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Abstract. In this work we present the definition and the most important concepts and
properties of convex functions. Convex functions play an important role in the study of
optimization. These functions have many and important properties which can be used in
developing suitable optimality conditions and computational schemes for optimization
problems. One of the most important properties is that any local minimum of a convex
function over a convex set is also a global minimum.

The subjects covered in this study include: definition and properties of convex functions,
operations with convex functions, and first order and second order characterization of
convexity. Finally, we present some important examples of convex functions.

1. Definition and properties of convex functions

Definition 1. Let S < R" be a nonempty convex set. Function f : S — R is said to be convex
on S ifforany X,,X, €S andall 0 <« <1, we have

f(ax, +(1-a)X,) <af (X)+ 1 —a)f(X,).
If

f(ax, +(1-a)X,) <af (x))+(1-a)f(x,),
for all x, # X,, then f is called a strictly convex function on S . If there is a constant ¢ >0
such that for any X, X, € S

2
H

flax +(1-a)x,)<af (x)+1A-a)f(x,) —%Ca(l —a)|x =X,

then f is called a uniformly convex (or strongly convex) function on S .

The geometrical interpretation of convexity is very simple. For a convex function the
function values are below the corresponding chord, that is, the values of convex function at

points on the line segment aX, +(1—a)X, are less than or equal to the height of the chord
joining the points (X;, f (X,)) and (X,, f(X,)).

A function is convex if and only if it is convex when restricted to any line that intersects
its domain. Rephrased, f is convex if and only if for all X€ S and for all Vv, the function
h(t) = f (X +1v) is convex on {t ‘X+tveS } This property is very useful in testing whether a
function is convex by restricting it to a line.

If fis a convex (strictly convex) function, then — f is said to be a concave (strictly
concave) function.
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It is important to extend a convex function to all R" by defining its value to be oo
outside its domain. If f is a convex function, then we define its extended-valued extension

?:R"—)Ru{oo}by

In the following we assume that all convex functions are implicitly extended. This allow us to
express convexity as: for 0 < <1,

flax, +(1—a)x,) <df (x)+(1-a)F(x,)
for any X, and X,.
Any convex function can be described by an epigraph. Let S < R" be a nonempty set.
The set {(X, f(x)):xe S}C R™" is said to be the graph of the function f. The graph of any

function f defines two sets in R""' : the epigraph, which consists of points above the graph of
f and the hypograph, which consists of points below the graph of f.

Definition 2. Let S < R" be a nonempty set, and f :S < R" — R. The epigraph of f isa
subset of R"*' defined by

epif = {(X,a): f(X)<a,xeS,ae R}.
The hypograph of f is a subset of R"*' defined by

hypf = {(X,a): f(X)2a,xeS,ae R}.

Now we show that f is convex if and only if its epigraph is a convex set.

Theorem 1. Let S = R" be a nonempty convex set, and f :S < R" — R. Then f is convex if
and only if epif isa convex set.

Proof. Assume that f is convex. Let X;,X, €S and (X,,,), (X,,&,) be in epif. Then, for
any € €(0,1) we have
f(X+A-)%)<&(X)+(1-0)f(X,)<b0a +(1-0)a,.

Since S is a convex set, &X, + (1 —8)X, € S. Therefore,

(& +(1-0)x,,0a, +(1-60)a,) € epif,
i.e. epif is convex.
To show sufficiency, assume that epif is convex, and consider X,,X, €S and (X, f (X)),
(X,, T(X,)) € epif. From convexity of epif , for & € (0,1) we have that

(& +(1-0)x,, & (x)+(1-0)f(x,)) €epif.

Therefore,

f (@(1 + (1 - 49)X2) <d (Xl) + (1 - 9) f (X2)9

for each € € (0,1),1.e. T isconvex. ¢

The epigraph of a function f is in close connection with the lower semi-continuity of
f . Both these concepts epif and lower semi-continuity are key concepts in mathematical
programming.
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Definition 3. A function f is lower semi-continuous if, for each X,y € R",
liminf f(y)> f(x).
y—>X
Theorem 2. Let f :R" > RuU {oo}. The following statements are equivalent:
1) f is lower semi-continuous on R";
2) epif isaclosedsetin R" x R;
3) thelevel sets L,(f)= {X eR": f(x)<t,te R} are closed for all t € R.

Proof. (1) = (2): Let (Y,,t,)<epif a sequence converging to (X,t) for kK — oo. Since
f(y,) <t forall k, it follows that t = ilim t, > liminf f(y,)> f(x),ie. (X,t)€epif.
—o Yk =X

(2) = (3): The level set L,(f) is the intersection of two closed sets: epif and (R" x {t})

Obviously the intersection is closed.
(3) = (1): Now suppose that f is not lower semi-continuous at some X, which means there

exists a sequence {yk} converging to X such that f(y,) converges to I < f(X)< 4.
Consider t € (r, f(X)). When K is large enough, we have f(y,)<t< f(X),ie. L(f) does

not contain its limit X. Therefore, L, () is not closed. ¢
With this the following definition of closed function can be presented.

Definition 4. A function f:R" > RuU {oo}is said to be closed if it is lower semi-continuous
everywhere, or its epigraph is closed, or if its level sers are closed.

Now, we will introduce the concept of monotone function, which is very useful for
characterization of a convex function with monotonicity.

Definition 5. Let F:S < R" — R" and S, = S. Then
1) F ismonotone on S if forany X,y €S,

(Foo-F) (x-y)20.
2) F isstrictly monotone on S if forany X,y eS,, x#Y,

(FOO—Fy) (x=y)>0.
3) F is uniformly monotone (or strongly monotone) on S if for any X,y e S, there is a
constant ¢ > 0 so that

(FOO-F) (x=y) = cfx-y["

The following theorem presents a result concerning the level set L, of a convex function. It is

shown that for any « real, L, is a convex set.

Theorem 3. Let S = R" be a nonempty convex set, f:S — R a convex function and a a
real number. Then the level set L, = {x: f (X) < @} is a convex set.
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Proof. Let us consider two points X,,X, €L,. Then X,X,€Sand f(X)<ea, f(X,)<a.
Consider the point X = AX, + (1—A)X,, where A € (0,1). From convexity of S it follows that

X e S. Since f isconvex we have
FO) <A (%) + (=) F (%)< Aa+(1-Da =a.

Therefore, Xe L, i.e. L, is a convex set. ¢

2. Operations with convex functions

We describe some operations that preserve convexity or concavity of functions or give us the
possibility to construct new convex and concave functions. Firstly we consider the simple
operations such as scaling, addition and pointwise suppremum, and then consider the continuity.

Theorem 4. a) Let f be a convex function on a convex set S < R" and « > 0 a real number,
then of is a convex functionon S .

b) Let f, and f, be convex functions on a convex set S, then f, + f, is a convex function on

S.
c) Let f, (i=1,...,m) be convex functions on a convex set S and real nonnegative numbers

a, 20, (i=1,...,m), then Zim:lai f, isaconvex functionon S.

Proof. We proof only b). Indeed, let X,X, €S and 0 < <1, then
fi(ax, + (1= a)%,) + Fy(ax + (1= a)x,) <alf,(x) + )]+ (- a)[ i) + F,(x,)] #

Theorem 5. Let f,, (i=1,...,m) be convex functions on a convex set S, then their pointwise
maximum f(X) = max{fl(x),. . fm(x)} is also a convex function.

Proof. For simplicity, let us consider m=2.If 0 < <1, then
f(ax, + (1—a)x,) = max{f,(ax, + (1 —a)x,), f,(ax, + (1 —a)X,)}
< max{o(fl(xl) + (1 B 0() fl(xz)aafz(xl) + (1 - a) fz(Xz)}
< amax{f,(x), f,(x)}+ (1—a)max{f (x,), f,(x,)}
=af (x)+(1-a)f(x,),

which prove the convexity of f. ¢

The continuity of a convex function is an important concept. If a convex function whose
domain of definition is not open is continuous is not sure. We know that a convex function is
continuous on the relative interior of its domain; it can have discontinuities only on its relative
boundary. The following theorem shows the main results on continuity of convex functions.

Theorem 6. Let S = D < R"be an open convex set and f : D — R be convex. Then f is
continuous on S.

Proof. Let us consider an arbitrary point X, € S. Since S is an open convex set, we can find

n+1 points X,...,X,,; €S such that the interior of the convex hull

©0 Mng
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C :{x:x:niaixi,ai zo,niai :1}
i=1 i=1

is not empty and X, € intC. Now, let @ = max f(X;). Then, forany xeC,

1<i<n+l1

n+1 n+1
f(x)= f[ZaixiJSZaif(xi)sa.
i1 i1
Therefore f is bounded over C.
On the other hand, since X, €intC, there is a >0 such that B(X,,0) cC, where
B(X,,0) = {X:||X—XO||S5}. Hence for arbitrary h e B(0,0) and A €[0,1], we have the
following representation of X; :

1 A
X, = ——(X, + Ah) + ——(x, — h).
0 1M(o ) 1M(o )

Since f is convex on C, it follows that
1 A
f (X)) <——f(x,+Ah)+——1F(x, —h).
Og) <= T + AN +— (% =)
Therefore,
f (%, +Ah) = F (%)= A(F(x)— F (X, —N))>-A@- F(x,)).
On the other hand,
f(x, +Ah) = f(A(X, +h) + (1= A)X,) < Af (X, +h)+ (1= 2) f(X,),
ie.
f (%, +Ah) = F(x,) < A(f(x, +h)— F(x))< A@— T(x,)).
Therefore, from the above inequalities we get
(%, + Ah) = f(x,)| < A|f (%)) —a].
Now, for given & >0, select 6'< S such that 5’|f(x0)—a| <gb. Consider d =4h with
||h|| =0, then d € B(0,0) and |f(X0 +d)-— f(XO)| < &, which prove the theorem. ¢

3. First order condition

The following theorem gives the first order condition of differential convex functions.

Theorem 7. Let S < R"be a nonempty open convex set and f :S — R be a differentiable

function. Then:
1) f is convex if and only if, for any X,y € S :

f(y)=>f(x)+VEX)' (y-X). (1.1)
2) f isstrictly convex on S if and only if, for any X,y € S, with y # X:
f(y)> f(X)+VE(X) (y-Xx). (1.2)

3) f is strongly convex (or uniformly convex) on S if and only if, for any X,y € S :

f(y)= f(x)+Vf(x)T(y—x)+%c||y—x

where ¢ > 0 is a constant.

2
s

(1.3)

Proof. Necessity: Consider f(X) a convex function, then for all 0 < & <1 we have
flay+(1-a)X)<af (Y)+(1-a)f(X).
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Therefore,
f(X+a(y—x))— f(x)
a

< f(y) - f(x).
Now, setting @ — 0 yields
VE) (Y =x) < f(y) - F(0).

Sufficiency: Assume that (1.1) holds. Select two arbitrary points X, X, € S and consider their
convex combination X = aX, +(1—a)X,, where 0 <« <1. Then,

F )= F()+ V)T (% —x),

f(x,)> f(x)+VF(X)' (X, —X).
Therefore

of (x)+(1-a)f(x,)> f(X)+VE(X) (ax +(1-a)X, —X)
= f(ax, —(1-a)X,),
i.e. f(X) isa convex function.
In a similar manner we can prove (1.2) and (1.3). For example, to get (1.3), it is enough

to apply (1.1) to the function f — 1/2(C||.||2). .

The geometrical interpretation of theorem 4 is that in any point the linear approximation based
on a local derivative is a lower estimate of the function, i.e. the convex function always lies
above its tangent at any point. Such a tangent is called a supporting hyperplane of the convex
function.

Theorem 8. Assume that f : S = R" — R is differentiable on the convex set S. Then
1) f isconvexon S if and only if is its gradient Vf is monotone, i.e.

(VE 0= VE(y)) (x=y) 20, (1.4)
forany X,y €S.
2) f isstrictly convex on S if and only if is its gradient Vf is strictly monotone, i.e.

(VE0) - VEW)) (x=y) >0, (1.5)
forany X,y eS, x=#Y.
3) f is uniformly convex (or strongly convex) on S if and only if is its gradient Vf is
uniformly monotone, i.e.

2
(VE0=VEW) (x=y) 2 cx— [,
forany X,y € S, and where ¢ > 0 is the constant from definition 5.

(1.6)

Proof. Necessity. Assume that f is uniformly convex on S, then from theorem 4, for any
X,y € S, we have

2

f(y)> f(x)+Vf(x)T(y—x)+%c||y—x , (1.7)

f(x)> f(y)+Vf(y)T(x—y)+%c||x—y||2. (1.8)
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Adding these two inequalities we get (1.6). It is very simple to see that if f is convex, then
(1.7) and (1.8) hold with ¢ =0. Therefore (1.4) holds. If f is strictly convex, then (1.7) and
91.8) hold with ¢ = 0, but with strict inequality for any X # Y. Hence, we get (1.5).

Sufficiency. Suppose now that Vf is monotone. For any fixed X,y € S, by the mean value
thorem we have

f(y)-f00=Vf(@2) (y-x), (1.9)
where Z = X+t(y—X), te(0,1). From (1.4) it follows that

(VE(2)-VI(X) (y-x) = %[Vf (2)-ViEO[ (z-x) >0,

which together with (1.9) gives
F(y) - 10 =(VI@ - VE0) (y =0+ VI (y - %)
> VE(X)' (Y- X). (1.10)
This inequality, by theorem 4, shows that f is convex.
Now, if (1.5) holds, than (1.10) is true with strict inequality and X # Y. Therefore, it
follows that f is strictly convex.
Finally, suppose that (1.6) is true and consider the function
h(t) = f(x+t(y-x)) = f(u),
where U=X+1t(y—X),te(0,]). But, h'(t)=VFf@u) (y—x) and h'(0)=VF(x)' (y-X).
Then (1.6) means

W) ~'(0) = (VW -V () (y=x) =1 (VW -V () (u-x)
> 2ofu—xf =ty

Therefore,

2
s

h(1) - h(0) = h'(0) = j [h'(t) — h'(0)]dt %c”y —X
which shows that

f(y)= () +VEX) (y-X) +%c||y ~x.

4. Second order condition

For the twice continuously differentiable convex functions the following characterization can be
given.

Theorem 9. Let S<R"be a nonempty open convex set and f:S—>R be a twice

continuously differentiable function. Then
1) f is convex if and only if its Hessian matrix is positive semidefinite at each point in S.

2) T isstrictly convex if its Hessian matrix is positive definite at each point in S.
3) f is uniformly convex if and only if its Hessian matrix is uniformly positive definite at each
pointin S.

Proof. We will prove only 1), the other cases are proved in a similar manner.
Necessity. Suppose that f is a convex function, and consider a point Y € S. We must prove

that forany peR", p'V>f(y)p > 0. But, by theorem 4 we have
p p
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f(y+ap)= f(y)+AVE(y) p.

Since f(X) is twice continuously differentiable at Y, it follows that

(y+Ap) = F(y) + AVE ()T p+ 275 £ (y)p+ol o]
Now, introducing (1.4) in (1.3) we get
20Vt e+l )0
Dividing by A* and letting A — 0, it follows that
p'ViE(y)p=0.

Sufficiency. Suppose that the Hessian matrix V>f(X) is positive semidefinite at each point
X € S. Consider the points X,y € S. Using the mean value theorem, we can write

f()=f(y+VEy)' (x-y) +%(X— y)'VE(@)(x-Y),

where Z is a point on the segment line connecting X and Y, i.e. Z=Yy+68(X-Y), 8 € (0,1).

Since S is convex, Z € S. From the assumption it follows that

F(x)2 f(y)+ Vi) (x-y),

i.e. the function f is a convex function by theorem 4. ¢
Now, combining this theorem with theorem 5 we obtain the following result

Theorem 10. Let S = R" be a nonempty open set and f :S — R be a twice continuously
differentiable function on S. Then
1) Vf(x) is monotone on S if and only if V> f(X) is positive semidefinite for all x € S.

2) If V> f(x) is positive definite for all X € S, then Vf (X) is strictly monotone on S.
3) Vf(X) is uniformly monotone (or strongly monotone) on S if and only if V>f(X) is
uniformly positive definite, i.e. there exists a number ¢ > 0 so that forany xe Sand peR",

p'ViE(x)p=c| p||2 e

In theorem 3 we proved that the level sets of a convex function are convex sets. From
theorem 2 it follows that if f is a continuously convex function, then the level set L is a

closed convex set. Furthermore, we can prove the following theorem

Theorem 11. Let S < R" be a nonempty convex set, and f(x):ScR" — R be a twice
continuously differential function on S. Suppose that there exists a positive number m > 0 such
that for any x € L(X,) and u e R"

u'vf(x)u > m||u||2. (1.11)
Then the level set L(x,)={xS: f(x) < f(x,)} is a bounded closed convex set.

Proof. By theorem x we know that f is convex on L(X,). Therefore, by theorem 3 it follows
that L(X,) is convex. Observe that if f(X) is continuous, then L(X,) is a closed convex set
for all X, € R". Now, let us prove the boundedness of L(X,). Consider two arbitrary points

X,Y € L(X,). Since L(X,) is convex, from (1.11) we have
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mlly - x||2 <(y=X)" V2 (x+a(y - X))y - X).
By differentiability we have
f(y)=f(x)+VE)'(y-x)
+ J:J.(:(y —X)' V(X + a(y - X))y — X)dadt

2
s

> f(X)+ Vf (x)T(y—x)+%m||y—x

where M is independent of X and Y. Therefore, for arbitrary y € L(X,) and Yy # X, we have

)= £0)2 VEO4)T (= x)+ -y =,

1
> AVE Oy =]+ 5 mly =

Since f(y) < f(X,), from the above inequality we get

2
Iy-xl 2 vrce)

which prove that the level set L(X,) is bounded. ¢

2

5. Examples of convex functions

Convexity or concavity of a function can be verified using different techniques, such as
directly by means of definition 1, verifying that its Hessian is positive semidefinite, or
restricting the function to an arbitrary line and then verifying convexity of the resulting
function of one variable. In the follows we present some example of convex or concave
functions.

Indicator function. Let S < R" be a nonempty set. The indicator function lg : R" — R U {0}

is defined as
0 if x €8,
Is (X) =

+o00 otherwise.

Clearly, | is convex if and only if S is convex.

Support function of a set. Let S = R" be a nonempty set. The support function of S is defined
as

os(s) = sup{STX X e S},

which is a convex function.

Linear functions. Any linear function f(X)=a'X+b is both convex and concave function on
R", where a,xe R" and b e R.

Quadratic functions. Consider the quadratic function f : R" — R, given by
f(xX)=x"Qx+29"x+ p,

where P € R™ is a symmetric matrix, € R" and p e R. Since V> f(X)=2P forall X,

f is convex if and only if P is positive semidefinite (P >0). f is concave if and only if P
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is negative semidefinite (P <0). For quadratic functions, strict convexity is easily
characterized as: f is strictly convex if and only if P is positive definite (P >0). f is
strictly concave if and only if P is negative definite (P < 0).

Least-squares functions. Function f(x)=||Ax—b||§ is convex for any A. Indeed, we have
VI (X)=2AT(Ax—b) and V>f(x)=2ATA

Quadratic over linear. Function f(X)=X>/Y is convex for Y >0. We have
sz(x,y)=i{ y’ _éy}:%{ y H y T > 0.
v l-xy x| yl-x][-x
Exponential. Function €™ is convex on R, for any a € R.
Power. Function X* is convex on R,, when @ > 1 or a <0, and concave for 0 <a <1.

Logarithm. Function log X is concave on R .

Negative entropy Xlogx. If f(x)=Xxlogx, defined on R, , then f'(X)=logx+1,
f"(xX)=1/x, and f"(X)>0for x> 0. Therefore, the negative entropy is a strictly convex
function for all X > 0.

++ 0

Norms. Every norm on R" is a convex function. If f : R" — R isanormand 0 < & <1, then
flax, +(1-a)x,) < f(ax)+ F(1-a)x,) =af (X,)+(1—a)f(X,), since by definition a
norm is a homogeneous function and satisfies the triangle inequality.

1/n
. . _ 4 . . n
Geometric mean. The geometric mean f(X)= l_IXi is a concave function on R/,.
i1

Indeed, its Hessian V> f (X) is given by

o’ f(x) (n—1) (I_IL Xi)/n 0 f(X) _ (Hin=l Xi)/n

=— , !
0%, 0X; N"X, X,

OX; n°x;
2 (Hin—1 Xi)/n i 1 1 T

1 n

(k= ),

and

where p=[1/x,,....1/x,]'. Observe that, for all v

VIV (X)V = —M(nzrlvf/xf - (Z” v, /X )2) <0,

i= 10

which follows from the Cauchy-Schwarz inequality.

Log-Sum-Exp. Function f(X):logZin:leXp(Xi) is convex. The Hessian of log-sum-exp

function is
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1 T ; T
A ((e z)diag(z) —zz )

where € =[1,...,1] and z =[exp(X,),...,exp(X,)]. To verify that V>f(X)>0 we must show
that V' V> f (X)v>0 forall v. But

by Cauchy-Schwarz inequality.

V(X)) =
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