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1-Introduction.

In recent years, significant emphasis has been given to the study of optimal con-
trol of systems governed by parabolic partial differential equations (PPDE) with
first boundary conditions or with Cauchy conditions. In these studies, the differen-
tial equations are either in general form or in divergence form. It is known that a
general class of optimal control problems of systems governed by Ito stochastic dif-
ferential equations with Markov (fixed) terminal time can be concerted into a class
of optimal control problems of systems governed by linear second order (PPDE)
with first boundary condition (Cauchy condition).

Questions concerning necessary conditions for optimality and existence of opti-
mal controls for these problems have been investigated for example in [10-16,19-26].
Also, optimal control problems with systems governed by partial differential equa-
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tions subject to control and state constraints have been extensively studied. We
refer for instance to ([30],[32]), for necessary optimality conditions for especial cases
of elliptic and parabolic problems. A typical approach to solve these problems is
to discrete both the control and the state and use nonlinear programming to solve
the resulting optimization problem.

In (Refs. [14,15,16,21,25]), the optimal control problems for systems described
by parabolic and hyperbolic operators with infinite order and consist of one equa-
tion have been discussed. Also we extended the discussion in [10-13] to n × n
coupled systems of elliptic, parabolic and hyperbolic types involving different types
of operators. To obtain optimality conditions the arguments of (Ref.[30]) have been
applied.

Making use of the Dubovitskii-Milyutin theorem from [17], following (Refs. [19-
27]) Kotarski et. al. have obtained necessary and sufficient conditions of optimality
for similar systems governed by second order operator with an infinite number of
variables and with Dirichlet and Neumann boundary conditions. The interest in the
study of this class of operators is stimulated by problems in quantum field theory.

In Ref.[20,21], Kotarski considered Pareto optimization problem for a parabolic
system and obtained necessary and sufficient conditions for optimality by applying
the classical Dubovitskii-Milyutin Theorem (Ref.[17]). The performance index was
more general than the quadratic one and had an integral form. The set repre-
senting the constraints on the controls was assumed to have a nonempty interior.
This assumption can be easily removed if we apply the generalized version of the
Dubovitskii-Milyutin Theorem (Ref.[28]), instead of the classical one (Ref.[17]) (as
the approximation of the set of controls, the regular tangent cone is used instead
of the regular admissible cone).

In [1] a time optimal control problem for parabolic equations involving second
order operator with an infinite number of variables is considered. Also in [2] a time
optimal control problem for parabolic equations involving infinite order operator
with finite number of variables is considered. In [3,4,5] a distributed and bound-
ary control problems for cooperative parabolic and elliptic systems governed by
Schrödinger operator is investigated.

In [22] a distributed control problem for a hyperbolic system with mixed control
state constraints involving operator of infinite order is studied. In [24] a distributed
control problem for Neumann parabolic problem with time delay is considered. Also
in [25], a distributed control problem for a hyperbolic system involving operator of
infinite order with Dirichlet conditions is given.

In this paper the application of the generalized Dubovitskii-Milyutin Theorem
will be demonstrated on an Pareto optimization problem for a system described by
a parabolic operator of infinite order with Neumann boundary conditions. A neces-
sary and sufficient conditions for Pareto optimality of boundary control Neumann
problem are given.

This paper is organized as follows. In section 2, we introduce some functional
spaces with infinite order. In section 3, we define a parabolic equation with infinite
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order. In section 4, we formulate the Pareto optimal control problem and we
introduce the main results of this paper.

2-Some Functional Spaces (Refs.[6,7]).
The object of this section is to give the definition of some functional spaces of

infinite order, and the chains of the constructed spaces which will be used later. We
define the Sobolev space W∞{aα, 2}(Rn) (which we shall denote by W∞{aα, 2})
of infinite order of periodic functions φ(x) defined on all boundary Γ of Rn, n ≥ 1,
as follows,

W∞{aα, 2} =
{

φ(x) ∈ C∞(Rn) :
∞∑

|α|=0

aα||Dαφ||22 < ∞
}

,

where aα ≥ 0 is a numerical sequence and ||.||2 is the canonical norm in the space
L2(Rn)( all functions are assumed to be real valued), and

Dα =
∂|α|

(∂x1)α1 ....(∂xn)αn
,

where α = (α1, ..., αn) is a multi-index for differentiation, |α| =
n∑

i=1

αi.

The space W−∞{aα, 2} is defined as the formal conjugate space to the space
W∞{aα, 2}, namely:

W−∞{aα, 2} = {ψ(x) : ψ(x) =
∞∑

|α|=0

aαDαψα(x)},

where ψα ∈ L2(Rn) and
∞∑

|α|=0

aα||ψα||22 < ∞.

The duality pairing of the spaces W∞{aα, 2} and W−∞{aα, 2} is postulated by
the formula

(φ, ψ) =
∞∑

|α|=0

aα

∫

Rn

ψα(x)Dαφ(x)dx,

where
φ ∈ W∞{aα, 2}, ψ ∈ W−∞{aα, 2}.

From above, W∞{aα, 2} is everywhere dense in L2(Rn) with topological inclu-
sions and W−∞{aα, 2} denotes the topological dual space with respect to L2(Rn),
so we have the following chain:

W∞{aα, 2} ⊆ L2(Rn) ⊆ W−∞{aα, 2}.
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We now introduce L2(0, T ; L2(Rn)) which we shall denote by L2(Q), where Q =
Rn×]0, T [, denotes the space of measurable functions t → φ(t) such that

||φ||L2(Q) = (
∫ T

0

||φ(t)||22dt)
1
2 < ∞,

endowed with the scalar product (f, g) =
∫ T

0

(f(t), g(t))L2(Rn)dt, L2(Q) is a Hilbert

space. In the same manner we define the spaces L2(0, T ; W∞{aα, 2}), and L2(0, T ;W−∞

{aα, 2}), as its formal conjugate.
Finally we have the following chains:

L2(0, T ; W∞{aα, 2}) ⊆ L2(Q) ⊆ L2(0, T ;W−∞{aα, 2}),

Finally, let us introduce the space

W (0, T ) :=
{

y; y ∈ L2(0, T ; W∞{aα, 2}), ∂y

∂t
∈ L2(0, T ; W−∞{aα, 2})

}
,

in which a solution of a parabolic equation with infinite order will be contained.

3. Parabolic Equation (see Refs.[19]-[26]).

In Ref [14], which is a review article for previous results that earlier obtained
by I. M. Gali, H. A. El-Saify and S. A. El-Zahaby. The results obtained there are
for the case of operators with an infinite number of variables which are elliptic,
parabolic, hyperbolic or well-posed in the sense of Petrowsky.

Subsequently, J. L. Lions [30] suggested a problem related to this result but
in different direction by taking the case of operators of infinite order with finite
dimension in the form

A(t)Φ(x) =
∞∑

|α|=0

(−1)|α|aαD2αΦ(x, t), (3.1)

For this operator the bilinear form π(t; Φ, Ψ) := (AΦ, Ψ)L2(Rn) is coercive on
W∞{aα, 2}. The operator A(t) is a bounded self-adjoint elliptic operator with
infinite order mapping W∞{aα, 2} onto W−∞{aα, 2}.

We consider the following evaluation equation:

∂y

∂t
+ A(t)y = 0, x ∈ Rn, t ∈ (0, T ), (3.2)

y(x, 0) = yp(x), x ∈ Rn, (3.3)

∂ωy(x, t)
∂νω

A

= f, x ∈ Γ, t ∈ (0, T ), (3.4)
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where
f ∈ L2(0, T ;W−∞{aα, 2}(Γ)), yp ∈ L2(Rn),

are given functions and ∂ω

∂νω
A

is the co-normal derivatives with respect to A(t),

i.e. ∂ω

∂νω
A

= ∂ω

∂νω cos(ν; xk); cos(ν; xk) = k - th direction cosine of ν; ν being the
normal to the boundary Γ of Rn for |ω| = 0, 1, 2, .., |ω| ≤ α− 1.

A(t) is a bounded self-adjoint elliptic partial differential operator with infinite
order mapping W∞{aα, 2} onto W−∞{aα, 2}, which takes the above form (3.1).

For each t ∈]0, T [, we define the following bilinear form on W∞{aα, 2}:
π(t; φ, ψ) = (A(t)φ, ψ)L2(Rn), φ, ψ ∈ W∞{aα, 2}.

Then

π(t; φ, ψ) =
(

A(t)φ, ψ

)

L2(Rn)

=
(

A(t)φ(x), ψ(x)
)

L2(Rn)

=
( ∞∑

|α|=0

(−1)|α|aαD2αφ(x, t), ψ(x)
)

L2(Rn)

=
∫

Rn

∞∑

|α|=0

(−1)|α|Dαφ(x)Dαψ(x) dx.

(3.5)

The bilinear form (3.5) is coercive on W∞{aα, 2} that is, there exists η ∈ R, such
that:

π(t; φ, φ) = η ||φ||2W∞{aα,2}, η > 0. (3.6)

It is well known that the ellipticity of A(t) is sufficient for the coerciveness of
π(t; φ, ψ) on W∞{aα, 2}. In fact,

π(t;φ, φ) =
( ∞∑

|α|=0

(−1)|α|aαD2αφ(x, t), φ(x, t)
)

≥
( ∞∑

|α|=0

(−1)|α|aα||Dαφ(x)||2L2(Rn)

)

= η||φ(x)||2W∞{aα,2}.
{ ∀φ, ψ ∈ W∞{aα, 2} the function t → π(t;φ, ψ) is continuously

differentiable in ]0, T [; and

π(t; φ, ψ) = π(t; ψ, φ). (3.7)

Note. The operator ∂
∂t + A(t) is parabolic operator with an infinite order which

maps L2(0, T ; W∞{aα, 2}) ontoL2(0, T ;W−∞{aα, 2}).
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4-Statement of the Pareto Optimal Control Problem and Optimization
Theorem (see Refs.[20],[21]).

The Pareto optimal control problem is stated as follows:

∂y

∂t
+ A(t)y = 0, x ∈ Rn, t ∈ (0, T ), (4.1)

y(x, 0) = yp(x), x ∈ Rn, (4.2)

∂ωy(x, t)
∂νω

A

= u, x ∈ Γ, t ∈ (0, T ). (4.3)

I(y, u) =
[

I1(u)

I2(y)

]
=

[
∫ T

0

∫

Rn

u2dxdt

∫

Rn

(y(T, x)− zd(x))2dx

]
→ Pareto min. (4.4)

Control constraints:
We assume the following constraints on controls:

u ∈ Uad ⊂ U := L2(0, T ; W∞{aα, 2}(Γ)), Uad is closed and convex. (4.5)

State constraints:
We assume the following constraints on states:

y ∈ Yad ⊂ Y := L2(0, T ; W∞{aα, 2}), Yad is closed convex with (4.6)

a non-empty interior in Y.
Where yp, zd ∈ L2(Rn) are given. A(t) is the same operator defined in section 3.

The control time T is assume to be fixed in our problem.
We also assume that there exists (ỹ, ũ) such as ũ ∈ Uad, ỹ ∈ intYad and (ỹ, ũ)

satisfy equations (4.1)-(4.3) (Slater’s condition).
The solution of the stated Pareto optimal control problem (4.1)-(4.6) is equiva-

lent to seeking of a pair (y0, u0) ∈ E := Y ×U , which satisfies equations (4.1)-(4.3)
and minimizes in the Pareto sense the vector functional (4.4) under constraints
(4.5)-(4.6). We formulate necessary and sufficient conditions of optimality for the
problem (4.1)-(4.6) in the following optimization theorem.

Theorem (4.1). For every λ1, λ2 > 0 such as λ1 + λ2 = 1 there is the unique
solution (y0, u0) to the Pareto optimal control problem (4.1)-(4.6). Moreover, there
are two adjoint states p and ω such as p ∈ W (0, T ), and ξ ∈ L2(0, T ;W−∞{aα, 2})).
Besides, p and u0 satisfy (in the weak sense) the adjoint equations given below.
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The necessary and sufficient conditions of optimality are characterized by the the
following system of partial differential equations and inequalities:

State equation:

∂y0

∂t
+ A(t)y0 = 0, x ∈ Rn, t ∈ (0, T ), (4.7)

y0(x, 0) = yp(x), x ∈ Rn. (4.8)

∂ωy0(x, t)
∂νω

A

= u0, x ∈ Γ, t ∈ (0, T ), (4.9)

Adjoint equations:

−∂p

∂t
+ A∗(t)p = 0, x ∈ Rn, t ∈ (0, T ), (4.10)

p(x, T ) = λ2[y0(x, T )− zd], x ∈ Rn, (4.11)

∂ωp(x, t)
∂νω

A

= 0, x ∈ Γ, t ∈ (0, T ). (4.12)

−∂u0

∂t
+ A∗(t)u0 = ξ, x ∈ Rn, t ∈ (0, T ), (4.13)

u0(x, T ) = − 1
λ1

p(x, T ), x ∈ Rn, (4.14)

∂ωu0(x, t)
∂νω

A

= 0, x ∈ Γ, t ∈ (0, T ). (4.15)

Maximum conditions:

∫ T

0

∫

Rn

(p + λ1u
0)(u− u0)dxdt ≥ 0 ∀u ∈ Uad, (4.16)

∫ T

0

∫

Rn

ξ(y − y0)dxdt ≥ 0 ∀y ∈ Yad. (4.17)

Proof. Note that the conditions inf(y,u) Ii(y, u) < Ii(y0, u0), i = 1, 2 hold, I1, I2

are strictly convex, hence they are Ponstein convex (strict convexity implies the
Ponstein convexity). I1, I2 are also Frèchet differentiable. Therefore all assumptions
of Theorem 1.6.1 in [21] are met. The stated Pareto optimal control problem
(4.1)-(4.6) is equivalent to the one with the scalar performance functional I =
λ1I1 + λ2I2, λ1, λ2 > 0, λ1 + λ2 = 1. To this scalar problem we apply Theorem
1.8.1 in [21]. We approximate the set Uad by the admissible cone, the set Yad and



44 G. M. BAHAA

the constraints given by equations (4.1)-(4.3) by the tangent cones and the scalar
functional by the cone of decrease.

(a.) Analysis of constraints on controls.

The set Q1 = Y ×Uad ⊂ E represents equality constraints. Using Theorem 10.5
[17] we find the functional belonging to the adjoint tangent cone i.e.

f1(y, u) ∈ [RTC(Q1, (y0, u0))]∗.

The functional f1(u, u) can be expressed as follows

f1(u, u) = f1
1 (y) + f2

1 (u)

where f1
1 (y) = 0 ∀y ∈ Y (Theorem 10.1 [15]) and f2

1 (u) is the support functional
to the set Uad at the point u0 (Theorem 10.5 [17]).

(b.) Analysis of constraints on states.

The set Q2 = Yad × Y ⊂ E represents inequality constraints. Using Theorem
10.5 [17] we find the functional belonging to the adjoint regular admissible cone i.e.

f2(y, u) ∈ [RAC(Q2, (y0, u0))]∗.

Similarly as above we have that f2(y, u) = f1
2 (y) is equal to the support func-

tional to the set Yad at the point y0.

(c.) Analysis of equations (4.1)-(4.3).

The set

Q3 :=





(y, u) ∈ E;

∂y

∂t
+ A(t)y = 0, x ∈ Rn, t ∈ (0, T ),

y(x, 0) = yp(x), x ∈ Rn,

∂ωy(x, t)
∂νω

A

= u, x ∈ Γ, t ∈ (0, T )





represents the equality constraints. On the basis of Lusternik’s theorem (Theo-
rem 9.1 [17]) the regular tangent cone has the form

RTC(Q3, (y0, u0)) =

{
(y, u) ∈ E; P ′(y0, u0)(y, u) = 0

}

=





(y, u) ∈ E;

∂y

∂t
+ A(t)y = 0, x ∈ Rn, t ∈ (0, T )

y(x, 0) = 0, x ∈ Rn,

∂ωy(x, t)
∂νω

A

= u, x ∈ Γ, t ∈ (0, T )
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where P ′(y0, u0)(y, u) is the Frèchet differential of the operator

P (y, u) :=
(

∂y

∂t
+ A(t)y − u, y(x, 0)− yp(x)

)

mapping from the space

= := L2(0, T ;W∞{aα, 2})× L2(0, T ; W∞{aα, 2})

into the space
Z := L2(0, T ;W−∞{aα, 2})× L2(Rn).

Knowing that there exists a unique solution to the equation (4.1)-(4.3) for every u
and yp it is easy to prove that P ′(y0, u0) is the mapping from the space = onto Z
as required in the Lusternik theorem.

(d.) Analysis of the performance functional.

Applying Theorem 7.5 [17] we find the cone

RFC(I, (y0, u0)) =

{
(y, u) ∈ E;

2∑

i=1

λiI
′
i(y

0, u0)(y, u) < 0

}
,

where I ′i denotes the Frèchet differential of Ii.
It is easily seen that

I ′1(y, u) = 2
∫ T

0

∫

Rn

u0udxdt,

I ′2(y, u) = 2
∫

Rn

(y0(T )− zd)y(T )dx.

From Theorem 10.2 [17] we find the functional belonging to the adjoint cone. It
has the form

f4(y, u) = −µλ1

∫ T

0

∫

Rn

u0udxdt− µλ2

∫

Rn

(y0(T )− zd)y(T )dx,

where µ ≥ 0. From Remark 1.5.1 [21] it follows that µ 6= 0.
To write down the Euler-Lagrange Equation, we need to check the assumption

(v) of Theorem 1.8.1 [21].
It is known that the tangent cones are closed [28]. Following the idea of [33], we

shall show that:-

RTC(Q1 ∩Q3, (y0, u0)) = RTC(Q1, (y0, u0))
⋂

RTC(Q3, (y0, u0)).
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We only need to show the inclusion ” ⊂ ”, because we always have ” ⊃ ” [28].
It can be easily checked that in the neighborhood V0 of the point (y0, u0) the

operator P satisfies the assumptions of the implicit function theorem [33]. Conse-
quently, the set Q3 can be represented in the neighborhood V0 in the form

{
(y, u) ∈ E; y = ϕ(u)

}
, (4.18)

where ϕ : U → Y is an operator of the class C1 satisfying the condition P (ϕ(u), u) =
0 for u such as (ϕ(u), u) ∈ V0. From this we know that

RTC(Q3, (y0, u0)) =
{

(y, u) ∈ E; y = ϕu(u0)u
}

. (4.19)

Let (y, u) be any element of the set

RTC(Q1, (y0, u0))
⋂

RTC(Q3, (y0, u0)).

From the definition of the tangent cone we can see that there exists the operator
r1
u := R1 → U such as r1

u(ε)
ε → 0 with ε → 0+ and

(y0, u0) + ε(y, u) + (r1
y, r1

u) ∈ Q1 (4.20)

for a sufficiently small ε and with any r1
y(ε).

From (4.18) follows that for sufficiently small ε, we have

(
ϕ(u0 + εu + r1

u(ε)), u0 + εu + r1
u(ε)

)
∈ Q3.

Since ϕ is a differentiable operator, therefore

ϕ(u0 + εu + r1
u(ε)) = ϕ(u0) + εϕu(u0)u + r3

y(ε)

for some r3
y(ε) such as r3

y(ε)

ε → 0 with ε → 0+.
Taking into account (4.18) and (4.19), we get

(y0, u0) + ε(y, u) + (r3
y(ε), r1

u(ε)) ∈ Q3. (4.21)

If in (4.20) we have r1
u(ε) = r3

y(ε), then it follows from (4.20) and (4.21) that (y, u)
is an element of the cone tangent to the set Q1 ∩ Q3 at (y0, u0). It completes the
proof of the inclusion ” ⊃ ”. Further applying Theorem 3.3 [21] we can prove that
the adjoint cones [RTC(Q1, (y0, u0))]∗ and [RTC(Q3, (y0, u0))]∗ are of the same
sense.
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(e.) Analysis of the Euler-Lagrange Equation.

The Euler-Lagrange Equation for our optimization problem has the form
4∑

i=1

fi(y, u) = 0. (4.22)

Taking into account the form of functionals in (4.22), we get

f2
1 (u) + f1

2 (y) = µλ1

∫ T

0

∫

Rn

u0udxdt + µλ2

∫

Rn

(y0(T )− zd)y(T )dx,

∀(y, u) ∈ RTC(Q3, (y0, u0)). (4.23)

We transform the component with y(T ) in (4.23) using the adjoint equations (4.10)-
(4.12) and the fact that (y, u) ∈ RTC(Q3, (y0, u0)).

In turn, we get

0 =
∫ T

0

∫

Rn

(
− ∂p

∂t
+ A∗(t)p

)
ydxdt

=
∫ T

0

∫

Rn

(
∂y

∂t
+ A(t)y

)
pdxdt

+
∫

Rn

p(0)y(0)dx−
∫

Rn

p(T )y(T )dx

=
∫ T

0

∫

Rn

pudxdt−
∫

Rn

p(T )y(T )dx.

(4.24)

From (4.24) and (4.11), we obtain

λ2

∫

Rn

(y0(T )− zd)y(T )dx =
∫ T

0

∫

Rn

pudxdt.

Transforming the component with u in (4.23) with the help of the adjoint equation
(4.13)-(4.15) and having in mind that (y, u) ∈ RTC(Q3, (y0, u0)), we get

∫ T

0

∫

Rn

u0udxdt =
∫ T

0

∫

Rn

u0

(
∂y

∂t
+ A(t)y

)
dxdt

=
∫ T

0

∫

Rn

(
− ∂u0

∂t
+ A∗(t)u0

)
ydxdt−

∫

Rn

u0(0)y(0)dx

+
∫

Rn

u0(T )y(T )dx =
∫ T

0

∫

Rn

ξydxdt +
∫

Rn

u0(T )y(T )dx

=
∫ T

0

∫

Rn

ξydxdt− λ2

λ1

∫

Rn

(y0(T )− zd)ydx.

(4.25)



48 G. M. BAHAA

Replacing the right-hand side of (4.23) by (4.24) and (4.25), we get

f2
1 (u) + f1

2 (y) =
1
2
µ

∫ T

0

∫

Rn

(p + λ1u
0)udxdt +

1
2
µ

∫ T

0

∫

Rn

ξydxdt. (4.26)

Further from (4.26) and the definition of the support functional to Uad and Yad,
respectively at the point u0 or y0, we obtain maximum conditions (4.16)-(4.17).
This last remark ends the proof of necessity.

The conditions (4.7)-(4.17) are also sufficient for the Pareto optimality for the
problem (4.1)-(4.6). It follows immediately from the fact that the stated optimiza-
tion problem is convex, I1, I2 are convex, continuous and so the Slater condition is
fulfilled. The uniqueness of the optimal pair y0, u0 follows from the strict convexity
of the scalar performance index.¥

Comments.
The main result of the paper contains necessary and sufficient conditions of

optimality (of Pontryagin’s type) for infinite order parabolic system that give char-
acterization of Pareto optimal control. But it is easily seen that obtaining an-
alytical formulas for optimal control is very difficult. This results from the fact
that state equations (4.7)-(4.9), adjoint equations (4.10)-(4.15) and maximum con-
ditions (4.16)-(4.17) are mutually connected that cause that the usage of derived
conditions is difficult. Therefore we must resign from the exact determining of the
optimal control and therefore we are forced to use approximations methods. Those
problems need further investigations and form tasks for future research.

Also it is evident that by modifying:
- the boundary conditions,
- the nature of the control (distributed, boundary),
- the nature of the observation,
- the initial differential system,

an infinity of variations on the above problem are possible to study with the help
of Dubovitskii-Milyutin formalism.
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