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Abstract : Multi-objective non-linear programs occur in various fields of operation
research. One of the application of such program portfolio selection problem. In recent
years portfolio optimization models that consider more criteria than the standard ex-
pected return and variance objectives of the widely used Markowitz model. In this paper
first a mean-variance-skewness model is proposed for portfolio selection and next added
another entropy objective function to generate well-diversified asset portfolio within
optimal asset allocation. Fuzzy programming technique is used to solve the problems.
A numerical example is used to illustrate that the method can be efficiently used in
practice.
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1. Introduction :

The Markowitz (1952) mean-variance (MV) optimization is the most common formu-
lation of portfolio selection problems. However, there is controversy over the issue of
whether higher moments should be considered in portfolio selection. Many researchers
Many researchers [Arditti (1967), Konno et all (1993), Pornchai et all (1997)] argued
that the higher moments cannot be neglected unless there are reasons to believe that
the asset returns are symmetrically distributed around the mean and the expected util-
ity function is quadratic. Levy and Sanat (1972) pointed out that the assumption of
a quadratic utility function is appropriate only for relatively lower returns, which pre-
cludes its use for many types of investment. Samuelson (1970) also showed that the
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higher moment is relevant to investors’ decision-making in portfolio selection and al-
most all investors would prefer a portfolio with a larger third moment if the first and
second moments are the same. Above discussions motivated us to add the third moment
of return of a portfolio into general MV model.

Again MV approach often leads to portfolio highly concentrated on a few asset.
Also, this method leads to negative values for some portfolio weights (short sales) while
in practice most investors are not allowed to sell short. Since maximizing Shannon’s
entropy subject to the moment constraint implies estimating probability that is the
closest to uniform, well-diversified optimal portfolio can be achieved. Entropy is a well
accepted measure of diversity. Usefulness of entropy optimization models in portfolio
selection are illustrated in three well-known books [Fang et all (1997), Kapur (1993),
Kapur and Kesavan (1992)]

In 1970 Bellman and Zadeh (1970) proposed fuzzy decision theory. Zimmermann
(1978) first applied the fuzzy set theory concept with some suitable membership func-
tions to solve the multi-objective transportation problem. He showed that solutions
obtained by fuzzy programming are always efficient. Wang et all (2003) presented sin-
gle objective portfolio optimization model using fuzzy decision theory. Our MVS model
for portfolio selection is formed as four objective nonlinear programming problem. We
give an approximation of replacing the term ’variance’ by absolute deviation’ and the
term ’skewness’ by the expectation of a piecewise linear function. Fuzzy multi-objective
programming technique is used to solve this type of problem.

This paper organized as follows. The MVS and Entropy model is presented in sec-
tion 2 and approximation of replacing the term ’skewness’ shown in section 3. Fuzzy
programming technique is given in section 4 and numerical example is given in section
5. Some conclusions are finally given in section 6.

2. Model

Portfolio optimization problem or asset allocation problems look at the ’best’ way for
an investor or fund manager to allocate funds between a number of different asset.
A security market with n risk and a risk-less asset offering a fixed rate of return is
considered. Criterion for an investor is to maximize the expected utility by allocating
the wealth among the securities at the end of the period.

Notations are as follows :

xi Proportion invested in risky asset i, i = 1, 2, · · · , n,

xn+1 Proportion invested in the risk-less asset
Ri Random rate of return on the risky asset i, i = 1, 2, · · · , n,

rn+1 Rate of return on risk-less asset
ri E(Ri), Expected rate of return on the risky asset i, i = 1, 2, · · · , n,

σij Cov(Ri, Rj), covariance between Ri and Rj , i, j = 1, 2, · · · , n,

γijk E[(Ri − ri)(Rj − rj)(Rk − rk)], central third moment of returns, i, j, k =
1, 2, · · · , n,
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The return of a portfolio x = (x1, x2, · · · , xn) is :

R(x) =
n∑

i=1

Rixi + rn+1xn+1 (1)

The expected return , variance and skewness of portfolio x = (x1, x2, · · · , xn, xn+1) are
respectively :

E(x) =
n+1∑
i=1

rixi

V (x) =
n∑

i=1

n∑
j=1

σijxixj

S(x) =
n∑

i=1

n∑
j=1

n∑
k=1

γijkxixjxk

2..1 Model - I: Portfolio Selection Problem (PSP)

The MVS model proposed here is three-objective programming problem. An optimal
portfolio should maximize both expected return and skewness as well as minimizing the
variance. So the problem can be stated as :

Maximize S(x) =
n∑

i=1

n∑
j=1

n∑
k=1

γijkxixjxk

Maximize E(x) =
n+1∑
i=1

rixi

Minimize V (x) =
n∑

i=1

n∑
j=1

σijxixj

subject to
n+1∑
i=1

xi = 1 , xi ≥ 0

The Markowitz mean variance (MV) criterion simply states that an investors should
always choose an efficient portfolio. The main problem in optimal MV portfolio is that
the portfolios are often extremely concentrated on a few asset, which is a contradiction
to the notion of diversification. Therefore there is a scope for introducing another cri-
terion viz one for diversification and the best candidate for this. It is not surprising
that entropy is used as the divergence measure of asset portfolio in finance literature.
They usually solve quadratic problem for MV portfolio selection and then, apply en-
tropy measure to infer how much portfolio is diversified. In this paper we maximize
entropy function

En(x) = −
n+1∑
i=1

xi log xi
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2..2 Model -II: Portfolio Selection Problem with Diversification (PSPD)

Well-diversified optimal portfolio problem can be stated as

Maximize S(x) =
n∑

i=1

n∑
j=1

n∑
k=1

γijkxixjxk

Maximize E(x) =
n+1∑
i=1

rixi

Minimize V (x) =
n∑

i=1

n∑
j=1

σijxixj

Maximize En(x) = −
n+1∑
i=1

xi log xi

subject to
n+1∑
i=1

xi = 1 , xi ≥ 0

3. Approximate Model

The absolute deviation rather than the variance taken as the measure of risk in portfolio
selection was analyzed by, [Konno etall (1993), Konno (1990)].
Let R be the random variable. The absolute deviation of R is defined as

W
(
R
)

= E
∣∣∣R− E(R)

∣∣∣
Under the assumption of normal distribution, the absolute deviation is equivalent to
the standard deviation as the measure of risk. By [Konno (1990)]

W
( n∑

i=1

Rixi

)
=

√√√√ 2
π

V
( n∑

i=1

Rixi

)
With the Konno’s technique, we can replace the quadratic inequality constraint by a
piecewise linear one. Difficulty in solving the problem is related to the other term
Skewness which can be approximated by a piecewise linear function.

Let F (x) = x3. The skewness can be written as :

S(x) = E

[
F

( n∑
i=1

xiRi − E
( n∑

i=1

xiRi

))]
Let f(x) be a piecewise linear function as a local approximation F (x) = x3. If the
sequence of points {ai} is given by

a−(k+1) < a−k < · · · , < a−2 < a−1 < 0 = a0 < a1

Where a−1 = −a1

f(x) can be taken in the following analytical form :

f(x) =


a3

i +
a3

i−a3
i+1

ai−ai+1
(x− ai) if ai ≤ x ≤ ai+1, i = −k,−(k − 1), · · · ,−1, 0

a3
−k +

a3
−(k+1)

−a3
−k

a−(k+1)−a−1
(x− a−k) if x ≤ a−k

a2
1x if x ≥ a1
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Hence we have the following approximate model :

3..1 Model - III

Maximize E

[
f

( n∑
i=1

xiRi −
n∑

i=1

xiri

)]

Minimize E
∣∣∣ n∑

i=1

xiRi −
n∑

i=1

xiri

∣∣∣

Maximize E(x) =
n+1∑
i=1

rixi

Maximize En(x) = −
n+1∑
i=1

xi log xi

subject to
n+1∑
i=1

xi = 1 , xi ≥ 0

Here we use the function f(x) to approximate the skewness. It is obvious that function
f(x) is linear and the difference function F (x) and f(x) ie. g(x) = F (x) − f(x) is
continuous and equal to 0 at points ai , i = −(k + 1),−k, · · · , 0, 1. Therefor if x

varies along the segment [a−(k+1), a1], then f(x) can be regarded as a good local linear
approximation of F (x) if only points ai , i = −(k+1),−k, · · · , 0, 1 are properly selected.
Practically, because the real distribution of the portfolio return is not known, we need
historical data to give the estimation. The historical returns have an upper bound and
lower bound. The bounds are a reference for us to determine the variable range and
select a sequence of points {ai}. A numerical example will be given in section 6 to
illustrate this technique.

f(x) is a concave function and can be written in the form

f(x) = f0(x) + f−1(x) + · · ·+ f−k(x)

where

f0(x) = a2
1x

and

f(x) =


(

a3
i−a3

i−1

ai−ai−1
− a3

i−a3
i+1

ai−ai+1

)
(x− ai) if x ≤ ai,

0 , if x > ai,

i = −1,−2, · · · ,−k.

Let Rit = random rate of return on the risky asset i at any time t (i = 1, 2, · · · , n ; t =
1, 2, · · · , T )

ri =
1
T

T∑
t=1

Rit
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Let bt =
1
2

∣∣∣∣∣
n∑

i=1

xiRit −
n∑

i=1

xiri

∣∣∣∣∣+ 1
2

(
n∑

i=1

xiRit −
n∑

i=1

xiri

)

ct =
1
2

∣∣∣∣∣
n∑

i=1

xiRit −
n∑

i=1

xiri

∣∣∣∣∣− 1
2

(
n∑

i=1

xiRit −
n∑

i=1

xiri

)
bt ct = 0 , bt ≥ 0 , ct ≥ 0

Then Model III can be represented as

3..2 Model -IV

Maximize S1 =
1

T − 1

T∑
t=1

−1∑
j=−k

(
a3

j − a3
j−1

aj − aj−1
−

a3
j − a3

j+1

aj − aj+1

)
yjt

Maximize E(x) =
n+1∑
i=1

rixi

Minimize A1 =
1

T − 1

T∑
t=1

(bt + ct)

Maximize En(x) = −
n+1∑
i=1

xi log xi

subject to bt − ct =
n∑

i=1

xiRit −
n∑

i=1

xiri

yjt ≤ 0 , yjt −

(
n∑

i=1

xiRit −
n∑

i=1

xiri − aj

)
≤ 0

n+1∑
i=1

xi = 1 , xi ≥ 0 , bt ct = 0 , bt ≥ 0 , ct ≥ 0

j = −k,−(k − 1), · · · ,−1 , i = 1, 2, · · · , n , t = 1, 2, · · · , T

4. Mathematical Analysis: Multi-objective Non-Linear Pro-

gramming (MONLP) Problem

Here we discuss the general form of the MONLP problem and technique to solve
this type of problem

4..1 Multi-objective Non-Linear Programming (MONLP) Problem

A general MONLP problem may be taken in the following Vector Minimization
Problem (VMP) :
Minimize k non-linear objective functions

Minimize Z(x) =
[
Z1(x), Z2(x) , · · · , Zk(x)

]
(2)
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Subject to the inequality constraints

Subject to x ∈ X = {x : gj(x) ≤ bj , (j = 1, 2, · · · ,m), li ≤ xi ≤ ui (i = 1, 2, · · · , n)}

A direct application of the optimality for single objective non-linear programming to
the MONLP leads us to the following complete optimality concept.

4..2 Fuzzy programming technique to solve MONLP problem

To solve the MONLP (2) problem, following steps are used:

Step 1 : Solve the MONLP (2) as a single objective non-linear programming prob-
lem using only one objective at a time and ignoring the others. These solutions are
known as ideal solutions.
Step 2 : From the results of step 1, determine the corresponding values for every objec-
tive at each solution derived. With the values of all objectives at each ideal solution,
pay-off matrix can be formulated as follows:

Z1(x) Z2(x) ...... Zk(x)
x1 Z∗

1 (x1) Z2(x1) ...... Zk(x1)
x2 Z1(x2) Z∗

2 (x2) ...... Zk(x2)
.. ... ... ...... ...

xk Z1(xk) Z2(xk) ...... Z∗
k(xk)

where x1, x2, ....., xk are the ideal solution of the k objective function.

Ur = max
{

Zr(x1), Zr(x2), · · · , Zr(xk)
}

Lr = min
{

Zr(x1), Zr(x2), · · · , Zr(xk)
}

Step 3 : Using aspiration levels of objective functions of the VMP (2) written as
follows :

Find x so as to satisfy

Zr(x) ≤̃ Lr , (r = 1, 2, · · · , k) , x ∈ X (3)

Here objective functions (2) are considered as fuzzy constrains and which are quantified
by the membership function

µr(Zr(x)) = 0 if Zr(x) ≥ Ur(x)

= dr(x) if Lr(x) ≤ Zr(x) ≤ Ur(x) (4)

= 1 if Zr(x) ≤ Lr(x)

Here dr(x) is a strictly monotonic decreasing function with respect to Zr(x). Having
elicited the membership functions (as in (4)) µr(Zr(x) for r = 1, 2, · · · , k, a general
aggregation function which is in the following form.

µ
D̃

(x) = µ
D̃

(
µ1(Z1(x)), µ2(Z2(x)), · · · , µk(Zk(x))

)
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So a fuzzy multi-objective decision making problem can be defined as

Maximize µ
D̃

(x) (5)

Subject to x ∈ X

Fuzzy decision [Bellman and Zadeh’s (1970)] based on minimum operator [like Zimmer-
mann [1978]), the problem (3) is reduced to

Maximize λ (6)

Subject to µr(Zr(x)) ≥ λ, for r = 1, 2, · · · , k
x ∈ X and 0 ≤ λ ≤ 1

Step 4: Solve (6) to get Pareto optimal solution

Some basic definitions on Pareto optimal solutions are introduced below.
Definition 1 (Complete Optimal Solution)
x∗ is said to be a complete optimal solution to the MONLP (2) if and only if there exists
x∗ ∈ X such that Zr(x∗) ≤ Zr(x), for r = 1, 2, · · · , k and for all x ∈ X.
However, when the objective functions of the MONLP conflict with each other, a com-
plete optimal solution does not always exist and hence the Pareto Optimality Concept
arises and it is defined as follows.
Definition 2 (Pareto Optimal Solution)
x∗ is said to be a Pareto optimal solution to the MONLP (2) if and only if there does not
exist another x ∈ X such that Zr(x∗) ≥ Zr(x), for r = 1, 2, · · · , k and Zj(x) 6= Zj(x∗)
for at least one j, j ∈ {1, 2, · · · , k}

4..3 Weighted Fuzzy Non-linear Programming

Decision maker preferences positive weights wi regarding the relative importance
of each objective function Zr(x), for r = 1, 2, · · · , k. These weights can be normalized
by taking

k∑
i=1

wi = 1. So introducing normalized weights in fuzzy NLP, (6) becomes

Maximize λ

Subject to wrµr(Zr(x)) ≥ λ, for r = 1, 2, · · · , k (7)

x ∈ X and 0 ≤ λ ≤ 1

where
k∑

r=1

wi = 1

4..4 Fuzzy programming technique to solve Multi-objective Portfolio

Optimization Model (MOPOM

Model-IV can be formulated as Vector Minimization problem (VMP)

Minimize [−S1] = − 1
T − 1

T∑
t=1

−1∑
j=−k

(
a3

j − a3
j−1

aj − aj−1
−

a3
j − a3

j+1

aj − aj+1

)
yjt
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Minimize [−E(x)] = −
n+1∑
i=1

rixi

Minimize A1 =
1

T − 1

T∑
t=1

(bt + ct) (8)

Minimize [−En(x)] =
n+1∑
i=1

xi log xi

subject to bt + ct =
n∑

i=1

xiRit −
n∑

i=1

xiri

yjt ≤ 0 , yjt −

(
n∑

i=1

xiRit −
n∑

i=1

xiri − aj

)
≤ 0

n+1∑
i=1

xi = 1 , xi ≥ 0 , bt ct = 0 , bt ≥ 0 , ct ≥ 0

j = −k,−(k − 1), · · · ,−1 , i = 1, 2, · · · , n , t = 1, 2, · · · , T

To solve VMP form (8), step-1 of (4.2) is used. After that, pay-off matrix is formulated
as follows :

S1(x) E(x) A1(x) En(x)
x1 S1(x1) E(x1) A1(x1) En(x1)
x2 S1(x2) E(x2) A1(x2) En(x2)
x3 S1(x3) E(x3) A1(x3) En(x3)
x4 S1(x4) E(x4) A1(x4) En(x4)

Now we find the upper bounds US1 , UE , UA1 , UEn and lower bounds LS1 , LE , LA1 , LEn

US1 = max
i=1,2,3,4

{S1(xi)} , LS1 = min
i=1,2,3,4

{S1(xi)}

UE = max
i=1,2,3,4

{E(xi)} , LE = min
i=1,2,3,4

{E(xi)}

UA1 = max
i=1,2,3,4

{A1(xi)} , LA1 = min
i=1,2,3,4

{A1(xi)}

UEn = max
i=1,2,3,4

{En(xi)} , LEn = min
i=1,2,3,4

{En(xi)}

For simplicity we use linear membership µ(−S1(x)), µ(−E(x)), µ(A1(x)) and µ(−En(x))
for the objective functions S1(x) , E(x) , A1(x) and En(x) respectively defined as
follows :

µ(− S1(x)) =


0 , if S1(x) ≤ LS1(

S1(x)−LS1
US1

−LS1

)
, if LS1 < S1(x) < US1

1 , if S1(x) ≥ US1
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µ(− E(x)) =


0 , if E(x) ≤ LE(

E(x)−LE

UE−LE

)
, if LE < E(x) < UE

1 , if E(x) ≥ UE

µ(A1(x)) =


0 , if A1(x) ≥ UA1(

UA1
−A1(x)

UA1
−LA1

)
, if LA1 < A1(x) < UA1

1 , if A1(x) ≤ LA1

µ(− En(x)) =


0 , if En(x) ≤ LE(

E(x)−LEn
UE−LEn

)
, if LE < En(x) < UEn

1 , if E(x) ≥ UEn

According to Step 3, having elicited the above membership functions crisp non-linear
programming problem of (8) is formulated as follows :

Maximize λ

Subject to S1(x) ≥ LS1 + λ
(
US1 − LS1

)
E(x) ≥ LE + λ

(
UE − LE

)
A1(x) ≤ UA1 − λ

(
UA1 − LA1

)
(9)

En(x) ≥ LEn + λ
(
UEn − LEn

)
bt − ct =

n∑
i=1

xiRit −
n∑

i=1

xiri

yjt ≤ 0 , yjt −

(
n∑

i=1

xiRit −
n∑

i=1

xiri − aj

)
≤ 0 , 0 ≤ λ ≤ 1

n+1∑
i=1

xi = 1 , xi ≥ 0 , bt ct = 0 , bt ≥ 0 , ct ≥ 0

j = −k,−(k − 1), · · · ,−1 , i = 1, 2, · · · , n , t = 1, 2, · · · , T

and similarly weighted Fuzzy non-linear programming problem is formulated as

Maximize λ

Subject to S1(x) ≥ LS1 + (λ/ws1)
(
US1 − LS1

)
E(x) ≥ LE + (λ/wE)

(
UE − LE

)
A1(x) ≤ UA1 − (λ/wA1)

(
UA1 − LA1

)
(10)

En(x) ≥ LEn + (λ/wEn)
(
UEn − LEn

)
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bt − ct =
n∑

i=1

xiRit −
n∑

i=1

xiri , ws1 + wE + wA1 + wEn = 1

yjt ≤ 0 , yjt −

(
n∑

i=1

xiRit −
n∑

i=1

xiri − aj

)
≤ 0 , 0 ≤ λ ≤ 1

n+1∑
i=1

xi = 1 , xi ≥ 0 , bt ct = 0 , bt ≥ 0 , ct ≥ 0

j = −k,−(k − 1), · · · ,−1 , i = 1, 2, · · · , n , t = 1, 2, · · · , T

5. Numerical examples

A numerical example is given to illustrated the solution procedure. The returns of 5
stocks at 7 periods are given below

Period Stock 1 Stock 2 Stock 3 Stock 4 Stock 5
1 0.14 −0.12 0.12 0.03 0.01
2 −0.07 0.08 0.14 0.05 −0.10
3 0.29 0.07 −0.10 0.04 0.19
4 0.08 0.12 −0.09 0.08 0.14
5 0.11 0.04 −0.02 0.07 −0.10
6 −0.06 0.03 0.14 0.06 −0.05
7 0.03 0.04 0.13 −0.05 0.07
ri 0.0743 0.0386 0.0457 0.04 0.0229

Assume that the return of the risk-less asset is r7 = 0.035

To determine the sequence of points {a−(k+1), a−k , ....., a0},
find the min

{
Rit − ri, i = 1, 2, ...5; t = 1, 2, ..., 7

}
, which is −0.1586

Select a−5 = 0.15, a−4 = −0.12,a−3 = 0.09, a−2 = −0.06
a−1 = −0.03, a0 = 0

TABLE - 1
[Pareto optimal solution of Model - IV]

x∗1 x∗2 x∗3 x∗4 x∗5 x∗6 x∗7
0.1203 0.1423 0.1250 0.1501 0.1605 0.1372 0.1646

TABLE - 2
[Pareto optimal solution of Model - IV using different weights]
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Weights x∗1 x∗2 x∗3 x∗4 x∗5 x∗6 x∗7
wS1 = 1/4 wE = 1/4 0.1203 0.1423 0.1250 0.1501 0.1605 0.1372 0.1646
wA1 = 1/4 wEn = 1/4
wS1 = 0.40 wE = 0.40 0.1412 0.1834 0.1492 0.1179 0.1102 0.1523 0.1458
wA1 = 0.05 wEn = 0.15
wS1 = 0.05 wE = 0.15 0.2578 0.1514 0.0856 0.1789 0.1665 0.0451 0.1147
wA1 = 0.50 wEn = 0.30

6. Conclusion :

In this paper we consider MVS model for portfolio selection and added another entropy
objective function, taken as Shannons measure of entropy to generate well diversified
assets within optimal asset allocation. To overcome the difficulty of calculating skewness
and variance we transformed this to a simple approximate model. Fuzzy non-linear
programming technique is used to solve the problem. the models are illustrated with
numerical example. Portfolio selection is based on uncertainty of returns of securities.
Incomplete and asymmetric information is still an important aspect of future research.
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