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Abstract 
In this article we present numerical results concerning the simulation of semiconductor melts 
with free capillary surfaces, particularly silicon crystal growth by the floating zone method. The 
effect of fluid motion due to the gravity and surface tension is illustrated. The axysymmetric 
Navier- Stokes and energy equations with Boussinesq approximation have been discretized by 
means of finite volume procedure, and the SIMPLER algorithm is used to treat the coupled 
velocity-pressure equations. A new flux type model for the temperature at the free surface models 
the heat experimental conditions. Different steady thermocapillary flows are obtained by varying 
the following significant parameters: temperature gradient conditions (Grashof number), surface 
tension gradient (Marangoni number), all of them relevant in practical crystal growth situations. 
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1. INTRODUCTION 
The design and optimization of modern materials processing systems rely on the understanding 
of some basic mechanisms and their interactions. Until years 50, the main method used in crystal 
growth was Czochralski (CZ) method, making call for growing solid crystals from a melt, 
(Kobayashi (1998), Mihelcic et al. (1981), Crochet et al. (1983) and Derby et al. (1989)). 
However, the advent of semiconductors drove researchers to invent proceed which is adapted to 
the industrial needs. The float-zone technique is one of the candidate methods for growing single 
crystals. The main advantage of the float-zone process is that it is a container-less process and 
thus a main source of contamination is removed. Another advantage is the reduction of thermal 
stresses which are caused by differential thermal expansion between the crystal and the crucible. 
Considerable attention has been paid in recent years to surface tension-driven convection in 
liquid floating zones and similar configurations under microgravity conditions. Kobayashi (1998) 
computed thermocapillary convection under zero gravity conditions for two different Prandtl 
numbers, with and without crystal rotation while neglecting the deformation of the free surface. 
Kobayashi (1998) extended the study to include buoyancy-induced convection. Young and Chait 
(1990) has presented asymptotic solutions for the temperature, concentration and interface shapes 
in the limit of small aspect ratio and weak surface tension for a two-dimensional float-zone 
established in a vertical sheet. Neitzel et al. (1990) have computed thermocapillary convection in 
a float-zone with a computed free surface shape. Chu and Chen (1995) have obtained numerical 
solutions for float-zone growth of Molybdenum (Mo) crystals with an imposed heat input profile 
rather than an imposed temperature profile. Monti (1987) investigated the onset of instability of 
Marangoni convection in space by using large liquid bridges with lengths of the order of several 
centimetres and in the absence of buoyancy effects. Recent experimental works have been 
performed by Petrov et al. (1996), Muehlner et al. (1997) and Schwabe et al. (1996). 
In this method, a melted zone is obtained by melting, is maintained by its own superficial tension 
between two verticals solid and collinear. The superior cylinder is a polycrystalline solid, 
whereas the bottom one is a monocrystal, that growth as the melted zone recrystallise under the 
action of the vertical displacement of the lateral heating source. Two of the most important 
mechanisms are momentum transfer and heat transfer, which control such phenomena as fluid 
flow and solidification. The development of computational resources and numerical methods 
make computer modeling one of the major ways of studying this mechanism. In the industrial 
configuration of crystal preparation effected in soil, the melted phase is the seat of convective 
movement due to gravity and surface tension. The study of these coupled phenomena is revealed 
of big complexity. For this reason, we have examined every type of convection separately in 
order to understand the own dynamics of each.  
The aim of this article is to characterize the flows of convection that could be observed. The 
numerical analysis of the flow in the melt is quite complex and simplified models are commonly 
used, where both the geometry and the thermal boundary conditions are simplified. A 
mathematical model for the flow and heat transfer during the floating-zone growth process is 
developed. The temperature and flow fields in the melt are obtained numerically. Natural and 
thermocapillary convection effects in the melt are included in the analysis. 
 

2. MATHEMATICAL MODEL 

In this work, the case of steady, axysymmetric flows in semiconductor melts is considered. The 
geometrical configuration considered is schematically shown in figure1. The floating zone is 
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modeled as a cylindrical liquid bridge (silicon melt) of radius R and length H, hold between two 
circular disks. The simulation is based on the Boussinesq approximation. Thus, we study the 
motion of a laminar incompressible fluid in the presence of thermal buoyancy forces. The heat 
generated by viscous dissipation in the melt is neglected, the transport coefficients (viscosity ...) 
are assumed to be temperature independent. 
 
With these assumptions, the generalised equation which predicts heat transfer as well as melt 
flows during a growth process, is adapted in a non-dimensional formulation for FZ crystal growth 
as follows (symbol explanation is referred to nomenclature): 
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Where ΦΓ  and ΦS are shown in table 1. 
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Table1: Governing differential equations. 

 
Where (u, v) is the fluid velocity, P is the pressure and Θ is the temperature. Gr is the Grashof, 
which characterise the intensity of convection, Pr is the Prandtl number. 
 
In order to complete the mathematical model, we still use, in addition to equation 1, the 
appropriate boundary conditions. They are as follows: 

 
at the bottom surface :    1<r 0  ;0z ≤=   
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at the symmetry axis (left):  A z0;0r ≤≤=  
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The dimensionless stream function is evaluated in order to ascertain the strength of the 
convective motion and is defined in the usual way: 
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A control volume based discretisation method, described by Patankar (1980) has been applied for 
solving the system of equation (1), together with the boundary and interfacial conditions (2-5). 
The most attractive  feature of the control volume based discretisation scheme is that the resulting 
solution would imply that integral conservation of physical quantities such as mass, momentum 
and energy is exactly satisfied, over any group of control volumes and, of course, over the whole 
calculation domain. In evaluating convective and diffusive fluxes, a power-law scheme and the 
SIMPLER algorithm were considered. The choice of the convergence criterion is particularly 
important. Use of 51x5l non-uniform grid (figure 1) permits the presence of several discretisation 
points near the interface without introducing an excessive number of grid points, which would 
induce high CPU cost. The iterations were terminated when the residual sources of mass become 
less than 10-5. 
 

3. RESULTS AND DISCUSSION 
In this section we study the character of the melt flow and the temperature field. Streamlines, 
velocity vector and isotherms are presented in the steady state case. In all of this study, the 
Prandtl number has a constant value Pr=0.0l5 corresponding to liquid metals (silicon) and aspect 
ratio A=2. The ranges of the other parameters studied herein are: 103 ≤ Gr ≤ 106; 10 ≤Ma ≤ 103 

3.1 Effect of buoyant convection 
We first consider the influence of natural convection on the flow when thermocapillary forces are 
absent by setting Ma = 0. Natural convection is induced by an adverse or destabilising 
temperature gradient. The effect of the gravity is represented through the Grashof number. We 
have reported in figure 2 the flow pattern for several values of Grashof number (Gr). For very 
low values of Gr (not presented here), no flow is detected in the melt (Ψmax∼0); the heat transfer 
is still dominated by conduction. As shown, one large vortex, which rotates counterclockwise in 
direction, dominates the flow field. It is caused by the ascending flow near the free surface the 
melt is directly heated by the outer heat source. Since the buoyancy grows larger as the increase 
of gravitational acceleration (Grashof number), the intensity of natural convection becomes 
highest at Gr=106 (Ψmax=240). This is confirmed by the number of isolines in the stream function, 
which increases with the magnitude of Grashof number. On the contrary, the maximum 
temperature becomes lowest at Gr=106 due to a strong stir. The thermal convection destroys the 
symmetry with respect to the horizontal midplane. This observation is confirmed in figure 3 and 
figure 4, in which we have reported the axial velocity and temperature profiles at the free surface 
versus Grashof number. The maximum of temperature is slightly displaced to the top of the 
crystal.  
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3.2 Effect of thermocapillary convection 
In this calculation, we consider only the effects of tension forces; a non-buoyant forces is 
imposed by setting Gr=0. This convection is obtained in experiences achieved in microgravity 
environment. Figure 5 illustrates typical streamlines, isotherms and velocity vector patterns for 
Gr=0 and Ma=10,102 and 103, respectively. Two vortices occupy the flow field as shown in 
figure 5(a), and are symmetrical with respect to the central height of the melt zone due to no 
buoyancy force. The vortices on the top and the bottom, which rotate counterclockwise and 
clockwise, respectively, are formed by the Marangoni effect on the free surface. For the 
temperature field it doesn’t present a difference with conductive field. As the Marangoni number 
increases, the flow filed intensifies and the convective strength that comes with the increases of 
the Marangoni number modifies slightly the temperature filed. Since the fluid with high 
temperature on the free surface is moved to the low-temperature regions by the gradient of 
surface tension, the temperature gradient becomes steeper in the vicinity of the Marangoni 
convection. As a result, the rims of the free surface are gradually moved to the solid phases 
(horizontal walls, top and bottom) which maintained at a constant temperature. The coupling 
temperature-velocity at r=1 (free surface) explains the evolution of the axial velocity that is more 
and more reduced near of these cold walls  as depicted in figures 6 and 7. 
 
 
CONCLUSION 
Flow and heat transfer in the melt, during floating zone growth of silicon, have been studied 
numerically. The model considered here, with a condition of flux and no temperature represents a 
new approach for the applied conditions of heating. We have analysed the structures of the flow 
of pure Marangoni convection and gravitational convection. The main conclusions of this study 
are summarized as follows: 

• The structures of the flow are very dependent of the Marangoni number and where the 
temperature progresses slightly. 

• In case of buoyant convection, the evolution of the flow with Grashof number is 
monotonous. 

• The present analysis is focused on the influence of a limited number of dimensionless 
parameters. As an extension of this work, it is particularly relevant to take into account the 
effect Prandtl number (liquid melt) and combined buoyant and thermocapillary convections. 
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Nomenclature 
A: aspect ration of the floating zone 
g: gravity acceleration 
Gr: Grashof number (buoyancy forces on viscous diffusion ratio) 
Ma: Marangoni number (thermocapillary forces on thermal diffusion) 
P: dimensionless pressure 
Pr: Prandtl number (viscous on thermal diffusions ratio) 
r, z:  radial and vertical coordinates 
R, H : radius and height of the floating zone 
u, v: dimensionless axial and radial velocities  
 
Subscripts 
m: melt 
Greek symbols  
β: expansion coefficient of the melt 
ν: kinematics viscosity 
Θ: dimensionless temperature 
Ψ: stream function 
γ: surface tension for interface 
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Figure 1: Schematic diagram of the floating zone system and mesh. 
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A) Ψmax=1.0 B)  
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Gr=103 
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Figure 2: Effect of buoyant convection on: A) Streamlines, B) velocity vector,  C) Isotherms. 
Pr=0.015, A=2, Ma=0 
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Figure 3: Profile of dimensionless axial velocity at the free surface versus Grashof number, 

Pr=0.015, A=2, Ma=0. 
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Figure 4: Profile of dimensionless temperature at the free surface versus Grashof number, 

Pr=0.015, A=2, Ma=0. 
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Figure 5: Effect of thermocapillary convection on: A) Streamlines, B) Velocity vector, C) 
Isotherms. Pr=0.015, A=2, Gr=0. 
 
 



 205

0,0 0,5 1,0 1,5 2,0
-1000

-800

-600

-400

-200

0

200

400

600

800

1000

 Ma=10
 Ma=102

 Ma=103

D
im

en
si

on
le

ss
 A

xi
al

 V
el

oc
ity

Z  
Figure 6: Profile of dimensionless axial velocity at the free surface versus Marangoni number, 

Pr=0.015, A=2, Gr=0. 
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Figure 7: Profile of dimensionless temperature gradient at the free surface versus Marangoni 

number, Pr=0.015, A=2, Gr=0. 
 

 
 
 


