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Abstract. In this work we present the definition and the most important concepts and 
properties of convex functions. Convex functions play an important role in the study of 
optimization. These functions have many and important properties which can be used in 
developing suitable optimality conditions and computational schemes for optimization 
problems. One of the most important properties is that any local minimum of a convex 
function over a convex set is also a global minimum. 
The subjects covered in this study include: definition and properties of convex functions, 
operations with convex functions, and first order and second order characterization of 
convexity. Finally, we present some important examples of convex functions. 

 
 
1. Definition and properties of convex functions 
 
Definition 1. Let  be a nonempty convex set. Function  is said to be convex  nRS ⊂ RSf →:
on  if for any  and all S Sxx ∈21 , 10 ≤≤ α , we have 

).()1()())1(( 2121 xfxfxxf αααα −+≤−+  
If  

)()1()())1(( 2121 xfxfxxf αααα −+<−+ , 
for all , then  is called a strictly convex function on . If there is a constant  
such that for any  

21 xx ≠ f S 0>c
Sxx ∈21 ,

,)1(
2
1)()1()())1(( 2

212121 xxcxfxfxxf −−−−+≤−+ αααααα  

then  is called a uniformly convex (or strongly convex) function on . f S
 

The geometrical interpretation of convexity is very simple. For a convex function the 
function values are below the corresponding chord, that is, the values of convex function at 
points on the line segment 21 )1( xx αα −+  are less than or equal to the height of the chord 
joining the points  and   ))(,( 11 xfx )).(,( 22 xfx

A function is convex if and only if it is convex when restricted to any line that intersects 
its domain. Rephrased,  is convex if and only if for all f Sx∈  and for all v , the function 

 is convex on {)()( tvxfth += }.: Stvxt ∈+  This property is very useful in testing whether a 
function is convex by restricting it to a line. 

If is a convex (strictly convex) function, then f f−  is said to be a concave (strictly 
concave) function.  
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It is important to extend a convex function to all nR  by defining its value to be ∞  
outside its domain. If  is a convex function, then we define its extended-valued extension f

RRf n →:~ { }∞∪  by 

⎩
⎨
⎧

∉∞+
∈

=
.
,)(

)(~
Sx
Sxxf

xf  

In the following we assume that all convex functions are implicitly extended. This allow us to 
express convexity as: for 10 <<α , 

)(~)1()(~))1((~
2121 xfxfxxf αααα −+≤−+  

for any  and  1x .2x
Any convex function can be described by an epigraph. Let  be a nonempty set. 

The set {  is said to be the graph of the function  The graph of any 
function  defines two sets in  the epigraph, which consists of points above the graph of 

 and the hypograph, which consists of points below the graph of  

nRS ⊂
} 1:))(,( +⊂∈ nRSxxfx .f

f :1+nR
f .f

 
Definition 2. Let  be a nonempty set, and  The epigraph of  is a 
subset of 

nRS ⊂ .: RRSf n →⊂ f
1+nR defined by 

{ }.,,)(:),( RSxxfxepif ∈∈≤= ααα  
The hypograph of  is a subset of f 1+nR defined by  

{ }.,,)(:),( RSxxfxhypf ∈∈≥= ααα  
Now we show that  is convex if and only if its epigraph is a convex set. f
 
Theorem 1. Let  be a nonempty convex set, and  Then  is convex if 
and only if  is a convex set. 

nRS ⊂ .: RRSf n →⊂ f
epif

 
Proof. Assume that  is convex. Let f Sxx ∈21,  and ),,( 11 αx  ),( 22 αx  be in  Then, for 
any 

.epif
)1,0(∈θ  we have 

.)1()()1()())1(( 212121 αθθαθθθθ −+≤−+≤−+ xfxfxxf  
Since  is a convex set, S .)1( 21 Sxx ∈−+ θθ  Therefore,  

,))1(,)1(( 2121 epifxx ∈−+−+ αθθαθθ  
i.e. epif  is convex. 
To show sufficiency, assume that epif  is convex, and consider Sxx ∈21,  and  

 From convexity of , for 
)),(,( 11 xfx

.))(,( 22 epifxfx ∈ epif )1,0(∈θ  we have that 
.))()1()(,)1(( 2121 epifxfxfxx ∈−+−+ θθθθ  

Therefore, 
),()1()())1(( 2121 xfxfxxf θθθθ −+≤−+  

for each )1,0(∈θ , i.e.  is convex. ♦ f
 

The epigraph of a function  is in close connection with the lower semi-continuity of 
. Both these concepts  and lower semi-continuity are key concepts in mathematical 

programming.  

f
f epif

 
 



Definition 3. A function  is lower semi-continuous if, for each , f nRyx ∈,
).()(inflim xfyf

xy
≥

→
 

 
Theorem 2. Let  The following statements are equivalent: { }.: ∞∪→ RRf n

1)  is lower semi-continuous on  f ;nR
2)   is a closed set in  epif ;RRn ×
3) the level sets { }RttxfRxfL n

t ∈≤∈= ,)(:)(   are closed for all .Rt∈  
 
Proof. (1) ⇒ (2): Let  a sequence converging to  for  Since 

 for all  it follows that 
epifty kk ∈),( ),( tx .∞→k

kk tyf ≤)( ,k ),()(inflimlim xfyftt kxykk k

≥≥=
→∞→

i.e.  .),( epiftx ∈

(2) ⇒ (3): The level set  is the intersection of two closed sets: and  
Obviously the intersection is closed. 

)( fLt epif { }).( tRn ×

(3) ⇒ (1): Now suppose that  is not lower semi-continuous at some f ,x which means there 
exists a sequence {  converging to }ky x  such that  converges to  
Consider  When  is large enough, we have 

)( kyf .)( +∞≤< xfr
)).(,( xfrt∈ k )()( xftyf k <≤ , i.e.  does 

not contain its limit 
)( fLt

.x  Therefore,  is not closed. ♦ )( fLt

 
With this the following definition of closed function can be presented. 
 
Definition 4. A function { }∞∪→ RRf n: is said to be closed if it is lower semi-continuous 
everywhere, or its epigraph is closed, or if its level sers are closed. 
 

Now, we will introduce the concept of monotone function, which is very useful for 
characterization of a convex function with monotonicity. 
 
Definition 5. Let  and  Then nn RRSF →⊂: .0 SS ⊂
1)  is monotone on  if for any F S ,, 0Syx ∈  

( ) .0)()()( ≥−− yxyFxF T  
2)  is strictly monotone on S  if for any F ,, 0Syx ∈ ,yx ≠  

( ) .0)()()( >−− yxyFxF T  
3)  is uniformly monotone (or strongly monotone) on  if for any there is a 
constant  so that 

F S ,, 0Syx ∈
0>c

( ) .)()()( 2yxcyxyFxF T −≥−−  

 
The following theorem presents a result concerning the level set  of a convex function. It is 
shown that for any 

αL
α  real,  is a convex set. αL

 
Theorem 3. Let  be a nonempty convex set,  a convex function and nRS ⊂ RSf →: α  a 
real number. Then the level set { }αα ≤= )(: xfxL  is a convex set. 
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Proof. Let us consider two points αLxx ∈21, . Then Sxx ∈21, and ,)( 1 α≤xf .)( 2 α≤xf  
Consider the point ,)1( 21 xxx λλ −+= where ).1,0(∈λ  From convexity of it follows that 

 Since  is convex we have 
S

.Sx∈ f
.)1()()1()()( 21 ααλλαλλ =−+≤−+≤ xfxfxf  

Therefore, , i.e.  is a convex set. ♦ αLx∈ αL
 
 
2. Operations with convex functions 
 
We describe some operations that preserve convexity or concavity of functions or give us the 
possibility to construct new convex and concave functions. Firstly we consider the simple 
operations such as scaling, addition and pointwise suppremum, and then consider the continuity. 
 
Theorem 4. a) Let  be a convex function on a convex set  and f nRS ⊂ 0≥α a real number, 
then fα is a convex function on . S
b) Let  and  be convex functions on a convex set , then 1f 2f S 21 ff +  is a convex function on 

. S
c) Let  be convex functions on a convex set  and real nonnegative numbers ,if ),,1( mi …= S

,0≥iα ),,1( mi …= , then ∑  is a convex function on . 
=

m

i ii f
1
α S

 
Proof. We proof only b). Indeed, let Sxx ∈21, and ,10 <<α  then 

))1(())1(( 212211 xxfxxf αααα −++−+ [ ] [ ].)()()1()()( 22211211 xfxfxfxf +−++≤ αα  ♦ 
 

Theorem 5. Let  be convex functions on a convex set , then their pointwise 
maximum  is also a convex function. 

,if ),,1( mi …= S
{ )(,),(max)( 1 xfxfxf m…= }

 
Proof. For simplicity, let us consider 2=m . If 10 ≤≤α , then 

{ }))1((),)1((max))1(( 21221121 xxfxxfxxf αααααα −+−+=−+  
                                                 { })()1()(),()1()(max 22122111 xfxfxfxf αααα −+−+≤  
                                                 { } { })(),(max)1()(),(max 22211211 xfxfxfxf αα −+≤  
                                                 ),()1()( 21 xfxf αα −+=  
which prove the convexity of  ♦ .f
 

The continuity of a convex function is an important concept. If a convex function whose 
domain of definition is not open is continuous is not sure. We know that a convex function is 
continuous on the relative interior of its domain; it can have discontinuities only on its relative 
boundary.  The following theorem shows the main results on continuity of convex functions. 
 
Theorem 6. Let be an open convex set and  be convex. Then  is 
continuous on  

nRDS ⊂⊂ RDf →: f
.S

 
Proof. Let us consider an arbitrary point .0 Sx ∈  Since  is an open convex set, we can find 

 points  such that the interior of the convex hull 
S

1+n Sxx n ∈+11 ,,…



                                               
⎭
⎬
⎫

⎩
⎨
⎧

=≥== ∑∑
+

=

+

=

1

1

1

1

1,0,:
n

i
ii

n

i
ii aaxaxxC

is not empty and  Now, let .int0 Cx ∈ )(max
11 ini

xfa
+≤≤

= . Then, for any Cx∈ , 

                                                ∑∑
+

=

+

=

≤≤⎟
⎠

⎞
⎜
⎝

⎛
=

1

1

1

1

.)()(
n

i
ii

n

i
ii axfaxafxf

Therefore  is bounded over  f .C
On the other hand, since  there is a ,int0 Cx ∈ 0>δ  such that ,),( 0 CxB ⊂δ  where 

{ .:),( 00 δδ ≤−= xxxxB }  Hence for arbitrary ),0( δBh∈  and ],1,0[∈λ  we have the 

following representation of  :0x

                                               ).(
1

)(
1

1
000 hxhxx −

+
++

+
=

λ
λλ

λ
 

Since  is convex on  it follows that f ,C

                                       ).(
1

)(
1

1)( 000 hxfhxfxf −
+

++
+

≤
λ

λλ
λ

 

Therefore, 
                      ( ) )).(()()()()( 00000 xfahxfxfxfhxf −−≥−−≥−+ λλλ  
On the other hand, 
               ),()1()())1()(()( 00000 xfhxfxhxfhxf λλλλλ −++≤−++=+  
i.e. 
                     ( ) )).(()()()()( 00000 xfaxfhxfxfhxf −≤−+≤−+ λλλ  
Therefore, from the above inequalities we get 
                                           .)()()( 000 axfxfhxf −≤−+ λλ  

Now, for given 0>ε , select δδ ≤′  such that .)( 0 εδδ ≤−′ axf  Consider hd λ=  with 

,δ=h  then ),0( δBd ∈  and ,)()( 00 ε≤−+ xfdxf  which prove the theorem. ♦ 
 
 
3. First order condition 
 
The following theorem gives the first order condition of differential convex functions. 
 
Theorem 7. Let be a nonempty open convex set and  be a differentiable 
function. Then:  

nRS ⊂ RSf →:

1)  is convex if and only if, for any f :, Syx ∈  
                                                                                             (1.1) ).()()()( xyxfxfyf T −∇+≥
2)  is strictly convex on  if and only if, for any f S Syx ∈, , with xy ≠ : 
                                                                                             (1.2) ).()()()( xyxfxfyf T −∇+>
3)  is strongly convex (or uniformly convex) on  if and only if, for any : f S Syx ∈,

                                     ,
2
1)()()()( 2xycxyxfxfyf T −+−∇+≥                                   (1.3) 

 where  is a constant. 0>c
 
Proof. Necessity: Consider  a convex function, then for all )(xf 10 <<α  we have 

).()1()())1(( xfyfxyf αααα −+≤−+  
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Therefore, 

).()()())(( xfyfxfxyxf
−≤

−−+
α

α
 

Now, setting 0→α yields 
).()()()( xfyfxyxf T −≤−∇  

 
Sufficiency: Assume that (1.1) holds. Select two arbitrary points Sxx ∈21, and consider their 
convex combination ,)1( 21 xxx αα −+=  where .10 <<α  Then, 

),()()()( 11 xxxfxfxf T −∇+≥  
).()()()( 22 xxxfxfxf T −∇+≥  

Therefore 
))1(()()()()1()( 2121 xxxxfxfxfxf T −−+∇+≥−+ αααα  

                                                                ),)1(( 21 xxf αα −−=  
i.e.  is a convex function. )(xf
 In a similar manner we can prove (1.2) and (1.3). For example, to get (1.3), it is enough 
to apply (1.1) to the function )..(2/1 2cf −  ♦ 
 
The geometrical interpretation of theorem 4 is that in any point the linear approximation based 
on a local derivative is a lower estimate of the function, i.e. the convex function always lies 
above its tangent at any point. Such a tangent is called a supporting hyperplane of the convex 
function. 
 
Theorem 8. Assume that  is differentiable on the convex set  Then RRSf n →⊂: .S
1)  is convex on  if and only if is its gradient f S f∇  is monotone, i.e. 

                                                   (                                          (1.4) ) ,0)()()( ≥−∇−∇ yxyfxf T

for any  ., Syx ∈
2)  is strictly convex on  if and only if is its gradient f S f∇  is strictly monotone, i.e. 

                                                   (                                           (1.5) ) ,0)()()( >−∇−∇ yxyfxf T

for any  ,, Syx ∈ .yx ≠  
3)  is uniformly convex (or strongly convex) on  if and only if is its gradient  is 
uniformly monotone, i.e. 

f S f∇

 
                                                ( ) ,)()()( 2yxcyxyfxf T −≥−∇−∇                                   (1.6) 

for any  and where  is the constant from definition 5. ,, Syx ∈ 0>c
 
Proof. Necessity. Assume that  is uniformly convex on , then from theorem 4, for any 

we have 
f S

,, Syx ∈

                                       
2

2
1)()()()( xycxyxfxfyf T −+−∇+≥ ,                               (1.7) 

                                       .
2
1)()()()( 2yxcyxyfyfxf T −+−∇+≥                                (1.8) 



Adding these two inequalities we get (1.6). It is very simple to see that if  is convex, then 
(1.7) and (1.8) hold with  Therefore (1.4) holds. If  is strictly convex, then (1.7) and 
91.8) hold with , but with strict inequality for any 

f
.0=c f

0=c .yx ≠  Hence, we get (1.5). 
Sufficiency. Suppose now that  is monotone. For any fixed f∇ ,, Syx ∈ by the mean value 
thorem we have 
                                                                                             (1.9) ),()()()( xyzfxfyf T −∇=−
where   From (1.4) it follows that ),( xytxz −+= ).1,0(∈t

( ) [ ] ,0)()()(1)()()( ≥−∇−∇=−∇−∇ xzxfzf
t

xyxfzf TT  

which together with (1.9) gives 
( ) )()()()()()()( xyxfxyxfzfxfyf TT −∇+−∇−∇=−  

                                                                                                                 (1.10) ).()( xyxf T −∇≥
This inequality, by theorem 4, shows that  is convex. f

Now, if (1.5) holds, than (1.10) is true with strict inequality and .yx ≠  Therefore, it 
follows that  is strictly convex. f

Finally, suppose that (1.6) is true and consider the function 
),())(()( ufxytxfth =−+=  

where  But,  and  
Then (1.6) means 

),( xytxu −+= ).1,0(∈t )()()( xyufth T −∇=′ ).()()0( xyxfh T −∇=′

( ) ( ) )()()(1)()()()0()( xuxfuf
t

xyxfufhth TT −∇−∇=−∇−∇=′−′  

                                        .1 22 xytcxuc
t

−=−≥  

Therefore,  

[ ] ,
2
1)0()()0()0()1( 2

1

0

xycdththhhh −≥′−′=′−− ∫  

which shows that 

.
2
1)()()()( 2xycxyxfxfyf T −+−∇+≥  ♦ 

 
4. Second order condition 
 
For the twice continuously differentiable convex functions the following characterization can be 
given. 
 
Theorem 9. Let be a nonempty open convex set and  be a twice 
continuously differentiable function. Then 

nRS ⊂ RSf →:

1)  is convex if and only if its Hessian matrix is positive semidefinite at each point in  f .S
2)  is strictly convex if its Hessian matrix is positive definite at each point in  f .S
3)  is uniformly convex if and only if its Hessian matrix is uniformly positive definite at each 
point in  

f
.S

 
Proof. We will prove only 1), the other cases are proved in a similar manner. 
Necessity. Suppose that  is a convex function, and consider a point f .Sy∈  We must prove 
that for any   But, by theorem 4 we have ,nRp∈ .0)(2 ≥∇ pyfpT
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                                                                                        .)()()( pyfyfpyf T∇+≥+ λλ
Since  is twice continuously differentiable at  it follows that )(xf ,y

                       ( ).)(
2
1)()()( 222 ppyfppyfyfpyf TT λολλλ +∇+∇+=+                

Now, introducing (1.4) in (1.3) we get 

( ) .0)(
2
1 222 ≥+∇ ppyfpT λολ  

Dividing by  and letting 2λ ,0→λ  it follows that 
.0)(2 ≥∇ pyfpT  

Sufficiency. Suppose that the Hessian matrix  is positive semidefinite at each point 
 Consider the points  Using the mean value theorem, we can write 

)(2 xf∇
.Sx∈ ., Syx ∈

),)(()(
2
1)()()()( 2 yxzfyxyxyfyfxf TT −∇−+−∇+=  

where z  is a point on the segment line connecting x  and  i.e. ,y ),( yxyz −+= θ ).1,0(∈θ  
Since  is convex, S .Sz∈  From the assumption it follows that 

),()()()( yxyfyfxf T −∇+≥  
i.e. the function  is a convex function by theorem 4. ♦  f
 
Now, combining this theorem with theorem 5 we obtain the following result 
 
Theorem 10. Let  be a nonempty open set and  be a twice continuously 
differentiable function on  Then 

nRS ⊂ RSf →:
.S

1)  is monotone on  if and only if  is positive semidefinite for all  )(xf∇ S )(2 xf∇ .Sx∈
2) If  is positive definite for all )(2 xf∇ ,Sx∈ then )(xf∇  is strictly monotone on  .S
3)  is uniformly monotone (or strongly monotone) on  if and only if  is 
uniformly positive definite, i.e. there exists a number  so that for any and  

)(xf∇ S )(2 xf∇
0>c Sx∈ ,nRp∈

22 )( pcpxfpT ≥∇ . ♦ 
 

In theorem 3 we proved that the level sets of a convex function are convex sets. From 
theorem 2 it follows that if  is a continuously convex function, then the level set  is a 
closed convex set. Furthermore, we can prove the following theorem 

f αL

 
Theorem 11. Let  be a nonempty convex set, and  be a twice 
continuously differential function on  Suppose that there exists a positive number such 
that for any  and   

nRS ⊂ RRSxf n →⊂:)(
.S 0>m

)( 0xLx∈ nRu∈

                                                            .)( 22 umuxfuT ≥∇                                                (1.11)  

Then the level set { )()(:)( 00 xfxfSxxL }≤∈=  is a bounded closed convex set. 
 
Proof. By theorem x we know that  is convex on . Therefore, by theorem 3 it follows 
that  is convex. Observe that if  is continuous, then  is a closed convex set 

for all  Now, let us prove the boundedness of . Consider two arbitrary points 
 Since  is convex, from (1.11) we have 

f )( 0xL
)( 0xL )(xf )( 0xL

.0
nRx ∈ )( 0xL

).(, 0xLyx ∈ )( 0xL



).))((()( 22 xyxyxfxyxym T −−+∇−≤− α  
By differentiability we have 
                                             )()()()( xyxfxfyf T −∇+=

                                                          ∫ ∫ −−+∇−+
1

0 0

2 )))((()(
t T dtdxyxyxfxy αα

                                                      ,
2
1)()()( 2xymxyxfxf T −+−∇+≥  

where  is independent of m x  and  Therefore, for arbitrary .y )( 0xLy∈  and  we have 0xy ≠
2

0000 2
1)()()()( xymxyxfxfyf T −+−∇≥−  

                                                            .
2
1)( 2

000 xymxyxf −+−∇−≥  

Since , from the above inequality we get )()( 0xfyf ≤

,)(2
00 xf

m
xy ∇≤−  

which prove that the level set  is bounded. ♦ )( 0xL
 
 
5. Examples of convex functions 
 
Convexity or concavity of a function can be verified using different techniques, such as 
directly by means of definition 1, verifying that its Hessian is positive semidefinite, or 
restricting the function to an arbitrary line and then verifying convexity of the resulting 
function of one variable. In the follows we present some example of convex or concave 
functions. 
 
Indicator function. Let  be a nonempty set. The indicator function nRS ⊂ { }∞∪→ RRI n

S :  
is defined as 

⎩
⎨
⎧

∞+
∈

=
otherwise.

S,xif0
)(xIS  

Clearly,  is convex if and only if  is convex. SI S
 
Support function of a set. Let  be a nonempty set. The support function of  is defined 
as 

nRS ⊂ S

{ },:sup)( Sxxss T
S ∈=σ  

which is a convex function. 
 
Linear functions. Any linear function  is both convex and concave function on 

 where  and  
bxaxf T +=)(

,nR nRxa ∈, .Rb∈
 
Quadratic functions. Consider the quadratic function , given by RRf n →:

,2)( pxqQxxxf TT ++=  
where nnRP ×∈  is a symmetric matrix,  and nRq∈ .Rp∈   Since  for all Pxf 2)(2 =∇ x , 

 is convex if and only if f P  is positive semidefinite  is concave if and only if ).0( ≥P f P  
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is negative semidefinite  For quadratic functions, strict convexity is easily 
characterized as:  is strictly convex if and only if 

).0( ≤P
f P  is positive definite   is 

strictly concave if and only if 
).0( >P f

P  is negative definite ).0( <P  
 
Least-squares functions. Function 2

2)( bAxxf −=  is convex for any  Indeed, we have 

 and  

.A

)(2)( bAxAxf T −=∇ .2)(2 AAxf T=∇
 
Quadratic over linear. Function  is convex for  We have  yxxf /)( 2= .0>y

.022),( 32

2

3
2 ≥⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

=∇
T

x
y

x
y

yxxy
xyy

y
yxf  

 
Exponential. Function is convex on  for any axe ,R .Ra∈  
 
Power. Function  is convex on when  or ax ++R 1≥a ,0≤a  and concave for  .10 ≤≤ a
 
Logarithm. Function  is concave on . xlog ++R
 
Negative entropy . If xx log xxxf log)( = , defined on , then ++R 1log)( +=′ xxf , 

 and ,/1)( xxf =′′ 0)( >′′ xf for . Therefore, the negative entropy is a strictly convex 
function for all . 

0>x
0>x

 
Norms. Every norm on nR  is a convex function. If  is a norm and RRf n →: 10 ≤≤ α , then 

),()1()())1(()())1(( 212121 xfxfxfxfxxf αααααα −+=−+≤−+  since by definition a 
norm is a homogeneous function and satisfies the triangle inequality. 
 

Geometric mean. The geometric mean is a concave function on  

Indeed, its Hessian is given by  

nn

i
ixxf

/1

1

)( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∏

=

.nR ++
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which follows from the Cauchy-Schwarz inequality.  
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by Cauchy-Schwarz inequality. 
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