, for which the Hessian is 
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bloc-diagonal, THREECG needs 7.22/190=0.038 seconds, this algorithm being the fastest 
among all the algorithms considered in this numerical study. Observe that DESCON again is 
on the second place, etc. 
 
 

Table 20. CPU time (seconds) for solving unconstrained optimization test problems 

classified as: DD, BD, TP and FH.   ,10 6g .10 3f
The first, the second places of algorithms are shown in bold and italic, respectively. 

 DD BD TP FH 
 100 190 220 160 

AHYBRIDM 286.45 
(2.8645) 

8.26 
(0.0434) 

517.18 
(2.3508) 

594.77 
(3.7173) 

ASCALCG 299.96 
(2.9996) 

8.42 
(0.0443) 

795.11 
(3.6141) 

406.94 
(2.5433) 

CG-DESCENT 49.51 
(0.4951) 

9.39 
(0.0492) 

394.88 
(1.7949) 

1455.53 
(9.0970) 

DESCON 153.00 
(1.53) 

7.53 
(0.0396) 

363.78 
(1.6535) 

442.69 
(2.7668) 

THREECG 169.93 
(1.6993) 

7.22 
(0.038) 

379.18 
(1.7235) 

452.63 
(2.8289) 

TOTAL 958.85 40.82 2450.13 3352.56 
 
 

Concerning the 220 problems with Hessian a tri-diagonal or a penta-diagonal matrix all 
algorithms need a grand total of 2450.13 seconds. The fastest algorithm for solving the 
problems from this class is DESCON. In average, it needs 363.78/220=1.6535 seconds. The 
second place is taken by THREECG. 

Subject to CPU time metric, the most difficult problems seem to be the problems with 
full Hessian. For solving 160 problems with full Hessian all algorithms need a grand total of 
3352.56 seconds, ASCALCG being the fastest for solving these problems. Again DESCON is 
on the second place.  

As we know the convergence of conjugate gradient algorithms is very dependent by 
the entire spectrum of the Hessian. Suppose that the Hessian is a positive definite matrix. If 
the eigenvalues of the Hessian matrix are contained in, let say, m  disjoint intervals of very 
small length on the real axis, then the conjugate gradient algorithms will produce very small 
gradients after at most  steps. In case of functions with Hessian a block-diagonal matrix the 
eigenvalues of Hessian are clustered in a number of disjoint intervals. Therefore, for these 
sorts of functions all the algorithms considered in this numerical study are faster versus 
functions with some other structures of the Hessian.  

m

 
6.2. The weakness of numerical experiments and comparisons using artificially test problems 
From the above numerical experiments and comparisons we have the computational evidence 
that the conjugate gradient algorithms considered in this numerical study are able to solve a 
large variety of large-scale unconstrained optimization problems of different nonlinear 
complexity and with different structures of their Hessian matrix. This is the main remark of 
this numerical study.  

Apparently some algorithms are more efficient, or more robust, or faster than others. 
For example, from Figures 14 and 15, it seems that the algorithms DESCON and THREECG, 
for which both the sufficient descent condition and the conjugacy condition are satisfied, are 
the best in this class of algorithms. But this is not a definitive conclusion. This behavior is 
obtained by means of a relatively large collection of artificially unconstrained optimization 
test problems we have used in our numerical study. It is quite clear that in front of us we have 
an infinite number of artificially unconstrained optimization test problems from which it is 
always possible to assemble a set of problems for which completely different conclusions 
about the efficiency and robustness of the algorithms considered in this numerical study are 
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obtained. This is the weakness of numerical studies using artificially optimization test 
problems, even that they are of different nonlinear complexity and with different structures of 
their Hessian matrix. 
 Therefore, in order to get a true conclusion at all the real unconstrained optimization 
applications must be used in numerical experiments and comparisons. The main characteristic 
of real optimization applications is that their mathematical model is written on the basis of the 
conservation laws. In this respect the Noether theorem [39] shows that the conservation laws 
are direct consequences of symmetries. But, in any time and any place we are surrounded by 
concepts that appear in dual-symmetric pairs. Therefore, the conservation laws have very 
solid fundamentals which are directly transmitted to the mathematical models of real 
applications. For example [25] and [46] present plenty of optimization mathematical models 
of real applications. This is the main reason why the real optimization applications give true 
insights on behavior of optimization algorithms.  
 
6.3. Solving MINPACK-2 applications 
Now, we present comparisons between AHYBRIDM, ASCALCG, CG-DESCENT, DESCON 
and THREECG conjugate gradient algorithms for solving five applications from MINPACK-
2 test problem collection [14]. In Table 21, we present these applications, as well as the 
values of their parameters.  
 

Table 21. Applications from MINPACK-2 collection. 

A1 Elastic-Plastic Torsion [29, pp. 41-55], 5.c   

A2 Pressure Distribution in a Journal Bearing [20], 10,b  0.1.   

A3 Optimal Design with Composite Materials [30], 0.008.   

A4 Steady-State Combustion [13, pp. 292-299], [17], 5.   
A5 Minimal Surfaces with Enneper conditions [40, pp. 80-85]. 

 
The infinite-dimensional version of these problems is transformed into a finite element 
approximation by triangulation. The discretization steps are nx = 1000 and ny = 1000, thus 

obtaining minimization problems with 1,000,000 variables. Considering then the 
number of iterations (#iter), or the number of function and its gradient evaluation (#fg), or the 
CPU time (seconds), required by AHYBRIDM, ASCALCG, CG-DESCENT, DESCON and 
THREECG conjugate gradient algorithms, for solving all these applications, is given in 
Tables 22-24.  

,10 6g

 
Table 22. Performances of AHYBRIDM, ASCALCG, CG-DESCENT, DESCON and THREECG 

algorithms for solving applications A1 and A2. . CPU seconds. 610g
 A1 A2 
 #iter #fg CPU #iter #fg CPU 

AHYBRIDM 1113 1114 378.14 2845 2873 1209.13 
ASCALCG 1110 1142 485.26 2842 2871 1473.58 

CG-DESCENT 1145 2291 476.12 3370 6741 1838.77 
DESCON 1113 2257 347.25 2845 5718 1122.64 

THREECG 1111 2253 352.60 2845 5718 1140.19 
 

Table 23. Performances of AHYBRIDM, ASCALCG, CG-DESCENT, DESCON and THREECG 

algorithms for solving applications A3 and A4. . CPU seconds.  610g
 A3 A4 
 #iter #fg CPU #iter #fg CPU 

AHYBRIDM 4701 4738 2876.92 1413 1451 2050.96 
ASCALCG 4701 4854 3362.16 1412 1451 2192.64 

CG-DESCENT 4814 9630 3960.59 1802 3605 3796.39 
DESCON 4693 9425 2715.07 1413 2864 2003.78 

THREECG 4478 9045 2641.22 1413 2864 2059.80 
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Table 24. Performances of AHYBRIDM, ASCALCG, CG-DESCENT, DESCON and THREECG 

algorithms for solving application A5. . CPU seconds. 610g
 A5 
 #iter #fg CPU 

AHYBRIDM 1265 1293 600.54 
ASCALCG 1280 1323 729.97 

CG-DESCENT 1225 2451 756.21 
DESCON 1277 2576 568.06 

THREECG 1298 2619 582.29 
 
Subject to the CPU time metric the first, the second and the third places of algorithms in 
Tables 22-24 are shown in bold, italic and underline, respectively. The first place is gained by 
DESCON being the fastest algorithm for applications A1, A2, A4 and A5.  
 
7. Conclusions 
Conjugate gradient algorithms have been subjected to intensive theoretical and computational 
developments for over 60 years. The main ingredients used in these developments include: 
scaled memoryless BFGS preconditioning (Perry [41], Shanno [47], Andrei [9]); restarting 
the iterations (Beale [16], Powell [45], Birgin and Martínez [18]); acceleration of iterations 
(Andrei [6]); hybridization by convex combination of classical conjugate gradients (Andrei 
[8]); guaranteed sufficient descent condition and conjugacy conditions (Hager and Zhang 
[32], Andrei [12]). 

In this paper we have presented a comprehensive numerical study on efficiency and 
robustness of the most well-known eight conjugate gradient algorithms for solving large-scale 
nonlinear unconstrained optimization problems of different complexities and structures of the 
Hessian matrix. Both the artificially test problems and real nonlinear optimization 
applications have been included in this study. While the artificially test problems lead to 
partial conclusions, the real nonlinear optimization applications give more true insights on 
performances of optimization algorithms.  

Detailed and meticulous numerical evaluation based on the performance profiles was 
applied to the comparisons of the algorithms showing that all of them are able to solve a large 
variety of large-scale unconstrained optimization problems. In our analysis all the problems 
for which two different algorithms found different function values are removed. We have the 

computational evidence that the threshold parameter deciding that an algorithm found a 
solution or not does not have a great influence of the performance profiles of efficiency or 
robustness.  

f

At least for this collection of  800 artificially unconstrained optimization test 
problems the CPU time performance profile for DESCON was higher than those of HS, PRP, 
ASCALCG, CONMIN, AHYBRIDM, CG-DESCENT and THREECG. The second best 
performance in the time metric was achieved by THREECG. It seems that the conjugate 
gradient algorithms satisfying both the sufficient descent condition and the conjugacy 
condition are the best. Apparently, introducing of the second order information in conjugate 
gradient algorithms like CONMIN, ASCALCG and AHYBRIDM does not have too much 
significance in efficiency or robustness of these algorithms. Additionally, hybridization by 
convex combination of classical conjugate gradient algorithms does not lead us to more 
efficient or more robust algorithms. Concerning the efficiency, due to its highly accurate 
procedure for step length computation, CG-DESCENT is the best conjugate gradient 
algorithm, especially for solving large-scale unconstrained optimization problems with 
structured Hessian matrix. The second place is taken by DESCON. For solving problems for 
which the Hessian matrix is full (unstructured), DESCON remains to be the best both subject 
to efficiency and robustness. Concerning the robustness DESCON is by far the most robust, 
followed by THREECG and followed by ASCALCG. For solving large-scale real nonlinear 
unconstrained optimization applications, DESCON is the fastest conjugate gradient algorithm. 
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All in all we can conclude that conjugate gradient algorithms represent one of the 
most important mathematical optimization technologies able to solve both structured and 
unstructured large-scale unconstrained optimization problems and applications.  
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