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Abstract

Let G = (V,E) be a simple graph and k be a fixed integer. A vertex z is said to

be a k-neighbourhood-cover of an edge (x, y) if d(x, z) ≤ k and d(y, z) ≤ k, where

d(x, y) represents the distance between two vertices x and y. A set C ⊂ V is called

a k-neighbourhood-covering set if every edge in E is k- neighbourhood-cover by

some vertices of C. This problem is NP-complete for general graphs even it remains

NP-complete for chordal graphs. Using dynamic programming technique, an O(n)

time algorithm is designed to solve minimum 2-neighbourhood-covering problem on

trapezoid graph. The trapezoid interval tree rooted at the vertex n is used to solve

this problem.

Keywords: Design and analysis of algorithms, tree, 2-neighbourhood-covering,

trapezoid graph.

1 Introduction

1.1 Trapezoid graph

A trapezoid i is defined by four corner points [ai, bi, ci, di], where ai < bi and ci < di with ai, bi

lying on the top channel and ci, di lying on the bottom channel of the trapezoid diagram. An

undirected graph G = (V,E) is called a trapezoid graph if it can be represented by a trapezoid

diagram such that each vertex vi in V corresponds to a trapezoid i and (vi, vj) ∈ E if and only if

the trapezoids i and j corresponding to the vertices vi and vj intersect in the trapezoid diagram.
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Figure 1 represent a trapezoid graph and its corresponding trapezoid diagram. The class of

trapezoid graphs includes two well known classes of intersection graphs: the permutation graphs

and the interval graphs [4]. The permutation graphs are obtained in the case where ai = bi and

ci = di for all i, and the interval graphs are obtained in the case where ai = ci and bi = di for all

i. Let T = {1, 2, . . . , n}, be the n trapezoids where trapezoid i is represented in the trapezoid

diagram by four corner points [ai, bi, ci, di], ai, ci being the left corner points and bi, di being the

right corner points. Without any loss of generality we assume the following:

(a) a trapezoid contains four different corner points and that no two trapezoids share a

common end point,

(b) trapezoids in the trapezoid diagram and vertices in the trapezoid graph are one and same

thing,

(c) the trapezoids in the trapezoid diagram T are indexed by increasing right end points on

the top channel i.e., 1 < 2 < · · · < n if and only if b1 < b2 < · · · < bn.
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Figure 1: A trapezoid graph G and its trapezoid representation.

1.2 The k-neighbourhood-covering set

The k-neighbourhood-covering (k-NC) problem is a variant of the domination problem. Domi-

nation is a natural model for location problems in operations research, networking etc.

The graphs considered in this paper are simple i.e., finite, undirected and having no self-loop

or parallel edges. In a graph G = (V,E), the length of a path is the number of edges in the

16



path. The distance d(x, y) from vertex x to vertex y is the minimum length of a path from x to

y, and if there is no path from x to y then d(x, y) is taken as ∞.

A vertex x k-dominates another vertex y if d(x, y) ≤ k. A vertex z k-NC an edge (x, y) if

d(x, z) ≤ k and d(y, z) ≤ k i.e., the vertex z k-dominates both x and y. Conversely, if d(x, z) ≤ k

and d(y, z) ≤ k then the edge (x, y) is said to be k-neighbourhood-covered by the vertex z. A

set of vertices C ⊆ V is a k-NC set if every edge in E is k-NC by some vertices in C. The k-NC

number ρ(G, k) of G is the minimum cardinality of all k-NC sets.

1.3 Review of previous works

Lehel et al. [3] have presented a linear time algorithm for computing the k-NC number ρ(G, k)

for k = 1, i.e., ρ(G, 1) for an interval graph. Chang et al. [2] and Hwang et al. [9] have presented

linear time algorithms for computing ρ(G, 1) for a strongly chordal graph provided that strong

elimination ordering is known. Hwang et al. [9] also proved that k-NC problem is NP-complete

for chordal graphs. Mondal et al. [10] have presented a linear time algorithm for computing

2-NC problem for an interval graph.

1.4 Our result

To find the 2-neighbourhood-covering (2-NC) set, we construct a trapezoid interval tree (TIT)

rooted at the vertex n. The TIT is computed in O(n) time. Based on this TIT, we design an

algorithm to find the minimum 2-NC set of the trapezoid graph, using dynamic programming

technique. The proposed algorithm takes O(n) time and O(n) space.

2 Preliminaries

Let G = (V,E) be a trapezoid graph, where V = {1, 2, . . . , n} be the set of vertices of G. We

define some terms which are necessary to solve this problem.

Definition 1 Right spread. The right spread of a trapezoid Ti is the maximum of bi and

di,i.e., right spread of a trapezoid Ti or the vertex i is max{bi, di}.

An array f(i) is defined as follows:

f(i) = max{bi, di}, i ∈ V .

That is, the array f(i) is the right spread of all the vertices i ∈ V .
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vertex i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ai 2 3 1 4 6 11 10 12 15 18 20 22 27 24 26

bi 5 7 8 9 13 14 16 17 19 21 23 25 28 29 30

ci 1 4 3 5 9 7 13 17 11 21 16 18 24 26 29

di 2 6 8 10 15 12 14 20 19 22 25 23 28 27 30

f(i) 5 7 8 10 15 14 16 20 19 22 25 25 28 29 30

Table 1: The arrays ai, bi, ci, di and f(i).

Now, to find the minimum 2-NC set, we rearranged the vertex set V according to the increasing

order of f(i), for all i ∈ V . Let this arranged vertex set be V ′. This means that if f(i) < f(j)

in V then i < j in V ′. In fact, V is renamed as V ′. We rename the trapezoid graph G as G′

where G′ = (V ′, E′), E′ = {(u, v) ∈ E ∀u, v ∈ V ′}. It is obviously that |V | = |V ′| = n, where n

is the number of vertices of V . Figure 2 represents the trapezoid graph G′.

l

l l

l
l

l

l

l l

l

l

l
l

e
e#

##
C
C
C
C
C
CC

£
£
£
£
£
£

Z
Z
ZZ

T
T
T
T
T
TT

PPPP ³³
³³³

l

HHHHHHHHHH

¿
¿
¿
¿
¿
¿¿

³³
³³³

Z
Z
Z
½

½
½

³³
³³¶

¶
¶
¶
¶@

@
@@

Z
Z
Z
ZZ

l£
£
£
£
£
££

B
B
B
B
B
BB

%
%%

@
@
@@

1

2 6

3

4

5

7

8

9

10

11

12

13

14

15






¤

¤
¤
¤
¤
¤¤

¤
¤
¤
¤
¤¤C

C
C
C
CC

A
A
A
A
A
AA

C
C
C
C
CC

C
C
C
C

J
J
J
JJ@

@
@

@@

·
·
·
·
·,

,
,
,
,
, ¢

¢
¢
¢
¢¢\

\
\

\
\\ \

\
\
\
\\Z

Z
Z

Z
Z

Z
ZZ

¡
¡
¡
¡
¡
¡

C
C
C
C
C
CS

S
S
S
S
S

S
S
S
S´

´
´
´
´́

¢
¢
¢
¢
¢
¢¡

¡
¡
¡
¡
¡

¶
¶
¶
¶
¶
¶

¢
¢
¢
¢
¢
¢A

A
A
A
A
A

S
S
S
S
S
S

a3 a1 a2 a4 b1 a6 b2 b3 b4 a7 a5 a9 b6 b5 a8 b7 b9 a10b8 a11b10a12b11a14b12a15a13b13b14b15

c1 d1 c3 c2 c4 d2 c5 d3 c6 d4 c8 d5 c7 d7 d6 c11c9 c12d8 d9 c10d10d12c13d11c14d14d13c15d15

Figure 2: A trapezoid graph G′ and its trapezoid representation.

The arrays ai, bi, ci, di and f(i) of the graph of Figure 1 are shown in Table 1.
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2.1 Interval representation of a trapezoid graph

Let I ′ = {I ′1, I
′
2, . . . , I

′
n}, I

′
j = [pj , qj ], pj = min{aj , cj} and qj = max{bj , dj}, j = 1, 2, . . . , n, be

the interval representation of the trapezoid graph G′ = (V ′, E′). pj and qj respectively called

the left and right endpoints of the interval I ′j . Without loss of generality, we assume that each

interval contains both of its end points and that no two intervals share a common endpoints.

If the intervals have common endpoints then the algorithm CONVERT [6] may be used to

convert the intervals of I ′ into intervals of distinct endpoints. We consider intervals in the set

I ′ rather then the vertices in G′. Further the trapezoid graph G is connected. Therefore G′ is

also connected.

Definition 2 Parallel trapezoids. Two trapezoids Ti and Tj of a trapezoid graph are parallel

if their corresponding intervals Ii and Ij have a common line segment or a common point but

the trapezoids Ti and Tj are not intersect.

It is interesting that if two trapezoids, say, Ti and Tj are parallel of a trapezoid graph G′

then their corresponding intervals, say, I ′i and I ′j have a common line segment or a common

point. Let the sorted endpoints are available and the intervals in I ′ are indexed by increasing

right endpoints i.e., q1 < q2 < · · · < qn. This indexing is known as interval ordering of the

corresponding trapezoid graph G′. This ordering is unique when a representation by a set of

intervals is provided and fixed. The interval representation of the trapezoid graph G′ of Figure

2 is shown in Figure 3.
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Figure 3: An interval representation of G′.

2.2 Some results on trapezoid graph

In this section, we present some important results of a trapezoid graph those are necessary to

develop the algorithm to find 2-neighbourhood-covering of trapezoid graph.

Lemma 1 [7] If the vertices u, v, w ∈ V are such that u < v < w and u is adjacent to w, then

either v is adjacent to u or v is adjacent to w.
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In a trapezoid diagram, two trapezoids Ti and Tj are not adjacent if the trapezoids Ti and Tj

satisfied Lemma 2.

Lemma 2 [1] Two vertices i and j of a trapezoid graph are not adjacent iff either (i) bi < aj

and di < cj or (ii) bj < ai and dj < ci.

In a trapezoid diagram, two trapezoids Ti and Tj are parallel if the trapezoids Ti and Tj

satisfy the following result.

Lemma 3 For two trapezoids Ti and Tj, if bi < aj and di < cj then Ti and Tj are parallel iff

bi < aj ≤ di or di < cj ≤ bi, for i < j.

Proof. To prove this lemma, refer Figure 4.
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Figure 4: Two types of parallel trapezoids.

Let i and j be two vertices of a trapezoid graph corresponding to the trapezoids Ti and Tj

respectively. If bi < aj and di < cj then in trapezoid diagram, the trapezoids Ti and Tj have

no common region i.e., (i, j) /∈ E. Let bi < aj ≤ di or di < cj ≤ bi for i < j. This means

that the reduce intervals of the corresponding trapezoids Ti and Tj of a trapezoid graph have a

common line segment or a common point, implying that the trapezoids Ti and Tj are parallel.

Conversely, if bi < aj and di < cj i.e., (i, j) /∈ E then the trapezoids Ti and Tj are parallel

only when the reduced intervals of a trapezoid graph have a common line segment or a common

point, i.e., bi < aj ≤ di or di < cj ≤ bi for i < j. 2

From the graph of Figure 1, the trapezoid T2 is parallel to T6, T4 is parallel to T7, T7 is parallel

to T11, T8 is parallel to T10, T11 is parallel to T14 and T12 is parallel to T13.

Therefore, in the graph of Figure 2, the trapezoid T2 is parallel to T5, T4 is parallel to T7, T7

is parallel to T11, T9 is parallel to T10, T11 is parallel to T14 and T12 is parallel to T13.

Let H(x) be the highest numbered adjacent vertex of x for each x ∈ V ′. If there is no vertex

adjacent to x and greater then x then H(x) is assumed to be x. In other words,
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vertex i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

H(i) 4 6 6 6 9 9 9 12 12 12 13 14 15 15 15

Table 2: The vertices i and the array H(i) for the graph of Figure 3.

H(x) = max{y : (y, x) ∈ E ′, y ≥ x, x, y ∈ V ′}.

The array H(x), x ∈ V ′ satisfied the following result.

Lemma 4 [5] If x, y ∈ V ′ and x < y then H(x) ≤ H(y).

For the graph of Figure 3, the vertex i and the array H(i) are shown in Table 2.

Now, we define TIT T (G′) rooted at n for a trapezoid graph G′ as T (G′) = (V ′, E′′) where

E′′ = {(x, y) : x ∈ V ′ and y = H(x), x 6= n}.

The TIT T (G′) of the interval representation of Figure 3 is shown in Figure 5.
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Figure 5: TIT of the trapezoid graph of Figure 2 .

The children and parent of the vertices of T (G′) are shown in Table 3.

Since the tree T (G′) is built from the vertex set V ′ and the edge set E ′′ ⊆ E′. Let Nj be the

set of vertices which are at a distance j from the vertex n in TIT. Thus
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Parent Children

4 1

6 2, 3, 4

9 5, 6, 7

12 8, 9, 10

13 11

14 12

15 13, 14

Table 3: Parent and children of the tree of Figure 5.

Nj = {u : d(u, n) = j} and N0 is the singleton set {n}.

For each vertex x of TIT, we define level of x to be the distance of x from the vertex n in the

tree TIT, i.e., level(x)=d(x,n). If x ∈ Nj then d(x, n) = j and the vertex x is at level j of TIT.

Thus the vertices at level j of TIT are the vertices of Nj .

The property that the vertices at any level of TIT are the consecutive integers, is proved in

[5] which is stated below.

Lemma 5 [5] The vertices of Nj are consecutive integers and if x is equal to min{u : u ∈ Nj}

then max{u : u ∈ Nj+1} is equal to x− 1.

The following result is also proved in [5].

Lemma 6 If level(x) < level(y) then x > y.

If the level of a vertex x of TIT is j then it should be adjacent to the vertices at levels j− 1, j

and j + 1 in G′. This observation is proved in the following lemma.

Lemma 7 [8] If u and v be any two vertices of TIT and if |level(u)− level(v)| > 1 then (u, v)

does not belong to E as well as E ′.

The distance d(u, v) between the vertices u and v of same level and same parent is either 1

or 2, is given by in the following lemma.
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Lemma 8 [8] For u, v ∈ V if level(u) = level(v) and parent(u) = parent(v) then distance

between u and v in G is given by

d(u, v) =







1, (u, v) ∈ E

2, otherwise.

Let the notation u→ v be used to indicate that there is a path from u to v of length one.

The path in TIT from the vertex 1 to the root n is called main path. We denote the vertex

at level l on the main path by u∗l for all l. It is obvious that level(1) is equal to the height (h)

of the tree TIT.

3 2-Neighbourhood-Covering set

Let C be the minimum 2-NC set of the given trapezoid graph G. Therefore C is also the

minimum 2-NC set of the given trapezoid graph G′. To find a 2-NC set on trapezoid graphs, a

TIT is to be constructed.

The basic idea to compute 2-NC is described below. If there exists at least one vertex of N1

which is not adjacent to u∗1, we take u
∗
1 as a member of C otherwise we select the vertex u

∗
2 as

a member of C. Let the first selected vertex (u∗1 or u
∗
2) be at level l. After selection of first

member of C, we are consider two vertices u∗l+2 and u
∗

l+3 on the main path at level l + 2 and

l + 3 respectively. Now either u∗l+2 or u
∗

l+3 (not both) will be a member of C. This selection

is to be made according to same results, discussed in the following. After selection of second

member of C, we set l + 2 to l, if u∗l+2 is selected, otherwise we set l + 3 to l. This selection is

to be continued till new l + 2 becomes greater than the height of the tree TIT.

3.1 Selection of first member of C

The condition to select u∗1 as a first member of C is obtained in the following lemma.

Lemma 9 If there exists at least one vertex of N1 which is not connected with u
∗
1, then u∗1 is a

possible member of C.

Proof. From the tree TIT it is clear that n is the parent of u∗1. Let there exist at least one

vertex at level 1, i.e., in N1 which is not connected with u
∗
1. Let v1 be any such vertex. Then

d(u∗1, v1) = 2 (as u
∗
1 → n→ v1) and d(u

∗
1, n) = 1, i.e., the vertex u

∗
1 is a 2-NC of the edge (v1, n).

If v2 be any vertex of N1 connected with u
∗
1 then d(v2, n) = 1. As d(n, u

∗
1) = 1, u

∗
1 is also a 2-NC

of the edge (v2, n). Hence u
∗
1 is a 2-NC of (v1, n) for each v1 ∈ N1. 2
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If u∗1 is connected with all vertices of N1 then for all v ∈ N1, d(v, u
∗
1) = 1. In this case, the

vertex u∗2 is to be selected as a member of C. This result is proved in the following lemma.

Lemma 10 If u∗1 is connected with all vertices of N1 then u∗2 is a possible member of C.

Proof. Let u∗1 be connected with all vertices of N1. Therefore, d(u
∗
1, v) = 1 = d(u∗1, n) for all

v ∈ N1. Hence the path from u∗2 to any vertex v, v ∈ N1 is u
∗
2 → u∗1 → v (Since u∗1 is adjacent

with all vertices of N1), so d(u
∗
2, v) = 2. But u

∗
2 may be adjacent to some vertices of N1. In this

case d(u∗2, v) = 1. Hence d(u
∗
2, v) ≤ 2, for all v ∈ N1. Also, d(u

∗
2, n) = 2. Thus, the edge (n, v),

v ∈ N1 are 2-NC by u
∗
2.

Again, if v′ ∈ N2 then d(u
∗
2, v

′) ≤ 2 (Lemma 1). Therefore, d(u∗2, v) ≤ 2 and d(u
∗
2, v

′) ≤ 2 for

v ∈ N1 and v
′ ∈ N2. Thus each edge (v, v

′) ∈ E′ is 2-NC by u∗2. Hence u
∗
2 may be selected as a

member of C. 2

From Lemma 9 and Lemma 10, it is observed that either u∗1 or u
∗
2 may be selected as a member

of C. But our aim is to find C with minimum cardinality. So, under the condition of Lemma

10, u∗2 is to be selected instead of u
∗
1.

If u∗1 be selected as a member of C at any stage then in the next stage either u
∗

l+2 or u
∗

l+3 is

to be selected as a member of C. The selection depends on same results which are considered

in the next section.

Here we introduce some notations which are used in the remaining part of the paper.

parent if u, v ∈ V , in TIT, level(u) = j, level(v) = j+1 and (u, v) ∈ E then parent(v) = u,

gparent if parent(parent(u)) = v then gparent(u) = v,

l the level number at any stage,

u∗l the vertex on the main path at level l,

Xl the set of vertices at level l of TIT which are greater than u∗l , i.e., Xl = {v : v > u∗l

and v ∈ Nl},

Yl the set of vertices at level l of TIT which are less than u∗l , i.e., Yl = {v : v < u∗l and

v ∈ Nl},

wl the least vertex of the set Yl, i.e., wl = min{v : v ∈ Yl}.

It may be noted that Xl ∩ Yl = φ and Nl = Xl ∪ Yl ∪ {u
∗

l }.

3.2 Relation between the vertices of Nl and Nl+1

Lemma 11 If v ∈ ∪1
i=0 Xl+i then d(v, u∗l ) ≤ 2.
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Proof. To prove this lemma, we refer the TIT of Figure 6. From definition of Xl it follows

that u∗l < v for all v ∈ Xl and for all l.

Let v be any vertex of Xl+1, i.e., v ∈ Xl+1. Then u∗l+1 < v < u∗l . Since (u
∗

l+1, u
∗

l ) ∈ E′,

therefore, either (u∗l+1, v) ∈ E′ or (u∗l , v) ∈ E′ (by Lemma 1). If (u∗l+1, v) ∈ E′ then d(u∗l , v) = 2

(as u∗l → u∗l+1 → v) or if (u∗l , v) ∈ E′ then d(u∗l , v) = 1 and hence d(u
∗

l , v) ≤ 2.

Again, let v′ ∈ Xl. Then u
∗

l < v′ < u∗l−1. Since (u
∗

l , u
∗

l−1) ∈ E′, therefore, either (u∗l , v
′) ∈ E′

or (u∗l−1, v
′) ∈ E′ (by Lemma 1). Similarly, d(u∗l , v

′) ≤ 2.

Thus d(u∗l , v) ≤ 2 for all v ∈ ∪
1
i=0 Xl+i. 2

g
g
g
g
g

g
g g

g g
g
gg

g
½

½
½

½
½

½

c
c
c

l
ll g

l
l
l

g
g

g
g
g
g

g
g

l
ll

#
##

#
#
#

t′

t

u∗l−1

u∗l

u∗l+1

u∗l+2

v

v′

Figure 6: A part of a TIT.

Lemma 12 If t ∈ ∪1
i=0 Yl+i then either d(t, u

∗

l ) ≤ 2 or d(t, u
∗

l+2) ≤ 2.

Proof. To prove this lemma, we refer Figure 6. Let t be any vertex of Yl+1, i.e., t ∈ Yl+1. If

parent(t) = u∗l then d(u
∗

l , t) = 1. If parent(t) 6= u∗l and (parent(t), u
∗

l ) ∈ E′ then d(u∗l , t) = 2

(as u∗l → parent(t) → t). But if (parent(t), u∗l ) /∈ E′ then it is not necessary that d(u∗l , t) ≤ 2.

Now, u∗l+2 < t < u∗l+1. Since, (u
∗

l+2, u
∗

l+1) ∈ E′ then by Lemma 1, either (u∗l+2, t) ∈ E′ or

(u∗l+1, t) ∈ E′. If (u∗l+2, t) ∈ E′ then d(u∗l+2, t) = 1 or if (u
∗

l+1, t) ∈ E′ then d(u∗l+2, t) = 2 (as

t → u∗l+1 → u∗l+2) and also d(t, u
∗

l ) = 2 (as t → u∗l+1 → u∗l ). Hence for all t ∈ Yl+1, either

d(t, u∗l ) ≤ 2 or d(t, u
∗

l+2) ≤ 2.

Again let t′ ∈ Yl. Now, u
∗

l+1 < t′ < u∗l . Since, (u
∗

l+1, u
∗

l ) ∈ E′, by Lemma 1 either (u∗l+1, t
′) ∈

E′ or (t′, u∗l ) ∈ E′. If (u∗l+1, t
′) ∈ E′ then d(u∗l , t

′) = 2 (as t′ → u∗l+1 → u∗l ) or if (t
′, u∗l ) ∈ E′

then d(u∗l , t
′) = 1. Hence for all t′ ∈ Yl, d(u

∗

l , t
′) ≤ 2.

Thus for all t ∈ ∪1
i=0 Yl+i then either d(t, u

∗

l ) ≤ 2 or d(t, u
∗

l+2) ≤ 2. 2

From Lemma 11, d(v, u∗l ) ≤ 2 for all v ∈ Xl+1. Now if v ∈ Xl+2 and v′ ∈ Xl+1 then

v < u∗l+1 < v′. By Lemma 1 if (v, v′) ∈ E′ then either (v, u∗l+1) ∈ E′ or (u∗l+1, v
′) ∈ E′. If
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(v, u∗l+1) ∈ E′ then d(v, u∗l ) = 2 (as v → u∗l+1 → u∗l ) or if (u
∗

l+1, v
′) ∈ E′ then d(v′, u∗l ) = 2 but

d(v, u∗l ) = 3 (as u
∗

l → u∗l+1 → v′ → v).

Combining the results of lemmas 11 and 12, we conclude the following result.

Lemma 13 All edges (x, y) ∈ E ′ where x, y ∈ ∪2
i=0 Nl+i are 2-NC by either u∗l or u

∗

l+2 or both.

From above lemma, if u∗l is selected as a member of C at any stage then in the next stage

one can select u∗l+2 or u
∗

l+3 as a member of C.

From lemmas 11 and 12, we conclude another result, which is stated below.

Corollary 1 If parent(wl+1) = u∗l then the edge (x, y) where x, y ∈ ∪1
i=0 Nl+i is 2-NC by u∗l .

3.3 Selection of next member of C

Let u∗l be selected as a member of C in the first stage then either u
∗

l+2 or u
∗

l+3 will be selected as

a member of C in the next stage. Now u∗l+2 may be selected in the next stage. But our aim is to

find the set C with minimum cardinality, therefore we will select u∗l+3 if possible. The possible

cases are described in the following lemmas.

Lemma 14 If parent(wl+1) 6= u∗l then u∗l+3 can not be a member of C.

Proof. If parent(wl+1) 6= u∗l then the TIT has a branch on the left on the main path. To

prove this lemma we consider Figure 7. It may be noted that existence of wl+1 implies Yl+1 6= φ.

In this case, parent(wl+1) < u∗l . Now if (parent(wl+1), u
∗

l ) ∈ E′ then d(wl+1, u
∗

l ) = 2 but if

(parent(wl+1), u
∗

l ) /∈ E′ then by Lemma 1 (gparent(wl+1), u
∗

l ) ∈ E′. Therefore, d(wl+1, u
∗

l ) = 3

(as wl+1 → parent(wl+1)→ gparent(wl+1)→ u∗l ). Thus the edge (wl+1, parent(wl+1)) is not 2-

NC by u∗l . Since, d(wl+1, u
∗

l+2) ≤ 2 as u
∗

l+2 < wl+1 < u∗l+1. Therefore, d(u
∗

l+3, parent(wl+1)) ≥ 3.

Again, the edge (wl+1, parent(wl+1)) is not 2-NC by u
∗

l+3. Hence u
∗

l+3 can not be a member of

C. 2

But, if parent(wl+1) = u∗l then some times one can select the vertex u
∗

l+3 as a member of C.

This selection depends on the nature of the TIT of the trapezoid graph G′.

Lemma 15 If parent(wl+1) = u∗l and Xl+2 = φ then u∗l+3 be a possible member of C.

Proof. To prove this lemma, we refer Figure 8. The relation parent(wl+1) = u∗l implies

that d(u∗l , v) ≤ 2 for all v ∈ ∪
1
i=0Nl+i (by Corollary 1). So the edge (x, y), x ∈ Nl+1 ∪ Nl and

y ∈ Nl+1 ∪Nl is 2-NC by u
∗

l .
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Figure 7: Illustration of lemma 14.

As Xl+2 = φ, v ≤ u∗l+2, for all v ∈ Nl+2, i.e., u
∗

l+3 < v < u∗l+2, for all v ∈ Nl+2. Again

(u∗l+3, u
∗

l+2) ∈ E′, so by Lemma 1 either (v, u∗l+2) ∈ E′ or (v, u∗l+3) ∈ E′. If (v, u∗l+2) ∈ E′ then

d(v, u∗l+3) = 2 (as v → u∗l+2 → u∗l+3) or if (v, u
∗

l+3) ∈ E′ then d(v, u∗l+3) = 1. Thus d(v, u
∗

l+3) ≤ 2

for all v ∈ Nl+2. Also d(v, u
∗

l+3) ≤ 2 for all v ∈ Nl+3. So the edge (x, y), x ∈ Nl+2 ∪Nl+3 and

y ∈ Nl+2 ∪Nl+3 is 2-NC by u
∗

l+3. Hence the vertex u
∗

l+3 may be selected as a member of C. 2
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Figure 8: A part of a TIT.

Form the above lemma it follows that if Xl+2 = φ then one can select u∗l+3 as a possible

member of C. But if Xl+2 6= φ then some times one can select u∗l+3 as a member of C. The

conditions for selecting u∗l+3 as a next possible member of C are described below.

27



Lemma 16 If parent(wl+1) = u∗l and if (u
∗

l+2, v) /∈ E′ for at least one v ∈ Xl+2 where Xl+2 6= φ

then u∗l+3 can not be a member of C.

Proof. To prove this lemma, we refer Figure 9. The relation parent(wl+1) = u∗l implies

that d(u∗l , v) ≤ 2 for all v ∈ ∪
1
i=0Nl+i (by Corollary 1). So the edge (x, y), x ∈ Nl+1 ∪ Nl and

y ∈ Nl+1 ∪ Nl are 2-NC by u
∗

l . But the edge (x, y), x ∈ Nl+1 and y ∈ Nl+2 are not 2-NC by

u∗l as d(u
∗

l , y) 6≤ 2. Now, if (u
∗

l+2, v) /∈ E′ for at least one v ∈ Xl+2 then the shortest path from

u∗l+3 to v is u
∗

l+3 → u∗l+2 → parent(v) → v (by Lemma 1) and since v > u∗l+2, v ∈ Xl+2 so it is

not necessary that (v, u∗l+3) ∈ E′. Hence d(v, u∗l+3) = 3. Thus the edge (v, parent(v)), v ∈ Xl+2

is not 2-NC by u∗l+3. Therefore, u
∗

l+3 can not be a member of C. 2

g
g
g
g
g

gg
g

gg

l
ll

,
,,

,
,,

wl+2

u∗l

u∗l+1

u∗l+2

u∗l+3

Figure 9: Illustration of lemma 16.

Lemma 17 If parent(wl+1) = u∗l and (u
∗

l+2, v) ∈ E′ for all v ∈ Xl+2 but parent(v) 6= parent(u∗l+2)

for at least one v ∈ Xl+2 then u∗l+3 can not be a member of C.

Proof. To prove this lemma, we refer Figure 10. Let v ∈ Xl+2 such that parent(v) 6=

parent(u∗l+2). In this case, the edge (v, parent(v)) is not 2-NC by u∗l (because, v < u∗l+1 <

parent(v), so if (u∗l+1, parent(v)) ∈ E ′ then d(v, u∗l ) = 3). Now, if (v, u
∗

l+2) ∈ E′ then d(v, u∗l+3) =

2 but d(u∗l+3, parent(v)) = 3. So the shortest path from u∗l+3 to parent(v) is u
∗

l+3 → u∗l+2 →

v → parent(v). Therefore, the edge (v, parent(v)) is not 2-NC by u∗l+3. Hence u
∗

l+3 can not be

member of C. 2

Lemma 18 If parent(wl+1) = u∗l and (u
∗

l+2, u) ∈ E′ for all u ∈ Xl+2 ∪ Yl+1, (v, t) ∈ E′ for at

least one v ∈ Xl+2 and t ∈ Yl+1 and parent(v) = parent(u∗l+2) for all v ∈ Xl+2 then u∗l+3 is a

possible member of C.
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Proof. To prove this lemma, we refer Figure 11. Since (u∗l+2, u) ∈ E′ for all u ∈ Xl+2 ∪ Yl+1

then the edge (x, y), x ∈ Nl+1 ∪Nl+2 and y ∈ Nl+1 ∪Nl+2 is 2-NC by u
∗

l+3 (as u
∗

l+3 → u∗l+2 →

x and u∗l+3 → u∗l+2 → y). Also the edge (parent(u∗l+2), v), v ∈ Xl+2 is 2-NC by u∗l+3 (as

d(parent(u∗l+2), u
∗

l+3) = 2, d(v, u
∗

l+2) = 2). Again the edge (t, t
′), t ∈ Yl+1, t

′ ∈ Yl+2 is 2-NC by

u∗l+3 (as d(u
∗

l+3, t) = 2 and d(u
∗

l+3, t
′) ≤ 2). Hence u∗l+3 is a possible member of C. 2
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Figure 11: Illustration of lemma 18.

Lemma 19 If parent(wl+1) = u∗l and (u∗l+2, v) ∈ E′ and parent(v) = parent(u∗l+2) for all

v ∈ Xl+2, (v, t) ∈ E′, for all v ∈ Xl+2, t ∈ Yl+1 and (u
∗

l+2, t) /∈ E′ for at least one t ∈ Yl+1 then

u∗l+3 can not be a member of C.

Proof. To prove this lemma, we refer Figure 12. Since (u∗l+2, v) ∈ E′, v ∈ Xl+2 then the

shortest path from u∗l+3 to v is u
∗

l+3 → u∗l+2 → v and d(u∗l+3, v) = 2. But, the shortest path

from u∗l+3 to t is u
∗

l+3 → u∗l+2 → parent(u∗l+2) → t (since (u∗l+2, t) /∈ E′, then by Lemma 1,
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(parent(u∗l+2), t) ∈ E′). So, d(u∗l+3, t) = 3. Therefore, the edge (v, t), v ∈ Xl+2, t ∈ Yl+1 is not

2-NC by u∗l+3. Hence u
∗

l+3 can not be a member of C. 2
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Figure 12: A part of a TIT.

Lemma 20 If parent(wl+1) = u∗l for all v ∈ Xl+2, (u
∗

l+2, v) ∈ E′ and parent(v) = parent(u∗l+2)

and (v, t) /∈ E ′, for all v ∈ Xl+2, t ∈ Yl+1 then u∗l+3 can not be a member of C.

Proof. To prove this lemma, we refer Figure 13. Since (u∗l+2, v) ∈ E′, for all v ∈ Xl+2

then the edge (v1, v2), v1, v1 ∈ Xl+2 is 2-NC by u
∗

l+3 (as d(v, u
∗

l+3) ≤ 2). Let u ∈ Yl+2. Since

u∗l+3 < u < u∗l+2 and (u
∗

l+3, u
∗

l+2) ∈ E′ then by Lemma 1, either (u, u∗l+2) ∈ E′ or (u, u∗l+3) ∈ E′.

Therefore, d(u, u∗l+3) ≤ 2 for all u ∈ Yl+2. Again u
∗

l+2 < t < u∗l+1, t ∈ Yl+1 and (u
∗

l+2, u
∗

l+1) ∈ E′

then either (t, u∗l+2) ∈ E′ or (t, u∗l+1) ∈ E′. If (t, u∗l+2) ∈ E′ then d(t, u∗l+3) = 2 but if (t, u
∗

l+1) ∈ E′

then d(t, u∗l+3) = 3. Therefore the edge (u, t) is not 2-NC by u
∗

l+3. Hence u
∗

l+3 can not be a

member of C. 2
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Figure 13: Illustration of lemma 20.
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Lemma 21 If Xl+2 = φ and Yl+1 = φ then u∗l+3 is a possible member of C.

Proof. To prove this lemma, we refer Figure 14. Let t ∈ Yl+2 and t
′ ∈ Yl+1. Since u

∗

l+3 <

t < u∗l+2 and (u
∗

l+2, u
∗

l+3) ∈ E′ then by Lemma 1, either (u∗l+3, t) ∈ E′ or (t, u∗l+2) ∈ E′. Hence

d(t, u∗l+3) ≤ 2 and also d(t
′, u∗l+3) ≤ 2. Thus the edge (t, t

′) is 2-NC by u∗l+3. Hence u
∗

l+3 is a

possible member of C. 2
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Figure 14: Illustration of lemma 21.

Lemma 22 If Yl+1 = φ and (u∗l+2, v) /∈ E′ for at least one v ∈ Xl+2 then u∗l+2 can not be a

member of C.

Proof. To prove this lemma, we refer Figure 15. If (u∗l+2, v) /∈ E′ for at least one v ∈ Xl+2

then the shortest path from u∗l+3 to v is u
∗

l+3 → u∗l+2 → parent(u∗l+2)→ v. Therefore,d(u∗l+3, v) =

3. Hence the edge (u, v), u ∈ Xl+1 and v ∈ Xl+2 is not 2-NC by u
∗

l+3. Thus u
∗

l+3 can not be a

member of C. 2
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Figure 15: A part of a TIT.
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Lemma 23 If Yl+1 = φ, (u∗l+2, v) ∈ E′ for all v ∈ Xl+2 and parent(v) 6= parent(u∗l+2) for at

least one v ∈ Xl+2 then u∗l+3 can not be a member of C.

Proof. To prove this lemma, we refer Figure 15. Without loss of generality, we assume that

(u∗l+2, v2) ∈ E′ and parent(v2) 6= parent(u∗l+2), v2 ∈ Xl+2. Since parent(v2) 6= Parent(u∗l+2),

(u∗l+2, parent(v2)) /∈ E′ as parent(u∗l+2) < parent(v2). Now v2 < parent(u∗l+2) < parent(v2) and

(v2, parent(v2)) ∈ E′ then either (v2, parent(u
∗

l+2)) ∈ E′ or (parent(u∗l+2), parent(v2)) ∈ E′.

Therefore, d(u∗l+3, parent(v2)) = 3 and d(u
∗

l+3, v2) = 2. Hence the edge (v2, parent(v2)) is not

2-NC by u∗l+3. Thus u
∗

l+3 can not be a member of C. 2

Lemma 24 If Yl+1 = φ, (u∗l+2, v) ∈ E′ for all v ∈ Xl+2 and parent(v) = parent(u∗l+2) for all

v ∈ Xl+2 then u∗l+3 may be a possible member of C.

Proof. To prove this lemma, we refer Figure 16. Since (u∗l+2, v) ∈ E′ for all v ∈ Xl+2,

d(u∗l+3, v) = 2 (as u
∗

l+3 → u∗l+2 → v). Also, d(u∗l+3, t) ≤ 2 for all t ∈ Yl+2. Again, Yl+1 = φ and

parent(v) = parent(u∗l+2) for all v ∈ Xl+2. So the edge (parent(u
∗

l+2), u), u ∈ Nl+2 is 2-NC by

u∗l+3.

Again, the edge (v, v′), v ∈ Xl+2, v
′ ∈ Xl+3 also 2-NC by u∗l+3 (since d(u

∗

l+3, v
′) ≤ 2 and

d(u∗l+3, v) = 2). Hence u
∗

l+3 may be a possible member of C. 2
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Figure 16: Illustration of lemma 24.

4 Algorithm and its complexity

From the above lemmas it is observed that if u∗l is selected as a member of C at any stage then

either u∗l+2 or u
∗

l+3 will be selected as a member of C at next stage. Also, we observed that the

vertex u∗l+2 may be selected at any stage. But, our aim is to find the set C such that |C| is
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minimum. To find C with minimum cardinality we will select u∗l+3 if possible. All possible cases

for selection of the members of C are already presented in terms of lemmas.

4.1 A procedure to compute the next member of C

The procedure NEXTMEMBER is formally presented in the following which computes the level

L of the next vertex of u∗L of C, if the level l of the currently selected vertex u
∗
L is supplied.

Procedure NEXTMEMBER(l, L)

//This procedure computes the level L such that u∗L will be the next member of C where as u∗l

is the currently selected vertex of C. The sets Xi, Yi and the array u
∗
i , i = 1, 2, . . . , h, h is the

height of the tree T (G′), are known globally.//

Initially L = l + 2;

If Yl+1 = φ then

if Xl+2 = φ then L = l + 3; (Lemma 21)

elseif for all v ∈ Xl+2, parent(v) = parent(u∗l+2) and (u
∗

l+2, v) ∈ E′ then

L = l + 3; (Lemma 24)

endif;

else //Yl+1 6= φ//

if parent(wl+1) = u∗l then

if Xl+2 = φ then L = l + 3; (Lemma 15)

elseif for all v ∈ Xl+2, parent(v) = parent(u∗l+2), (u
∗

l+2, v) ∈ E′ and

if (v, t) ∈ E′ for some v ∈ Xl+2, t ∈ Yl+1 and

(u∗l+2, t) ∈ E′ then L = l + 3; (Lemma 18)

endif;

endif;

endif;

return L;

end NEXTMEMBER

Now, in the next section we present the complete algorithm to find a minimum 2-NC set on

trapezoid graphs. Using the procedure NEXTMEMBER, we can compute the 2-NC set.
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4.2 Algorithm and its time and space complexities to find 2-neighbourhood-

covering set

In the following, we design the algorithm 2NC to compute the 2-neighbourhood-covering set of

a trapezoid graph.

Algorithm 2NC

Input: A trapezoid graph G and its trapezoid representation.

Output: Minimum cardinality 2-neighbourhood-covering set C.

Step 1: Construct a trapezoid graph G′ = (V ′, E′) and its interval representation.

Step 2: Construct a trapezoid interval tree T (G′).

Step 3: Compute the vertices on the main path of the tree T (G′) and let them u∗i ,

i = 1, 2, . . . , h; h is the height of the tree T (G′).

Step 4: Compute the sets Xi, Yi, i = 1, 2, . . . , h.

Step 5: If (u∗1, v) ∈ E′ for all v ∈ X1 ∪ Y1 then

l = 1 else l = 2;

endif;

C = C ∪ {u∗l }

Step 6: Repeat

Call NEXTMEMBER (l, L); //Find level L for the next vertex of C//

l = L;

C = C ∪ {u∗l };

Until (|h− l| ≤ 1);

end 2NC.

For the graph of Figure 2, 2-neighbourhood-covering set is C = {12, 3}. Therefore, the graph

of Figure 1, the 2-neighbourhood-covering set is also {12, 3}.

The vertices of T (G′) are the vertices of G′. Therefore, the vertices of T (G′) are also the

vertices of G. The sets Ni, i = 1, 2, . . . , h are mutually exclusive and the vertices of each Ni are

consecutive integers. Again the sets Xi and Yi, i = 1, 2, . . . , h are also mutually exclusive, i.e.,

Xi ∩ Xj = φ, Yi ∩ Yj = φ, for i 6= j and i, j = 1, 2, . . . , h and Xi ∩ Yj = φ, i, j = 1, 2, . . . , h,

Moreover, Ni = Xi∪Yi∪{u
∗
i }, i = 1, 2, . . . , h. The vertices of each Xi and Yi are also consecutive

integers. So, only the lowest and highest numbered vertices are sufficient to maintain the sets

Xi, Yi, Ni, i = 1, 2, . . . , h. Hence we will store only the lowest and highest numbered vertices

corresponding the sets Xi, Yi, Ni instead of all vertices. If any set is empty then the lowest and

highest numbered vertices may be taken as 0. It is obvious that |∪n
i=1Ni| = n. In the procedure
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NEXTMEMBER, only the vertices of the sets Nl, Nl+1 and Nl+2 are considered to process

them. The total number of vertices of these sets is
∣

∣∪2
i=0Nl+i

∣

∣ and the subgraph induced by the

vertices ∪2
i=0Nl+i is a part of the tree T (G

′). So the total number of edges in this portion is less

then or equal to
∣

∣∪2
i=0Nl+i

∣

∣− 1. Hence one can conclude the following result.

Theorem 1 The time complexity of the procedure NEXTMEMBER(l, L) is O(
∣

∣∪2
i=0Nl+i

∣

∣).

Time complexity to compute the 2-neighbourhood-covering set of a trapezoid graph is com-

puted in the following theorem.

Theorem 2 The 2-neighbourhood-covering set of a trapezoid graph with n vertices can be com-

puted in O(n) time.

Proof. The TIT T (G′) of a trapezoid graph G′ can be computed in O(n) time. Since the main

path starting from the vertex 1 and ending at the vertex n, all the vertices u∗l , i = 1, 2, . . . , h on

the main path can be identified in O(n) time. The level of each vertex of T (G′) can be computed

in O(n) time. The sets Xi and Yi, i = 1, 2, . . . , h can be computed in O(n) time (Step 4). Each

iteration of repeat-until loop takes O(
∣

∣∪2
i=0Nl+i

∣

∣) time for a given l. The algorithm 2NC calls

the procedure NEXTMEMBER for |C| time and each time the value of l is increased by 2 or 3.

Step 6 of the algorithm 2NC takes O(
∣

∣

∣∪h
i=0Ni

∣

∣

∣) = O(n) time. Hence overall time complexity is

O(n). 2

The following theorem gives the space complexity of the algorithm 2NC.

Theorem 3 The space complexity of the algorithm 2NC is O(n).

Proof. The n trapezoids Ti (= [ai, bi, ci, di]) and n intervals can be stored using O(n) space.

The TIT T (G′), the sets Xi, Yi and the vertices u
∗
i , i = 1, 2, . . . , h can be stored using O(n)

space. Also |C| is equal to O(n). Hence the total space complexity is O(n). 2
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