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Abstract

Control of inventory in production and operation systems is very important for bet-
ter management and utilization of resources. In this paper, the optimal control of a
periodic-review inventory system with items deterioration is considered. We are con-
cerned with the problem of determining the production rate that minimizes a certain
cost function. We deal with both cases where the deterioration coefficient is known and
unknown. In the case where it is unknown, the recursive least squares algorithm is used
to estimate this parameter. The main control objective is to maintain the inventory
at a desired level in spite of the unknown model parameter and variable demand. The
self-tuning optimal control is presented and the effectiveness of the proposed control
algorithm is illustrated by simulation.

Keywords: Inventory systems, periodic-review, deterioration, optimal control, parame-
ter estimation, self-tuning controller, goal.

1 Introduction

The inventory of a manufacturing system can be reviewed continuously or periodically.

In a continuous-review model, the inventory is monitored continually and production can

be started at any time. In contrast, in periodic-review models, there is some standard

time when the inventory is reviewed and a decision is made whether to produce or not.

The continuous-review policy is efficient in utilizing the system facilities and can certainly
1King Saud University, College of Computer and Information Sciences, Department of Computer Engi-

neering, P.O. Box 5178, Riyadh 11453, Saudi Arabia. email: hedjar@ccis.ksu.edu.sa
2King Saud University, College of Science, Department of Mathematics, P.O. Box 2455, Riyadh 11451,

Saudi Arabia. email: bounkhel@ksu.edu.sa
3King Saud University, College of Science, Department of Statistics and Operations Research, P.O. Box

2455, Riyadh 11451, Saudi Arabia. email: lotftadj@ksu.edu.sa

91



be implemented, given today’s computerized access to inventory levels in real time. The

continuous-review models can result in lower annual costs than periodic-review models.

However, when a company stocks many products (hundreds or even thousands), it might

be more convenient to produce periodically and a continuous-review policy may be expen-

sive and unnecessary.

The following example of a periodic-review policy in a manufacturing system is men-

tioned in Bozer and Srinivisan (1991). Consider a flexible manufacturing system (FMS)

that consists of a number of workstations connected by a single automated guided vehicle

(AGV). Jobs arrive at the FMS and request service at a particular workstation, each work-

station having a number of identical machines that can perform various operations. The

AGV visits sequentially the workstations and loads/unloads the jobs. When a job arrives at

the FMS, it has to wait in a receiving area for the AGV to come. Once the AGV comes and

finds a machine is available in the desired workstation, the first job in the line is loaded and

sent to that workstation for processing. After a job is finished at the workstation, it waits

again for the AGV to come for departure. When the AGV comes, it loads the job to the

finished area and the job leaves the FMS. If we consider a single station, since it is visited

periodically by the AGV, a periodic-review policy is more appropriate than a continuous

one.

We consider in this paper the problem of controlling the production rate of a periodic-

review manufacturing system with unknown deteriorating rate of items. Items deterioration

is of great importance in inventory theory, as shown by the surveys of Nahmias (1982),

Raafat (1991), and Goyal and Giri (2001). The self-tuning optimal control approach is

to be novel in this framework. There seems to be no literature on the optimal control of

periodic-review manufacturing systems with unknown deteriorating items rate. The opti-

mal control of continuous-review models with deteriorating items has been addressed by

Bounkhel and Tadj (2005) and Tadj et al. (2005). Optimal control of inventory systems

where items deterioration has not been taken into account is available though. We cite for

example Salama (2000), Riddals and Bennett (2001), Zhang et al. (2001), Khemlnitsky and

Gerchak (2002), Kiesmüller (2003), and Dobos (2003).
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The optimal control approach allows us to determine the optimal strategy (choice of the

production rate) so that the overall costs are minimized. We deal with both the finite and

infinite planning horizon. Besides the time-varying optimal control, we also consider the

self-tuning optimal control. Indeed, the deterioration parameters may be unknown in the

real world. The proposed control algorithm estimates online these coefficients and feeds the

controller to take the optimal production decision. Simulations and sensitivity analysis are

conducted to evaluate the quality of the solutions obtained.

Following this introduction, the model is introduced in Section 2. Section 3 deals with

the optimal control problem when the deterioration rate is known while Section 4 deals

with the self-tuning counterpart. Our results are summarized in Section 5, where we also

provide some directions for further related research.

2 Model Formulation

Let us consider a manufacturing firm producing a single product. To state the model we

use the following notation:

I(t) : inventory level at time t,
P (t) : production rate at time t, (P (t) ≥ 0),
D(t) : demand rate at time t,
θ : deterioration coefficient, (θ > 0),
q : penalty cost for deviating from the inventory goal level Î, (q > 0),
r : penalty cost for deviating from the control goal level P̂ , (r > 0),
H : length of the planning horizon, (H > 0),
I0 : initial inventory level,
Î(t) : inventory goal level at time t,
P̂ (t) : production goal rate at time t, (P̂ (t) ≥ 0).

The interpretation of the goal rates is as follows

• The inventory goal level Î(t) is a safety stock that the company wants to keep on

hand at time t. For example, Î(1) could be 50 units of the finished product on day 1

and Î(2) could be 70 units of the finished product on day 2, etc.

• The production goal rate P̂ (t) is the most efficient rate desired by the firm at time t.
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We therefore assume that the firm has set an inventory goal level Î and a production goal

rate P̂ and is looking for the a pair (P, I) which converges to (P̂ , Î) and minimizes some

cost function.

Since demand occurs at rate D, production occurs at the controllable rate P , and

deterioration occurs at rate θ, it follows that the inventory level I(t) evolves according to

the state equation
d

dt
I(t) = P (t)−D(t)− θI(t), ∀t ∈ [0,H]. (2.1)

Note that the goal pair (P̂ , Î) must satisfy the previous differential equation, to be feasible.

The solution of (2.1) is given by

I(t) = I(0)e−θt +
∫ t

0
[P (τ)−D(τ)]e−θ(τ−t)dτ, ∀t ∈ [0,H]. (2.2)

In order to state the periodic (discrete) optimal control problem associated with the pro-

duction inventory system with deteriorating items governed by (2.1), we divide the planning

horizon [0,H] into (N + 1) intervals [tk, tk+1], with tk = kT , k = 0, 1, · · · , N and we as-

sume that the functions θ and u = P − D are constant over each interval [tk, tk+1]. Let

I(k), P (k), D(k), Î(k), P̂ (k), and u(k) denote respectively the value of the inventory level,

the production rate, the demand rate, the inventory goal level, the production goal rate,

and the control function over each interval [tk, tk+1]. Simple computations give the following

simpler form of (2.2) at the end points tk

I(tk+1) = I(tk)e−θT +
∫ tk+1

tk

u(τ)e−θ(tk+1−τ)dτ, ∀k = 0, 1, · · · , N, (2.3)

with I(0) = I0. Using the fact that the function u is constant over each interval we can

rewrite Equation (2.3) as follows

I((k + 1)T ) = a I(kT ) + b u(kT ), (2.4)

where a = e−θT and b = 1−e−θT

θ . Without loss of generality we may take T = 1. Introduce

the shifted variables ∆I(k) and ∆u(k) as

∆I(k) = I(k)− Î(k) and ∆u(k) = u(k)− û(k) = P (k)− P̂ (k),

where û(k) = P̂ (k) −D(k). Note that the inventory goal pair (û(k), Î(k)) must verify the

equation

Î(k + 1) = a Î(k) + b û(k), (2.5)
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and therefore Equation (2.4) leads to

∆I(k + 1) = a ∆I(k) + b ∆u(k). (2.6)

Now we are in position to state our discrete model associated with the above produc-

tion inventory system. It is a shifted input-output model that consists of minimizing the

following objective function

J =
1
2

N∑

k=0

[
q∆I(k)2 + r∆u(k)2

]
, (2.7)

subject to Equation (2.6).

3 Known Deterioration Coefficient

In order to determine the optimal control for this model, we will assume, in a first step, that

the firm knows the value θ of the deterioration coefficient. The case where the deterioration

coefficient is unknown is considered in the next section.

Finite Horizon. The main tool in the analysis of the above model is the method of

Lagrange multipliers which consists of combining Equation (2.7) and Equation (2.6) as the

Lagrangian

L =
1
2

N∑

k=0

[
q∆I(k)2 + r∆u(k)2

]
+ λ(k + 1) [−∆I(k + 1) + a∆I(k) + b∆u(k)] , (3.1)

where λ(k + 1) is the Lagrange multiplier. Proceeding with the minimization leads to the

control equation
∂L

∂∆u(k)
= r∆u(k) + λ(k + 1)b = 0,

and the adjoint equation

∂L

∂∆I(k)
= q∆I(k)− λ(k) + aλ(k + 1) = 0.

The control equation leads to

∆u(k) = −r−1bλ(k + 1), (3.2)
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and the adjoint equation to

λ(k) = q∆I(k) + aλ(k + 1). (3.3)

The sweep method (by Bryson and Ho (1975)) assumes that

λ(k) = s(k)∆I(k), (3.4)

with s(k) > 0, for k = 0, 1, · · · , N . Substituting Equations (3.4) and (2.6) into (3.2) yields

∆u(k) = −r−1 b s(k + 1)∆I(k + 1)

= −r−1b s(k + 1) [a∆I(k) + b∆u(k)] ,

which gives

∆u(k) = −α(k + 1)∆I(k), (3.5)

where

α(k + 1) =
a b s(k + 1)

r + b2 s(k + 1)
.

If we substitute Equation (3.4) into Equation (3.3), then we obtain

s(k)∆I(k) = as(k + 1)∆I(k + 1) + q∆I(k). (3.6)

Combining (3.5) and (3.6) with (2.6) leads to

s(k) = a2 s(k + 1) + a b s(k + 1)
{
− [

r + b2 s(k + 1)
]−1

a b s(k + 1)
}

+ q,

or

s(k) = a2

[
s(k + 1)− b2 s(k + 1)2

r + b s(k + 1)

]
+ q. (3.7)

Equation (3.7) is called discrete Riccatti equation. Note that ∆u(N) has no effect on the

minimum of the objective function, so we may take ∆u(N) = 0. This ensures, along with

Equations (3.2) and (3.4), that

s(N) = q. (3.8)

The recursion equation (3.7) for s(k) is solved backwards starting from the end point N .

Therefore, the desired optimal solutions (I(k), P (k)) are given by the following recursive

formulas

I(k + 1) = Î(k + 1) + [a− bα(k + 1)]
[
I(k)− Î(k)

]
,
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and

P (k) = P̂ (k)− α(k + 1)
[
I(k)− Î(k)

]
.

Infinite Horizon. In this case, we look for the steady state solution of the Riccatti

equation (3.7). We will denote s∞ the limit of the sequence s(N) when N → ∞. From

(3.7) we have

s∞ = a2

[
s∞ − b2 s2∞

r + b2 s∞

]
+ q,

which has the following positive solution

s∞ =
− [

(1− a2) r − q b2
]
+

√
[r(1− a2)− q b2]2 + 4 b2q r

2 b2
. (3.9)

In this case the desired optimal solutions (I(k), P (k)) are given by

I(k + 1) = Î(k + 1) + [a− bα∞]
[
I(k)− Î(k)

]
,

and

P (k) = P̂ (k)− α∞
[
I(k)− Î(k)

]
,

where

α∞ =
a b s∞

r + b2 s∞
.

Simulation. To illustrate the results obtained, we perform a simulation in the infinite

horizon case. We let θ = 0.01, T = 1, q = r = 1, and

Î(k) =
{

1, 0 ≤ k ≤ 15,
2, k > 15,

, D(k) =
{

k, 0 ≤ k ≤ 15,
10, k > 15.

Then we find a = 0.99, b = 0.995, and

P̂ (k) =
{

k + 0.01, 0 ≤ k ≤ 15,
10.02, k > 15,

, û(k) =
{

0.01, 0 ≤ k ≤ 15,
0.02, k > 15.

Two simulations were conducted in this case, the first one for I(0) = 0, i.e., I0 < Î(0). The

simulation results are shown in Figure (1-a) and Figure (1-b).
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Figure 1. Simulation results, θ known, infinite horizon case, I0 < Î(0).

The simulation has been conducted for 30 units of time only. We observe from the figure

that the inventory level I and the production rate P converge to the desired goal inventory

level Î and the desired goal production rate P̂ .

In the case when I0 > Î(0), (we took I0 = 1.5 and Î(0) = 1), the simulation results are

given in Figure 2.
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Figure 2. Simulation results, θ known, infinite horizon case, I0 > Î(0).

From Figure 2 we observe that the optimal production rate P is equal to zero in the first

step. This is due to the control algorithm which assigns the value zero as an optimal

production whenever the computed production rate P is negative. The simulation has been

conducted for 9 units of time only. Note that I converges to Î and P converges to P̂ in this

case too.
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4 Self-Tuning Optimal Control

In reality, the rate of items deterioration may be unknown and can vary with time. In this

section, the deterioration coefficients a and b of the periodic-review model are estimated

online and the previous control algorithm will be used with the estimated parameters. The

dynamic relation between the input and the output of the inventory can be written as

I(k) = aI(k − 1) + bu(k − 1) = [I(k − 1) u(k − 1)]
[

a
b

]
= φ(k)β, (4.1)

where φ(k) = [I(k − 1) u(k − 1)] and β = [a b]>.

Using the observations u(0), u(1), · · · , u(N) and I(0), I(1), · · · , I(N), we wish to compute

the values of a and b, which will best fit the observed data.

Let e(k, β̂) be the equation error defined as e(k, β̂) = I(k) − φ(k)β̂, where β̂ is the

estimate of β. The principle of least squares says that the estimate β̂ is the point of

minimum of the performance measure

J2(β̂) =
N∑

k=0

e2(k, β̂) = E>(N, β̂)E(N, β̂), (4.2)

where

E(N, β̂) = [e(0, β̂) e(1, β̂) · · · e(N, β̂)]> = Y (N)− Φ(N)β̂,

Y (N) = [I(0) I(1), · · · , I(N)]>, and Φ(N) = [φ(0) φ(1), · · · , φ(N)]>.

Taking the derivative of J2 with respect to β̂, we obtain

∂J2(β̂)

∂β̂
= 0 ⇐⇒ β̂ =

[
Φ(N)>Φ(N)

]−1
Φ(N)Y (N). (4.3)

If ∆u(k) is persistently exciting, then (see for instance Lyung (1987)) the matrix Φ(N)>Φ(N)

is non singular and so the solution is well defined.

Recursive Least Squares Algorithm (Lyung (1987)). The least squares calculation

for β̂ given by Equation (4.3) is a batch calculation since one has a batch of data from which

the matrix Φ and vector Y are composed. However, the observations of the inventory are

obtained sequentially. If the least squares problem has been solved for k observations, it

seems to be a waste of computational resources to start from scratch when a new observa-

tion is obtained. Moreover, the decision of the optimal production should be taken at each
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period. Hence it is desirable to arrange the computations in such a way that the results

obtained for k observations can be used in order to get the estimates for (k+1) observations.

Let β̂(k) denote the least squares estimate based on k measurements. Then, from

Equation (4.3) we have

β̂(k) =
[
Φ>(k)Φ(k)

]−1
Φ(k)Y (k).

It is assumed that the matrix
[
Φ(k)>Φ(k)

]
is nonsingular for all k. When an additional

measurement is obtained a row is added to the matrix Φ and an element is added to the

vector Y . Hence

Φ(k + 1) =
[

Φ(k)
φ(k + 1)

]
; Y (k + 1) =

[
Y (k)

I(k + 1)

]
.

The estimated β̂(k + 1) based on (k + 1) measurements can be written as

β̂(k + 1) =
[
Φ>(k + 1)Φ(k + 1)

]−1
Φ(k + 1)Y (k + 1)

=
[
Φ>(k)Φ(k) + φ>(k + 1)φ(k + 1)

]−1 [
Φ>(k)Y (k) + φ>(k + 1)I(k + 1)

]
. (4.4)

We define the (2× 2) matrix M as

M(k + 1) =
[
Φ>(k + 1)Φ(k + 1)

]−1
=

[
M−1(k) + φ>(k + 1)φ(k + 1)

]−1
.

By using the well-known matrix inversion Lemma, the following result can be established

M(k + 1) = M(k)−M(k)φ>(k + 1)
[
1 + φ(k + 1)M(k)Φ>(k + 1)

]−1
φ(k + 1)M(k).

Substituting the expression for M(k + 1) into Equation (4.4), we obtain

β̂(k + 1) = β̂(k) + G(k)
[
I(k + 1)− φ(k + 1)β̂(k)

]
,

G(k) = M(k)φ>(k + 1)
[
1 + φ(k + 1)M(k)φ>(k + 1)

]−1
,

M(k + 1) = [I2 −G(k)φ(k + 1)]M(k),

where I2 is the 2× 2 identity matrix. We note that any recursive algorithm requires some

initial value to be started up and it is common to start the recursion at k = 0 with some

invertible matrix M(0) and a vector β̂(0).
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Simulation. Let all the parameters I0, θ, T, q, r, and Î(k) be kept as in the first simulation

and let β̂(0) = [0.5 0.4]> and M(0) = 100I2. Implementation of the recursive least squares

algorithm gave the estimates of the unknown parameters a and b shown in Figure 3.
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Figure 3. Parameters Estimation.

Observe that the estimated parameter vector β̂ reaches the vector β after 2 steps. Figure 4

shows the convergence of I and P to Î and P̂ , respectively. Note the pick in the inventory

level curve in the initial phase of the simulation. It is due to the fact that the vector β̂ had

not reached the value β yet.
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Figure 4. Simulation results, θ unknown.

5 Conclusion

We presented in this paper the optimal control of a periodic-review production inventory

system with deteriorating items. The system is modelled by a recurrent difference equation

where parameters, linked to the item deterioration rate, are unknown. An online algorithm

(recursive least squares) has been used to estimate these parameters which allow the con-

troller to take an optimal production decision. Numerical simulation shows the effectiveness

of the proposed algorithm. The multi-variable and stochastic cases are being investigated

by the authors.
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