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Abstract

In this paper, we investigate the bulk service queue with Bernoulli vacation schedule and
restricted admissibility introduced and studied by Madan and Abu-Dayyeh, [Revista
Investigacion Operacional, Vol.24, No.2, pp.113-123, 2003]. Madan and Abu-Dayyeh
assume exponentially distributed service times while we allow these times to be generally
distributed. We obtain various performance measures that we use to derive the optimal
values of the quorum size and maximum server capacity. The effect of the admission
control parameter is further shown in a numerical example.
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1 Introduction

An interesting control problem for queues is that of admission control. In typical admission

control problems, queue lengths are controlled by rejecting some of the incoming arrivals.

Recently, Madan and Abu-Dayyeh [8] considered the following Mx(RA)/M(b,n)(VS)/1(BS)

queueing system:

• Customers arrive in batches of variable size according to a compound Poisson process,

but not all arriving batches are allowed to join the system (RA: restricted admission).
1AMO - Advanced Modeling and Optimization. ISSN: 1841-4311
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• Service is batch of fixed size b following a min(b, n) rule, which means that a fixed

number b of customers or the entire queue length, which ever is less, is taken up for

service. Service times are exponentially distributed.

• Server vacations are according to a Bernoulli schedule, which means that the server

may take a single vacation at a service completion epoch (BS: Bernoulli schedule, VS :

single vacation). Vacation times are generally distributed.

The restricted admissibility policy has also been considered in other papers by Choud-

hury and Madan [3], Madan and Choudhury [5, 6, 7], and Madan and Abu-Dayyeh, [9].

None of these papers however assumes a batch service. Madan and Abu-Dayyeh [8] is

the only one that assumes a batch service, however it is a Markovian system. Our aim is

to generalize their model by considering the following M(RA)/G(r,R)(VS)/1(BS) queueing

system:

• Service is batch of variable size according to the following bilevel policy: Given two

fixed integers r (quorum size) and R (maximum server capacity), with 1 ≤ r ≤ R,

– if the queue size is less than r at a service completion epoch, then the server

waits for the queue to accumulate r units before starting serving the batch of r

units;

– if the queue size at a service completion epoch is less than R but larger than r,

then the server serves immediately the entire queue in a single batch;

– if the queue size at a service completion epoch is larger than R, then the server

serves immediately a group of R customers in a single batch.

In all cases, service times are generally distributed.

• An optimal policy is obtained which prescribes the values of r and R that should be

implemented in order to minimize the system expected total cost per unit of time.

It is true that the arrival process in our system is orderly rather than compound Poisson,

which is a specialization rather than a generalization of Madan and Abu-Dayyeh’s model.

Nevertheless, we believe that it is worth investigating a system with generally instead of

exponentially distributed service times, since both systems require quite different analysis

approaches. Also, it is our plan to generalize in another paper the results obtained in this

paper to the Mx(RA)/G(r,R)(VS)/1(BS) queueing system.
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In the next section we describe the model formally by introducing the notation used

throughout the paper. In Section 3, we use the embedded Markov chain approach to

study the discrete time parameter queueing process. In Section 4, we use semi-regenerative

techniques to study the continuous time parameter queueing process. In Section 5 we derive

the optimal policy and end the paper in Section 6 with a numerical example.

2 Model Description

Consider an infinite capacity queueing facility where customers arrive at a service facility

according to an orderly Poisson process. According to the bilevel control policy assumed,

an idle period begins when the queue drops below level r and a busy period starts as soon

as the queue accumulates the same number r. However, after each service completion,

the server takes a vacation with probability p and starts a new service (if r customers are

present) with probability (1− p). The decisions about taking a vacation after each service

completion or vacation completion are independent. Also, the vacations are iid random

variables whose length is independent of the length of the service times. The service times

are iid random variables independent of the input process. In order to fully describe the

model, we use the following notation:

Parameters:




θ : probability that a customer is allowed admission upon arrival;
λ : arrival rate during idle period;
λ1 : arrival rate during busy period, with λ1 = θλ;
p : probability that the server takes a vacation at a service completion epoch;
b, b2 : first and second moments of the service time of a batch;
v, v2 : first and second moments of the vacation time of the server.

Random variables:




B : service time of a batch;
V : vacation time of the server;
G : required service time of a batch;
Cn : number of customer arrivals during nth required service time;

and we note that the time required by a batch of customers to complete the service cycle

is such that G =
{

B + V, p,
B, q = 1− p.

Probability distribution functions (PDF):




B(t) : PDF of the service time B of a batch;
V (t) : PDF of the vacation time V of the server;
G(t) : PDF of the required service time G of a batch.
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Laplace-Stieltjes transforms (LST):




B∗(θ) : LST of B(t) with β(z) = B∗(λ− λz);
V ∗(θ) : LST of V (t) with ν(z) = V ∗(λ− λz);
G∗(θ) : LST of G(t) with γ(z) = G∗(λ− λz) = [q + pν(z)]β(z).

Stochastic processes:
{

Q(t) : number of customers in the system at an arbitrary instant of time t;
Qn : number of customers in the system at the nth service completion epoch.

3 Discrete Time Process

The queueing process {Qn;n = 0, 1, · · ·} is a Markov chain since it is such that

Qn+1 = (Qn −R)+ + Cn+1, (3.1)

where f+ = max{f, 0}. Denote by A the transition probability matrix (TPM) of {Qn} and

by Ai(z) = E
[
zQn+1 |Qn = i

]
the probability generating function (pgf) of the ith row of A.

Then, from the recursive expression (3.1), we have

Ai(z) = z(i−R)+γ(z). (3.2)

Using results from Abolnikov and Dukhovny [1], it can be shown that the Markov chain

{Qn} is ergodic if and only if

ρ < 1, (3.3)

where

ρ =
λ1(b + pv)

R
. (3.4)

Introduce the pgf P (z) =
∑∞

i=0 piz
i where, when it exists (i.e., when ρ < 1), pi =

limn→∞ P{Qn = i} is the steady-state probability of state i. Since P (z) =
∑∞

i=0 Ai(z)pi,

then, using expression (3.2), we have

P (z) =
γ(z)

∑
i<R(zR − zi)pi

zR − γ(z)
. (3.5)

Using a variant of Rouché’s theorem, see Abolnikov and Dukhovny [1], the R unknown

probabilities p0, · · · , pR−1 in (3.5) are the solution of the following system of linear equations:




∑

i<R

dk

dzk

[
γ(z)− zi

]
z=zs

pi = 0, k = 0, 1, · · · , ks − 1; s = 1, 2, · · · , S,

∑

i<R

(R− i)pi = R− ρR,

(3.6)
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where zs are the roots of the characteristic equation

zR − γ(z) = 0 (3.7)

in the region B̄(0, 1)\{1} with their multiplicities ks such that
∑S

s=1 ks = R− 1.

At this stage, various performance measures related to the Markov chain {Qn} can be

obtained. Namely, the mean system size at a service completion epoch is given by

Ld =
N ′′(1)−D′′(1)

2D′(1)
, (3.8)

where

N ′′(1) = 2ρR(R− ρR) +
∑

i<R

[R(R− 1)− i(i− 1)]pi,

D′(1) = R− ρR,

D′′(1) = R(R− 1)− λ2
1 [b2 + 2pbv + pv2] .

Also, let P = (p0, p1, · · ·) and for i = 0, 1, · · ·, let βi = E [Tn+1 − Tn |Qn = i]. Then the

mean busy cycle is given by

Pβ =
∑

i<r

(
r − i

λ

)
pi + b + pv. (3.9)

Using the the mean busy cycle (3.9), the system intensity defined by I = λ
∑

i<r piβi +

λ1
∑

i≥r piβi is given by

I =
∑

i<r

(r − i)pi + ρR. (3.10)

Finally, we note that the server load is

Γn+1(Qn) =
{

r, Qn < r,
min{Qn, R}, Qn ≥ r,

so that the mean server load defined by ` = limn→∞E [Γn+1(Qn) |Qn = i] is given by

` = (r −R)
∑

i<r

pi +
∑

r≤i<R

(i−R)pi + R. (3.11)

Using expression (3.10) for the system intensity, expression (3.11) for the mean server load,

and the last equation (which is due to the fact that P (1) = 1) in the system of equations

(3.6), we can show that I = `.
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4 Continuous Time Process

The queueing process {Q(t); t ≥ 0} is readily seen to be semi-regenerative relative to the

point process {Tn; n = 0, 1, · · ·} and {(Qn, Tn);n = 0, 1, · · ·} is a Markov renewal process.

Introduce the pgf π(z) =
∑∞

i=0 πiz
i where πi = limn→∞ P{Q(t) = i} are the steady-state

system size probabilities. This stationary distribution exists under the condition ρ < 1.

It can be determined using the main convergence theorem for semi-regenerative processes

which, provided the probability distribution of the embedded Markov chain is known, gives

much quicker result than the more popular method of supplementary variables. The main

convergence theorem for semi-regenerative processes, see Çinlar [4], yields

π(z) =
1

Pβ

∞∑

i=0

pi

∞∑

j=0

∫ ∞

0
P (Q(t) = j, T1 > t |Qn = i) dt zj , (4.1)

where the mean busy cycle Pβ is given by expression (3.9). Specializing the main con-

vergence theorem for semi-regenerative processes to our case yields, after some lengthy

computations

π(z) =
1

λ1Pβ

{
1− γ(z)

1− z
P (z) + [γ(z) + θ − 1]

∑

i<r

(
zi − zr

)
pi

1− z

}
. (4.2)

At this stage, various performance measures related to the semi-regenerative process {Q(t)}
can be obtained. Namely, the mean system size at an arbitrary instant of time is given by

Lc =
1

λ1Pβ

{
ρRLd +

λ2
1

2
(b2 + 2pbv + v2) + ρR

∑

i<r

(r − i)pi +
θ

2

∑

i<r

[i(i− 1)− r(r − 1)] pi

}
.

(4.3)

Also, the mean idle period is given by

I =
1
λ

∑
i<r(r − i)pi∑

i<r pi
, (4.4)

the mean busy period by

B =
1−∑

i<r πi∑
i<r πi

I. (4.5)

and the mean busy cycle by

C = I + B. (4.6)

5 Optimal Policy

The performance measures derived in the previous section are now be used to optimize the

performance of the system. The design of an optimal management policy for a queueing
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system has received a lot of attention, as shown by the survey conducted by Tadj and

Choudhury [10]. This is known in queueing theory as the optimal control of the system.

The aim is to find the the best values that the decision maker would implement in order to

minimize the total expected cost per unit of time. Using a linear cost structure, this cost

is given by

TC(r,R) = chLc + co
B

C
+ cs

1
C

+ ca
I

C
, (5.1)

where

• ch: holding cost per unit time for each customer present in the system;

• co: cost per unit time for keeping the server on and in operation;

• cs: setup cost per busy cycle;

• ca: startup cost per unit time for the preparatory work of the server before starting

the service.

This expression of the total expected cost per unit of time is highly nonlinear and it is not

possible to show that it is a convex function of r and R. Denoting by

R∗(r) = min{R ≥ 1 |TC(r,R + 1)− TC(r,R) > 0}, (5.2)

the following quick search procedure is reproduced from Tadj and Choudhury [10] to obtain

the optimal values of r and R:

Step 1. Set r = 1. Determine R∗(r) using (5.2) and compute TC(r,R∗(r)) using (5.1).

Step 2. Compute R∗(r + 1) using (5.2) and TC(r + 1, R∗(r + 1)) using (5.1).

Step 3. If TC(r + 1, R∗(r + 1)) > TC(r,R∗(r)), STOP. The optimal values are (r∗, R∗) =

(r,R∗(r)). Otherwise, set r = r + 1, GOTO Step 2.

6 Numerical Illustration

To illustrate the application of the optimal policy derived in the previous section we present a

numerical example in which we assume that the service and vacation times are exponentially

distributed. Then

β(z) =
1

1 + λb(1− z)
, ν(z) =

1
1 + λv(1− z)

, and γ(z) =
1 + qλv(1− z)

[1 + λv(1− z)][1 + λb(1− z)]
.
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Also, the second moments of the service and vacation times are b2 = 2b2 and v2 = 2v2,

respectively. The characteristic equation (3.7) becomes in this case

λ2bvzR+1 − [λ2bv + λ(b + v)]zR + zR−1 + zR−2 + · · ·+ z + 1 + qλv = 0. (6.1)

It is well known, see for example Chaudhry and Templeton [2], that this equation has R−1

simple roots zs, s = 1, · · · , R − 1 that belong to the unit ball B̄(0, 1) in C. The system of

equations (3.6) becomes:




∑
i<R

[
1+qλv(1−z)

[1+λv(1−z)][1+λb(1−z)] − zi
]

z=zs

pi = 0, s = 1, · · · , R− 1,

∑
i<R(R− i)pi = R− ρR.

(6.2)

To form the expected total cost per unit time (5.1), we successively compute π0, · · · , πr−1

from (4.2), Ld (3.8), Lc (4.3), Ī (4.4), B̄ (4.5), and C̄ (4.6). We implemented the search

procedure described above by taking the following system parameters λ = 1, b = 0.6, v =

0.2, p = 0.75, θ = 0.9 and units costs ch = 5, co = 100, cs = 10000, ca = 250. The curve

representing the total expected cost per unit of time is shown in Figure 1.
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Figure 1. Variations of the total expected cost per unit of time.

The optimal values are r∗ = 1 and N∗ = 5 for a minimum total cost TC(r∗, N∗) = 8691.60.

Since the restricted admissibility policy is characterized by the admission probability θ, we

wanted to show the effect of this parameter on the optimal solution. To this end, we kept

all the parameters at the same values, except for the probability θ that we varied from 0.1
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to 0.9 by increments of 0.1, and computed the value of the total cost for each value of θ.

The variations of the the total cost as a function of θ is depicted in Figure 2.
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Figure 2. Variations of the total expected cost per unit of time.

As can be seen, the higher the probability of admission, the lower the total cost.
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