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Abstract 

The clonal selection is a mechanism used by the natural immune system to select cells that recognize the antigens 
to proliferate. The proliferated cells are subject to an affinity maturation process, which improves their affinity to 
the selective antigens. The concept of clonal selection is a vitally important one to the success of the human 
immune system, and it provides an excellent example of the principles of selection at work. The Positive and 
negative selection is another interesting mechanism in the immune system that work together to both retain cells 
that recognize the self peptides, while also removing cells that recognize any self peptides. In this paper, a 
cloning-based algorithm inspired by the clonal and the positive/negative selection mechanism of the natural 
immune system is presented. This algorithm is inherently parallel and the cloning strategy employs greedy 
criteria which lends to an adaptive approach. The well known TSP is used to illustrate the approach with 
experimental comparison with Ant approach. Simulations demonstrate that this approach generates good 
solutions to traveling salesman problem and greatly improve the convergence speed compared to the Ant-based 
optimization approach. 

Keywords : Optimization, Immune system, Clonal and negative/positive selection, Ant colonies, Traveling 
salesman problem. 
 

1. Introduction 

Optimization, a key topic in the areas of engineering and science, is referred to a process of finding 
the best solution in the most effective way to a given problem, eventually with some constraints. Most 
known optimization problems like a Traveling Salesman Problem (TSP) have been shown to be NP-
hard. Approaches proposed in the literature to solve the NP-hard problems have been divided into two 
classes: exact approaches and heuristic approaches [Puchinger and Raidel, 2005]. Both approaches have 
their specific properties, advantages, and disadvantages. Exact approaches give exact solution to the 
studied problem, but they work reasonably fast only for relatively small problem sizes. Among the 
exact approaches, we find branch-and-bound, dynamic programming, Lagrangian relaxation based 
methods, and linear and integer programming based methods [Nemhauser and Wolsey, 1988]. Heuristic 
approaches deliver either apparently or probably a good solution, but which could not be proved to be 
optimal. Heuristic approaches include [Puchinger and Raidel, 2005], among others, simulated annealing 
[Kirkpatrick et al., 1983], tabu search [Glover and Laguna, 1997], iterated local search [Louren et al., 
2002], variable neighborhood search [Hansen and N. Mladenovic, 1999], and various population based 
models such as evolutionary algorithms [Back et al., 1997], scatter search [Glover et al., 2000], 
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memetic algorithms [Moscato and Cotta, 2003], and various estimation of distribution algorithms 
[Larranaga and Lozano, 2001]. Other approaches incorporate exact algorithms in heuristics algorithms 
[Minaux, 2002]. An important classification of existing approaches combining exact and heuristic 
algorithms for combinatorial optimization is proposed in [Puchinger and Raidel, 2005].  

In this paper, an optimization approach inspired by the clonal and positive/negative selection 
mechanisms of the natural immune system is presented. The clonal selection mechanism is used by the 
natural immune system to define the basic features of an immune response to an antigenic stimulus [De 
Castro and Zuben, 2000]. To illustrate the proposed algorithm, we consider the traveling salesman 
problem that exemplifies a prominent class of problems in combinatorial optimization [Bakhouya et al., 
2006]. The problem can simply be stated as follows: the traveling salesman must visit every city exactly 
once and then return to the starting city. More precisely, the TSP is the problem of finding a shortest 
tour which visits all cities [Dorigo and Gambardella, 1996, 1997; Applegate et al., 1998]. The question 
is: given the cost of travel between all cities, what is the tour with smallest cost?  

Formally, let’s consider a graph G=(N,E), where N is a set of nodes representing cities and E is a set 
of arcs connecting these nodes. The distance between the city i and the city j is denoted . Therefore, a 
TSP problem consists of finding a minimal length Hamiltonian circuit in the graph G. An Hamiltonian 
circuit of graph G is a closed tour visiting once and only once all the n = |N| nodes of G, and its length 
is given by the sum of the lengths  of all arcs (i,j)  that it is composed.  

ijδ

ijδ
Various exact approaches such as branch-and-bound [Volgenant and Jonker, 1982] and linear 

programming [Hoffman, 2000; Dantzing et al., 1954] are proposed to solve a TSP problem. Exact 
approaches for solving such problems require algorithms that generate both a lower bound and an upper 
bound on the true minimum value of the problem instance. Algorithms that construct feasible solutions, 
and thus upper bounds for the optimum value, are called heuristics. Many heuristic approaches, such as 
Genetic Algorithm [Davoian and Gorlatch, 2005], Tabu Search [Fiechter, 1990], Simulated Annealing 
[Aarts et al., 1988] and Neural Networks [Potvin, 1993], are proposed to resolve the traveling salesman 
problem [Raymond, 1969; Walshaw, 2002]. At the heart of every search methods, such as local search, 
simulated annealing, tabu search, swarm or genetic-like algorithms [De Castro and Zuben, 2000, Belal 
et al, 2006, Wang et al., 2004], is a strategy that generates variations of solutions to explore the search 
space. A new solution is accepted if it improves the value of the objective function.  

Approaches inspired by natural systems, such as ant colonies [Dorigo and Gambardella, 1996] and 
the natural immune system [Wang et al., 2004], have been also used to solve different combinatorial 
optimization problems. For example in [Dorigo and Gambardella, 1996], Ant-based optimization 
approach for the traveling salesman problem presents some attractive characteristics due to the use of 
trail mediated communication that determines a synergistic effect. More precisely, communication 
through a pheromone increases the probability of finding an optimal solution. Even though the number 
of ants at each cycle is maintained constant, their repetitive behavior allows the growth of the amount of 
pheromone on shorter paths. 

In this paper, an algorithm based on the clonal selection with a negative/positive selection 
mechanism that replaces the repetitive synergistic effect of the Ant-based optimization approach is 
presented. More precisely, by cloning action, an agent do not need to choose between two or more 
paths, but it clones itself and its clone moves to neighboring node selected at random [bakhouya et al., 
2006]. Moreover, the number of search agents is not constant and changes during the course of the 
algorithm due to cloning/suppression operations.  
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One of the main challenges today in optimization is to derive inherently parallel, dynamic and 
adaptive search algorithms. The proposed approach is inherently parallel and the cloning strategy 
according to greedy criteria lends to adaptive algorithms to environment changes [bakhouya et al., 
2006]. 

The rest of the paper is organized as follows. Section 2 presents an overview of the Ant-based 
optimization approach. In section 3, we present the immune system principles. The proposed immune-
based optimization approach is presented in section 4. Section 5 presents computational results. 
Conclusion is given in section 6. 

2.  Ant colony approach 

Ant colony approach is a general purpose heuristic which can be used to solve different 
combinatorial optimization problems [Dorigo and Gambardella, 1996]. In this approach, the search 
activities are distributed over artificial ants, which mimic the behavior of real ants. Recall that real ants 
are capable of finding the shortest path from food source to the nest without using a global controller 
[Belal et al., 2006]. They are capable to adapt to dynamically changes in the environment, i.e., if the 
environment changes, the ants will look for a new shortest path. 

To solve the traveling salesman problem, a set of cooperating agents (i.e., artificial ants) are 
positioned at a starting cities selected randomly [Parpinelli et al., 2002]. At each time step they “move” 
to new cities and cooperate locally with each other to find good solutions. This cooperation does by 
using an indirect communication mediated by the pheromone. The pheromone trail is modified by 
agents in a local and a global manner. More precisely, while building a solution, agents visit edges and 
change their pheromone level. After all agents have completed their tours, the global updating is 
performed. After an agent has made a tour, it dies, i.e. it is deleted, and new ants can be generated after 
that. The search for a better solution in ant colony is done collectively and repetitively. Each ant can 
discover a solution or a part of a solution while moving in the solution space and the optimal solution 
can be found only by the cooperation of whole ant colony (i.e., the collective intelligence).  

Such as presented in [Dorigo and Gambardella, 1996, 1997], Ant-based optimization approach for 
traveling salesman problem presents some attractive characteristics due to the use of trail mediated 
communication that determines a synergistic effect. More precisely, communication using the 
pheromone as a communication medium increases the probability of finding an optimal solution. 
However, the number of ants at each cycle is maintained constant but their repetitive behavior allows 
the growth of the amount of pheromone on shorter paths.  

3. Immune system: an overview 

The immune system defends the body against harmful diseases and infections. It is capable of 
recognizing most antigens’ attacks by some certain important immune cells, called B-cells. B-cells 
circulate through the blood and lymphatic network waiting to encounter antigens (the foreign molecules 
belonging to pathogens that invade the body). Each antigen has a particular shape that is recognized by 
the receptors present on the B-cell surface. More precisely, B-cells synthesize and carry on their 
surfaces molecules, called antibodies, that act like detectors to identify antigens. Thus the quality of the 
antibody is crucial for the immune system to successfully recognize the antigen. If a B-cell is useful to 
recognize the antigen, it may be stimulated to clone (i.e., proliferate or clonally expand). More 
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precisely, a B-cell with better fitting receptors and binding more tightly the antigen, replicate more and 
survive longer. This process of amplifying, using proliferation, only those cells that produce a useful B-
cell type is called clonal selection [Rodin et al., 2004; Wang et al., 2004; Forstdyke, 1995]. Clones are 
not perfect, but they are subjected to somatic permutations that result in children having slightly 
different antibodies from the parent. Clonal selection guarantees that only good B-cells (i.e., with higher 
affinity with the antigen) can be cloned to represent the next generation [Rodin et al., 2004; Hofmeyr, 
1999, 2000]. However, clones with low affinity with antigen do not divide and will be discarded or 
deleted. Hence, the clonal selection enables the body to have sufficient numbers of antigen-specific B-
cells to build up an effective immune response. 

Positive and negative selections are interesting mechanisms of the immune system that work 
together to both retains cells that recognize the self peptides, while also removing cells that recognize 
any self peptides [Middlemiss, 2006]. More precisely, during positive selection, those cells that 
demonstrate a relatively weak affinity to the self peptide are induced to die. This results in the removal 
of cells that are unable to recognize self molecules. During the negative selection, cells with a strong 
affinity to the self peptide are also induced to die. The result of this positive and negative selection is a 
repertoire of cells with receptors that can be considered to have a better affinity for the self peptide.  

The immune system receives similar attention like other biological-inspired approaches to develop 
artificial systems called artificial immune systems. The use of the immune system capabilities in 
artificial systems depends on the nature of the problem. They are a great source of inspiration in many 
different areas including network security [Hofmeyr, 1999], parallel processing [King et al., 1999], 
image processing [Rodin et al., 2004], robotic [Watanabe et al., 1999], TSP [Hui et al., 2003; Toma et 
al., 2003; Endo et al., 1998] and many other areas [Bakhouya, 2005; Dasgupta, 1999]. In optimization 
field, the Artificial Immune Optimization (AIO) methods have been applied to deal with numerous 
challenging optimization problems. A concise survey on the recent progresses of the theory as well as 
applications of the AIO schemes are introduced and discussed in [Wang et al., 2004]. More precisely, 
the existing AIO methods have been classified into three main categories: Genetic-aided approaches, 
selection principle-based approaches and immune networks-based approaches. Genetic-aided 
approaches are similar to genetic algorithm (GA) in which the somatic mutation and gene 
recombination operations are modeled by means of two GA operators, crossover and mutation [Smith et 
al., 1993; Forrest et al., 1993; Toma et al., 2001]. In selection principle-based methods, the selection 
mechanism is introduced to the activated B-cells to generate another intermediate population in order to 
preserve useful B-cells instead of exploring the whole search space [Gaspar et al., 2000]. More 
precisely, the selection considered by these methods concerns the somatic permutation mechanism that 
is exploited to search for even better solution by starting from the already interesting solutions 
[Forsdyke, 1995]. Immune network-based approaches are inspired by Jerne’s idiotypic network 
principle, which suggests that B-cells are stimulated and suppressed not only by antigens but also by 
other interacted B-cells [Wang et al., 2004; Toma et al., 2000].  

In the rest of this paper, an optimization approach is presented. This approach is based on clonal 
selection principle with negative/positive mechanisms that replace the repetitive synergistic effect of 
Ant-based optimization approach. More precisely, only those cells that recognize antigens are selected 
to proliferate (i.e., to clone) and change their affinities to selective antigens. Recall that, such as 
presented above, in Ant-based optimization approach, the path that was more frequently chosen by 
other ants in the past will have a greater probability of being chosen by the ant. Therefore, trails with 
greater amount of pheromone are synonyms of shorter paths. 
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4. The cloning-based approach 

In this section, we will present how a clonal and  negative/positive selection mechanisms can be put 
to work in an environment (i.e., simulated world) inhabited by artificial agents to solve optimization 
problems. We present also how this approach can be used to solve the traveling salesman problem. 

4.1. Description of the approach 

Mapping between the immune system and an optimization problem is done as follows. The immune 
response represents solutions and antigens represent the problem to solve. More precisely, B-cells are 
considered as artificial agents that roam around and explore an environment. The optimization problem 
represents the pathogen. In other words, the optimization problem is described by an environment of 
antigens. The positive and negative selection mechanism is used to control the agent proliferation by 
eliminating useless or bad solutions. Hence, the positive/negative selection rules can be considered as 
“a reinforcement learning mechanism” that not only selects suitable solutions, but also regulates the 
agent population size that growth due to the cloning operation [Bakhouya et al., 2006]. 

 
Immune system Optimization problem 

Pathogen Problem (environment of antigens) 
       (e.g., city graph wherein nodes  

represent antigens)   
Immune response Solution (e.g., shortest path) 

B-cells Agents 
Clonal selection     Creating new agents in order to 

explore the environment 
(i.e., proliferation) 

Positive/negative
selection 

Selection of useless/bad agents to kill 
      themselves (i.e., apoptosis) 

Table 1: Mapping between the immune system and an optimization problem. 
 

Recall that in the immune system the number of cells directed against an antigen increases by 
proliferation operation when this antigen is present in the body and reduces when it is eliminated. 
During this operation, a cell changes its morphology such as change of the life duration. So, the 
proliferation increases the number of agents that improve the affinity with the antigen in order to inhibit 
and destroy it. In other words, the proliferation corresponds to the creation of new agents. The new 
created agents are structurally and behaviorally close to their creators but not exactly the same to allow 
the adaptation of the system. The apoptosis corresponds to the programmed cellular death. This 
mechanism occurs when a cell is not adapted to the antigen elimination. Thus, useless cells are 
destroyed.  

Using the immune-based collective behavior, a clonal and positive/negative selection, the population 
size of agents in the system is regulated dynamically in order to search the optimal solution to a given 
problem. In fact, an agent which is estimated unsuitable can be destroyed before being proliferated. The 
decision is made locally on the agent level; no global controller is necessary.  
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4.2. Application to TSP 

Let us consider the well known TSP problem. The environment is the city graph wherein nodes 
represent antigens. B-cells are agents that progress from a city to neighboring cities and can clone or 
destroy themselves based on positive/negative selection criteria. The algorithm starts with an initial 
agent at the source city. At each algorithm cycle, an agent could clone itself and the newly spawned 
clone moves to neighboring cities. When an agent reaches a city that belongs to its already visited cities 
set, the positive selection rule is triggered and the agent kills it (i.e., useless solution). Otherwise, the 
agent clones it and the clone acquires a copy of the already visited cities set from its parent. When all 
survival agents have accomplished their tour (i.e., reach the source city), the negative selection rule is 
triggered and among these B-cell agents that constitute the immune response, the one that held the best 
tour is selected (i.e., useless agents are destroyed). 

In order to stop the cloning operation, a better way is to try and develop a tight lower bound of the 
optimal solution. This lower bound will then act as a stop sign for the search terminating an agent once 
the upper bound of the partial solution being investigated overlaps the lower bound of the optimal 
solution. This significantly reduces the useless tours to be explored and consequently reduces the 
agent’s population size. In our case, an agent is allowed to continue its travel if the distance carried is 
less than to the starting tour generated initially. The initial tour is generated randomly and has an impact 
to regulate the agent’s population. In other words, when an agent reaches a node, the agent clones itself. 
During its travel, an agent carries the list of visited cities. An agent carried a larger distance kill itself at 
any city as soon as this condition is detected. This condition ignores a particular path of the TSP graph 
as soon as it becomes impossible for the path to get a better solution. 

Formally, Let C = {a,..., z} be a set of cities, A = {(x,y): x, y ∈C} be the edge set, and δ(x,y) be a cost 
measure associated with edge (x,y)  C. Let’s also consider that the vectors, composed of elements in 
the set C = {a,..., z}, represent the possible tours. Each component of the vector represents a city. The 
total length of each tour gives the affinity measure of the corresponding vector. The TSP is the problem 
of finding a minimal affinity value closed tour that visits each city once. Using the proposed approach, 
the agent behavior is described as follows: 

∈

 
Initialization 
Create a mobile agent A 
A.citiesList= Cities // the set of cities 
A.souceCity = Random(Cities) // agent is positioned on a starting city 
A.visitedList = {} // the set of visited cities  
A.mAffinity = dist // maximal affinity generated at random  
A.currentCity =Null // the city in which the agent is positioned 
A.LastCity = A.currentCity // the city lastly visited  
A.cAffinity=0 // current affinity of the actually tour 
//Agent terminates if all cities are visited 
while (A.CitiesList ≠ Null) do 
  A.cAffinity= A.cAffinity+ δ(LastCity, currentCity) 
   if(A.currentCity∉A.visitedList and A.cAffinity < A. mAffinity)   
      A.visitedList.Add(currrentCity) 
      A. citiesList.Remove(currrentCity) 
          // the agent clones itself and moves with its clone 
             A.LastCity= currentCity 
             B=A.clone() // if there at least two neighbors 
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             // n1 is selected at random from neighbors such as n1∉visitedList 
A.currrentCity = n1; B.move()  
// n2 selected at random from neighbors such as n2∉visitedList-{n1} 
B.currrentCity = n2 ; A.move() 
         endFor 
  else  
   // positive selection, the agent not make a tour and kills itself 
        A.die()  //useless solution 
   endif 
done 
// negative selection, agent die itself if an other agent that have a better tour 
   A.die() // bad solution 

 
It’s worth noting that the positive selection is applied if an agent not build a tour or its affinity 

becomes greater that the affinity of a tour generated initially at random. Also, the negative selection is 
applied if all suitable agents build a tour (i.e., a feasible solution to the TSP). In this case, only the agent 
having a smaller affinity will have remained and is considered the most suitable solution. 

5. Computational results 

In this section, series of tests aimed to demonstrating the immune-based optimization algorithm to 
solve the TSP are described. This algorithm is implemented with Java and run on a Pentium III 1GHz 
personal computer with single processor. The cities are given coordinates in the plane of simulator and 
then the tour length is measured by the sum of pixel distances between each pair on the tour. The TSP 
graph is generated randomly. Figure 1, 2, 3, and 4 shows the resolution of the problem with 10, 25, 50 
and 100 cities respectively. For example, as depicted in figure 1, for the problem with 100 cities, the 
total distance of the optimal tour is 7.132 with the convergence speed (i.e., CPU) equal to 593 ms.  

 
 

 
                        Fig.1:  The optimal tour of 10-cities problem        Fig.2:  The optimal tour of 25-cities problem 
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                      Fig.3:  The optimal tour of 50-cities problem    Fig.4:  The optimal tour of 100-cities problem  
 

The result reported in table1 shows the cost and the CPU time of the tours found by the proposed 
immune-based optimization algorithm. 
 

Number of cities cpu Time  Tour distance 
10 
20 
30 
40 
50 
100 
150 
200 
500 
1000 

0 
15 
27 
32 
94 
593 
1602 
4076 
12298 
274355 

2,978 
3,296 
3,296 
5,376 
6,208 
7,132 
8,534 
9,634 
11,498 
15,234 

Table 1: Costs and execution times of tours computed by the cloning algorithm 
 

We have implemented the ant-based optimization algorithm proposed in [Dorigo and Gambardella, 
1996, 1997] in order to compare it with immune-based optimization algorithm. The result reported in 
table 2 shows the cost and the CPU time of the tours found by this algorithm. We conclude that the ant 
optimization algorithm needs a large amount of computation time to the tour finding routine rather that 
the immune-based algorithm. 
 

Number of cities cpu Time  Tour distance 
10 
20 
30 
40 
50 
100 
150 
200 
500 
1000 

15 
78 
94 
1375 
3406 
9743 
94446 
606745 
2359753 
4350567 

3,219 
3,385 
3,336 
5,903 
6,458 
7,585 
9,505 
10,556 
12,357 
15,654 

Table 2: Costs and execution times of tours computed by the Ant algorithm 
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Compared to the immune-based optimization approach, we find that when city number grows, the 

immune-based algorithm can find the best solution each time and the running time is better than using 
ant-based optimization algorithm. For example, using immune-based optimization algorithm, the total 
distance of the tour in 100-city problem is 7,132 and is achieved with 593 ms, comparing with the result 
provided with ant-based algorithm (tour=7,585, time=9743ms). 

6. Conclusion 

In this paper, a cloning-based algorithm inspired by the natural immune system is presented. This 
algorithm is inherently parallel and the cloning strategy employs greedy criteria which lends to an 
adaptive approach. The well known TSP is used to illustrate the approach with experimental 
comparison with ant algorithm. Despite these already promising results, the proposed approach is still 
in its infancy and can be improved. Further research will include mathematical formulation and 
convergence proof together with experimental comparisons with other evolutionary algorithms using 
benchmarks suites. 
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