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Abstract. The notion of centre of a graph is motivated by a large class of problems specially
facility location problems on a network. In this paper, an algorithm is presented to find centres
and diameter of a circular-arc graph. If the circular arc representation is given then the proposed
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1 Introduction

A graph G = (V,E) is called a circular-arc graph if their is a one-to-one correspondence between
the vertices of the graph and the arcs of a circular arc family such that there exits an edge between
two vertices if and only if their corresponding arcs have non empty intersection. V is the set of
all vertices and E is the set of all edges of the graph G.
Circular-arc graph has many applications in real world such as genetics, computer scheduling,

circuit design etc.
Turker [10] proposed O(n3) time algorithm for recognizing a circular-arc graph and construct-

ing in the affirmative case, a circular arc model. Hsu [6] designed an O(nm) time algorithm
for this problem. Eschen and Spinrad [3] presented an O(n2) time algorithm for recognizing a
circular-arc graph.
Locating problem is a topic of great importance in the fields such as transportation, com-

munication, service areas and computer sciences. The criteria for the locating problem in the
literature are minmax criteria in which the distance to the furthest vertex from the site is mini-
mized and minsum criteria in which the total distance to the vertices from the site is minimized.
In this paper, we first find out the vertices which form a minimum cycle and cover the whole

circle. Then consider the other vertices and by checking their position we determine the centres
and diameter of the graph.
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For some particular types of graph such as tree [5], outerplanar graph [4], etc. linear time
algorithms can be devised to compute the centre. For the interval graph O(n) time sequential
algorithm is presented for computing diameter and centre of an interval graph with n vertices by
Pal and Bhattacharjee [9]. In [8], Olariu has presented an O(n+m) time sequential algorithm
where input is an adjacency list that takes O(n+m) space, where n and m are the number of
vertices and edges respectively. The centre problem on circular-arc graph and interval graph is
studied in [1]. Chen et al. [2] have introduced an algorithm for solving all-pair shortest paths
query problem on interval and circular-arc graphs. A linear time algorithm for solving the centre
problem is presented by Lau et. al. [7] for cactus graph.

2 Definitions and Notations

Let A = {A1, A2, . . . , An} be the circular arc family of a given circular-arc graph G = (V,E).
The family of circular arcs are located around a circle C. Every arc can be represented by its
two endpoints e.g., Ai can be represented as [si, fi] where si is the starting point and fi is the
finishing point of the arc Ai on the circle C. Each endpoint of an arc is assigned to a positive
integer called a coordinate. A ray is a straight line from the centre of C passing through any
coordinate.
Without loss of generality, we assume the following

1. An arc contains both its endpoints and no two arcs share a common endpoint.

2. The graph G is connected and the list of sorted endpoints is given.

3. No single arc in A cover the entire circle C.

4. Arcs and vertices of a circular-arc graph are same thing.

5. The endpoints of the arcs in A are sorted according to the order in which they are visited
during the clockwise traversal along circle by starting at an arbitrary arc called A1.

6. The arcs are sorted in increasing values of si’s i.e., si > sj for i > j.

7.
⋃n

i=1 Ai = C (otherwise, the problem becomes one on interval graph).

The family of arcs A is said to be canonical if
(i) si’s and fi’s for all i = 1, 2, . . . , n are distinct integers between 1 to 2n and
(ii) point 1 is the starting endpoint of the arc A1.
If A is not canonical, using sorting one can construct a canonical family of arcs using O(n logn)

time.
A path of a graph G is an alternative sequence of distinct vertices and edges, beginning and

ending with vertices. The length of a path is the number of edges in the path. A path from
vertex i to j is a shortest path if there is no other path from i to j with lower length. The
shortest distance (i.e., the length of the shortest path) between the vertices i and j is denoted
by d(i, j). The eccentricity e(i) of a vertex i in a graph is the distance from vertex i to a vertex
furthest from i. Vertex j is said to be a furthest neighbour of the vertex i if d(i, j) = e(i). The
diameter of a graph G is the maximum among all eccentricities. The radius of a graph is the
minimum among all eccentricities. A centre of a graph is a vertex whose eccentricity equal to
radius.
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Figure 1: Circular-arc graphs and their circular-arc representation.

The eccentricity, diameter (δ(G)), radius (ρ(G)) and centre (C(G)) of a graph are defined as
follows.

e(i) = max {d(i, j) : j ∈ V }

δ(G) = max {e(i) : i ∈ V }

ρ(G) = min {e(i) : i ∈ V }

C(G) = {u ∈ V : e(u) = ρ(G)}.

The centre of a graph may be a single vertex or more than one vertices.
The graph of Figure 1(a) has a single vertex as the centre i.e., vertex 3 while the graph of

Figure 1(b) has three vertices in the centre i.e., vertices 1, 3, 6.
To find the diameter of a circular-arc graph a main cycle is constructed from the set of arcs.

The method to find such cycle is described in the next section.

3 Method to Find a Main Cycle

A cycle of a circular-arc graph is a set of intersecting arcs, those arcs cover the whole circle
C. That is, if A1, A2, . . . , Ar be a set of arcs of a cycle then Ai ∩ Ai+1 6= φ, Ar ∩ A1 6= φ and
⋃r

i=1 Ai = C. The main cycle is a cycle whose cardinality is minimum among all cycles. The
main cycle is denoted by M ′. Let M be the set of vertices corresponding to the arcs of M ′. The
set M is also regarded as the main cycle. The length of a cycle (C) is the number of arcs on the
cycle C and it is denoted by len(C). The length of the main cycle is the minimum among all
other cycles. A circular-arc graph may have more than one main cycles and the length of each
cycle is equal to |M |. If the graph has multiple cycles then any one of them is taken as main
cycle.
A method to find a main cycle is described below.
First we draw a ray through the finishing point of any arc of A. Then, consider the arcs which

are intersected by this ray. Find out the arc which has right most finishing point. This is the
first vertex of the set M . Again, we draw a ray from the centre and through the finishing point
of the first vertex of M . Consider the arcs which are intersected by the second ray. Find out
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the arc which has right most finishing point among the arcs which are intersected by second ray.
Define the vertex corresponding to this arc as the second vertex of M . Iterate this process until
when any vertex of M is repeated. Finally, the duplicate vertices to be removed from M .

Algorithm MC

Input: A set of arcs A of the circular-arc graph G.
Output: A set of vertices M which form a main cycle.
Step 1: Set M = φ. Choose any arc Ai from A.
Step 2: Draw a ray through the finishing point of the arc Ai.
Step 3: Consider the arcs which are intersected by the ray drawn in Step 2, and let these

set of arcs be B.
Step 4: Find out the arc which has right most finishing point of the arcs of B. Let this

arc be Ai.
Step 5: Set M =M ∪ {i}.
Step 6: Repeat Step 2 to 5 until any vertex of M is repeated.
Step 7: Delete the repeated vertices from M , if any.
End MC.

In this algorithm, the endpoints of each arc are consider to select the numbers of M . The
total number of arcs of circular-arc graph is taken as n. Thus the time complexity of Algorithm
MC is stated below.

Theorem 1 A main cycle M of a circular-arc graph can be computed in O(n) time.

Throughout the paper, we mark the vertices of main cycle M by marking asterisk i.e.,
v∗1, v

∗
2, . . ., v

∗
l , u

∗, v∗ etc. are the vertices of M . Let D be the set of the vertices which do
not belong to M i.e., D = V \M . The unmarked (by asterisk) vertices are taken as the vertices
of D.

Lemma 1 The Algorithm MC correctly computes the main cycle.

Proof: Any vertex of M is adjacent to its next and previous vertices. The process of finding
the vertices of M is terminate when any vertex of M is repeated. Let v∗i be repeated. The next
vertex of v∗i for the first time and v

∗
i are adjacent. Similarly, the previous vertex of v

∗
i for second

time and v∗i are adjacent. So, if we delete the vertices from first vertex to first v
∗
i from M , then

the any two consecutive vertices of the remaining vertices of M are adjacent. Also, any vertex
is repeated in clockwise traversal, so the vertices of M covers the whole circle i.e., vertices of M
form a cycle.
If the length of the cycle is minimum the cycle becomes main cycle. If the removal of any

vertex from M makes another cycle by the remaining vertices, then the cycles constructed by
the Algorithm MC do not cover the circle C. Let v∗i , v

∗
i+1, v

∗
i+2 are three consecutive vertices.

So, v∗i and v
∗
i+1 are adjacent and v

∗
i+1 and v

∗
i+2 are adjacent. If v

∗
i , v

∗
i+2 are adjacent then v

∗
i+2

must cover the finishing point of v∗i . So, both the vertices v
∗
i+1, v

∗
i+2 cover the finishing point

of v∗i . If v
∗
i+1 is the next vertex of v

∗
i , then finishing point of v

∗
i+2 is less than finishing point of

v∗i+1. But it is impossible, because v
∗
i+2 is the next vertex of v

∗
i+1. So, any two non-consecutive

vertices are not adjacent. Therefore, if we delete any vertex from M then vertices of M cannot
form a cycle. 2

A circular-arc graph may contain more than one main cycle. But, the length of all main cycles
are equal whatever may be the starting arc. The Algorithm MC generates only one main cycle.
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Figure 2: A circular-arc graph representation of a circular-arc graph with two main cycles.

In Figure 2, the main cycle is {1, 3, 5, 7} when starting vertex is 1. But, if the starting vertex is
4 then the main cycle is {4, 6, 8, 2}. In both the cases the length are same.
In geometry, we know that the radius is equal to the half of the diameter. But, in circular-arc

graph it may or may not be that the radius is half of the diameter. Let d(u, v) be the shortest
distance between the vertices u and v. If the graph is non-weighted then d(u, v) is the number of
edges of the path starting from the vertex u and ending at the vertex v. If the graph is weighted
then d(u, v) is the sum of the weights of the edges on the shortest path.
The eccentricity e(u) of the vertex u is defined as

e(i) = max {d(i, j) : j ∈ V }.

The diameter δ(G) and radius ρ(G) of the graph G are defined as

δ(G) = max {e(i) : i ∈ V }

and
ρ(G) = min {e(i) : i ∈ V }.

Every circular-arc graph has a main cycle. If the main cycle of any circular-arc graph contains
every vertex of the graph, then the eccentricities of every vertex are equal. So, the maximum of
all eccentricities is equal to the minimum of all eccentricities i.e., diameter is equal to radius. In
graph of the Figure 3, main cycle contains every vertex of the graph i.e., M = {1, 2, 3, 4, 5, 6}.
Therefore,

e(i) = 3 for all i ∈ V,

ρ(G) = min
i
{e(i)} = 3,

δ(G) = max
i
{e(i)} = 3,

ρ(G) = δ(G) = 3.

So, in this circular-arc graph radius and diameter are equal and is equal to 3.
Let Cn be a cycle of length n, i.e., Cn is a cycle containing n vertices and n edges.
From the above observation, we state the following result.
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Figure 3: The graph whose radius and diameter are equal.

Lemma 2 If the circular-arc graph is Cn, i.e., M = Cn then δ(G) = ρ(G) = b
n

2
c.

Proof: Case – I: n is even.
Let n = 2m and M = {v∗1, v

∗
2, . . . , v

∗
m, . . . , v

∗
2m}. If the main cycle contains every vertex of the

circular -arc graph, then there exist only two paths between every pair of vertices of the graph.
The distances (not necessarily shortest) between the vertices v∗1 and v

∗
2 are 1 and 2m − 1. So

the shortest distance between v∗1 and v
∗
2 is equal to 1 i.e., d(v

∗
1, v

∗
2) = 1. There exist (m − 1)

vertices between v∗1 and v
∗
m+1 in Cn. So, distance between v

∗
1 and v

∗
m+1 is m. Again, the length

of another path from v∗1 to v
∗
m+1 is (2m −m) i.e., m. Therefore, d(v∗1, v

∗
m+1) = m. Similarly,

there exist m vertices between v∗1 and v
∗
m+2 i.e., distance between v

∗
1 and v

∗
m+2 is m + 1. But

another path from v∗1 and v
∗
m+2 contains (m− 2) vertices i.e., another distance between them is

(m− 2). So, d(v∗1, v
∗
m+2) = (m− 1). Therefore, eccentricity of v

∗
1 is m. Similarly, eccentricities

of all other vertices of the graph are equal to m i.e., n
2 . Therefore, diameter and radius of the

graph are equal to n
2 .

Case– II: When n is odd.
Let n = 2m+1 andM = {v∗1, v

∗
2, . . . , v

∗
m, . . . , v

∗
2m+1}. In this case also, d(v

∗
1, v

∗
2) = 1, d(v

∗
1, v

∗
3) =

2. One path from v∗1 to v
∗
m+1 contains (m − 1) vertices, so the shortest distance between v∗1

and v∗m+1 is m. Another path from v∗1 to v
∗
m+1 contain m vertices, so another distance between

them is m + 1. Therefore, d(v∗1, v
∗
m+1) = m. Similarly, distances between v∗1 and v

∗
m+2 are m

and m + 1. Therefore shortest distance from v∗1 to v
∗
m+2 is m i.e., d(v∗1, v

∗
m+2) = m. Again,

d(v∗1, v
∗
m) = m−1 and d(v∗1, v

∗
m+3) = m−1. So, the eccentricities of all vertices are m i.e., (n−1)

2 .

Therefore, diameter and radius of the graph are equal to (n−1)
2 .

Hence in both the cases δ(G) = ρ(G) = b
n

2
c, if the circular-arc graph is Cn. 2

Lemma 3 If u ∈ D then u is adjacent to at least one vertex of M .

Proof: By the definition of main cycle, the vertices ofM form a cycle and cover the whole circle
C. Since the graph is a circular-are graph, then any arc corresponding to the vertex u ∈ D must
lie over the circle. But, the vertices of M cover the whole circle. So, the arc corresponding to
the vertex u must has non empty intersection with at least one arc corresponding to a vertex of
M . Therefore, u is adjacent to at least one vertex of M . 2
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Figure 4: The graph whose diameter is double of the radius.

Motivated by Lemma 2, we define a number r as

r =







|M |/2, if |M | is even
|M | − 1

2
, if |M | is odd.

It can be shown that the upper bound of the distance between any two vertices of M is r.

Lemma 4 If v∗i , v
∗
j ∈ M then d(v∗i , v

∗
j ) ≤ r i.e., distance between any two vertices of M is at

most r.

Proof: If v∗i , v
∗
j ∈ M are adjacent then d(v∗i , v

∗
j ) = 1. If there exists one vertex between them

in M then d(v∗i , v
∗
j ) = 2. If there exist (r−1) vertices between v

∗
i and v

∗
j , then distance between

v∗i and v
∗
j is r. v

∗
i , v

∗
j are the vertices of M so there must exist another path of the distance r+1

or r. Therefore d(v∗i , v
∗
j ) = r. Similarly, if there exist r vertices between v∗i and v

∗
j in M , then

distance between v∗i and v
∗
j is r+1. Another distance is r− 1 or r. So, d(v

∗
i , v

∗
j ) ≤ r. Therefore,

distance between any two vertices of M is at most r. 2

Throughout the paper, we denote a path between the vertices u and v of length more than
one by the symbol u

∗
→ v.

Lemma 5 Distance between any two vertices of D is not more than r + 2.

Proof: Let u, v ∈ D. If u and v are adjacent then d(u, v) = 1. If u and v are not adjacent but
they are both adjacent to a vertex of M , then d(u, v) = 2. Let v∗i and v

∗
j are two vertices of M

and d(v∗i , v
∗
j ) = r. If u is adjacent to only v∗i and v is adjacent to only v

∗
j then there should be

a path u → v∗i
∗
→ v∗j → v connecting u and v. In this case, d(u, v) = r + 2. If there exists any

vertex w ∈ D which is adjacent to only v but not with v∗j , then shortest distance between w and
u becomes r + 3. But from the Lemma 4, we know that every vertex of D is adjacent at least
one vertex of M . So, w must adjacent to v∗j , then d(w, u) = r + 2. Therefore, distance between
any two vertices of D is not more than r + 2. 2

In Figure 4, the distance between the vertices 1 and 4 is 2. Vertex 2 is adjacent to vertex 1
and vertex 5 is adjacent to only vertex 4. So, the distance between 2 and 5 is 2+2=4.

Lemma 6 The diameter of a circular-arc graph is at most r + 2 i.e., δ(G) ≤ r + 2.
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Proof: Let d(v∗i , v
∗
j ) = r, where v∗i , v

∗
j are vertices of M . If u, v ∈ D are two vertices such that

u is adjacent to v∗i and v is adjacent to only v∗j , then d(u, v) = r + 2. By the Lemma 5, the
distance between any two vertices is not more than r + 2. So, e(v) = r + 2 and e(u) = r + 2.
Also d(u, v∗j ) = r + 1 and d(v∗i , v) = r + 1. If w is adjacent to any vertex of M other than v∗j
then d(v∗i , w) ≤ r + 1. So, e(v∗i ) ≤ r + 1 i.e., eccentricity of any vertex of M is not more than
r + 1. Therefore, diameter of the graph is not more than r + 2. 2

Lemma 7 If u be any vertex of D then r ≤ e(u) ≤ r + 2.

Proof: Let v∗i−1, v
∗
i , v

∗
i+1 be three adjacent vertices of M and d(v∗i , v

∗
j ) = r. If u is adjacent to

all the vertices v∗i−1, v
∗
i , v

∗
i+1, then the paths from u to v∗j are u→ v∗i+1

∗
→ v∗j and u→ v∗i−1

∗
→ v∗j .

So, the shortest distance between u and v∗j is r i.e., d(u, v
∗
j ) = r. If there is no vertex v ∈ D

adjacent to v∗j then e(u) = r.
Let d(v∗i , v

∗
j ) = r. u is adjacent to only v∗i , but there exists no vertex v ∈ D adjacent to v∗j

then the path from u to v∗j is u→ v∗i
∗
→ v∗j and d(u, v

∗
j ) = r + 1. So, e(u) = r + 1.

u is adjacent to only vertex v∗i and v is adjacent to only vertex v∗j . There exists a path

u → v∗i
∗
→ v∗j → v and d(u, v) = r + 2. By the Lemma 4, distance between any two vertices of

D is not more than r + 2. So, e(u) = r + 2. Therefore, r ≤ e(u) ≤ r + 2. 2

From Lemma 2, Lemma 6 and Lemma 7 we can conclude the following result.

Lemma 8 For any circular-arc graph r ≤ δ(G) ≤ r + 2, where r = b
|M |

2
c.

4 Computation of Eccentricity

If the vertices u∗, v∗ on the main cycle having distance r then we called they form a pair, i.e.,
if (u∗, v∗) is a pair then d(u∗, v∗) = r. From Lemma 4 we know that maximum of the distances
between any two vertices of M is r. From Lemma 8 we observed that there may exist a vertex
of D whose eccentricity is r. Thus a vertex of D may be a centre of the graph.
The number of vertices at a distance r from a vertex of M is either one or two, depending on

the size of M . This observation is proved in the following lemma.

Lemma 9 Let d(v∗i , v
∗
j ) = r and v∗i is fixed. If |M | is even then v∗j is unique and if |M | is odd

then there are two vertices v∗j and v∗k such that d(v∗i , v
∗
j ) = d(v∗i , v

∗
k) = r.

Proof: Let |M | be even and d(v∗i , v
∗
j ) = r. Then the length of the path v∗i → v∗i+1

∗
→ v∗j is r

and length of the another path v∗i → v∗i−1
∗
→ v∗j is also equal to r. So, the number of vertices in

both the paths is (r − 1). If v∗k ∈ M is a vertex in the path v∗i → v∗i+1
∗
→ v∗j then the length of

the path v∗i → v∗i+1
∗
→ v∗k is less than r and length of the path v

∗
i → v∗i−1

∗
→ v∗j

∗
→ v∗k is greater

than r. So, the shortest distance between the vertices v∗i and v
∗
k is less than r. Similarly, if v

∗
k

is a vertex in the path v∗i → v∗i−1
∗
→ v∗j then d(v

∗
i , v

∗
k) is less than r. Therefore, there is unique

vertex v∗j whose distance from v∗i is r.

Let |M | be odd and d(v∗i , v
∗
j ) = r. If the length of the path v∗i → v∗i+1

∗
→ v∗j is r then the

length of the path v∗i → v∗i−1
∗
→ v∗j is must equal to r + 1. So, there are (r − 1) vertices in

the path v∗i → v∗i+1
∗
→ v∗j and r vertices in the path v∗i → v∗i−1

∗
→ v∗j . If v

∗
k ∈ M is a vertex
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in the path v∗i → v∗i+1
∗
→ v∗j , then d(v∗i , v

∗
k) is less than r. But, if v∗k is a vertex in the path

v∗i → v∗i−1
∗
→ v∗j and adjacent to v

∗
j , then the length of the path v

∗
i → v∗i−1

∗
→ v∗k is r and the

length of the path v∗i → v∗i+1
∗
→ v∗j → v∗k is (r + 1). So, d(v

∗
i , v

∗
k) = r. If v∗k is a vertex in the

path v∗i → v∗i−1
∗
→ v∗j and v

∗
k, v

∗
j are non-adjacent, then d(v

∗
i , v

∗
k) is less than r. Therefore, there

are two vertices v∗j , v
∗
k such that d(v

∗
i , v

∗
j ) = d(v∗i , v

∗
k) = r. 2

The number of the vertices ofM may be even or odd. Depending on the size ofM , we propose
some results to determine the eccentricities of all vertices of V . In the following we consider |M |
is even.

Lemma 10 Let (v∗i , v
∗
j ) and (v

∗
i+1, v

∗
k) be two pairs. If v∗i and v∗i+1 are adjacent then v∗j and v∗k

are adjacent.

Proof: If (v∗i , v
∗
j ) is a pair, then distance between v

∗
i and v

∗
j is r. The vertices v

∗
i and v

∗
i+1 are

adjacent. So, the shortest distance between v∗i+1 and v
∗
j is r− 1. Also v

∗
k and v

∗
i+1 are belong to

a pair, so the distance between v∗i+1 and v
∗
k is r. Therefore the distances from the vertex v

∗
i+1

to the vertices v∗j and v
∗
k are r − 1 and r respectively. Therefore, v

∗
j and v

∗
k are two adjacent

vertices. 2

Lemma 11 Any vertex of D cannot adjacent to more than three vertices of main cycle.

Proof: Let Ak be the arc corresponding to the vertex vk ∈ D. If possible, let the arc Ak

intersect with four arcs A∗
i , A

∗
i+1, A

∗
i+2, A

∗
i+3 (see Figure 5). Then the arc Ak covers, at least, the

finishing point of the arc A∗
i and starting point of A

∗
i+3. So, starting point of A

∗
i+3 is less than

the finishing point of Ak i.e., s
∗
i+3 < fk. By definition, it is easy to see that A

∗
i+1, A

∗
i+3 are non

intersecting arcs. So, finishing point of A∗
i+1 is less than starting point of A

∗
i+3 i.e., f

∗
i+1 < s∗i+3.

Therefore f∗i+1 < fk. Both the arcs A
∗
i+1, Ak cover the finishing point of A

∗
i and finishing point

of A∗
i+1 is less than finishing point Ak. Thus the arc Ak is selected as the next arc of A

∗
i in

main cycle M ′. But, vk is not a member of M
′ . Therefore, Ak cannot intersect with four arcs

A∗
i , A

∗
i+1, A

∗
i+2, A

∗
i+3. 2

Lemma 12 If the arc Ak corresponding to the vertex vk ∈ D intersect with three consecutive

arcs A∗
i , A

∗
i+1, A

∗
i+2, then the eccentricity of vk is equal to the eccentricity of v∗i+1.
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Proof: Let (v∗i+1, v
∗
j+1) be a pair. So, the distance between the vertices (v

∗
i+1, v

∗
j+1) is r. If |M |

is even, then lengths of both the paths A∗
i+1 → A∗

i+2
∗
→ A∗

j+1 and A
∗
i+1 → A∗

i
∗
→ A∗

j+1 are r (see

Figure 6). Therefore, the length of the path A∗
i+2 → A∗

i+3
∗
→ A∗

j+1 is r − 1 and the length of

the path A∗
i → A∗

i−1
∗
→ A∗

j+1 is r − 1. The arc Ak intersect with both the arcs A
∗
i and A

∗
i+2.

So, lengths of the paths Ak → A∗
i+2

∗
→ A∗

j+1 and Ak → A∗
i

∗
→ A∗

j+1 are r i.e., d(vk, v
∗
j+1) = r.

Then, the vertex v∗i+1 can be replaced by vk. Therefore, the eccentricity of vk is equal to the
eccentricity of v∗i+1.

2

Lemma 13 Let (v∗i , v
∗
j ) and (v

∗
i+1, v

∗
j+1) be two pairs. If the arc Ak corresponding to the vertex

vk ∈ D intersect with two consecutive arcs A∗
i , A

∗
i+1 and there exists no arc Al corresponding

vertex vl ∈ D intersected with A∗
j , A

∗
j+1, then the eccentricity of vk is r.

Proof: Let (v∗i , v
∗
j ) and (v

∗
i+1, v

∗
j+1) be two pairs. So, the lengths of the paths A

∗
i → A∗

i+1
∗
→ A∗

j

and A∗
i+1 → A∗

i+2
∗
→ A∗

j+1 are equal to r. The length of the path A
∗
i → A∗

i+1
∗
→ A∗

j+1 is r + 1

and the length of the path A∗
i → A∗

i−1
∗
→ A∗

j+1 is r − 1 (see Figure 7). Similarly, the lengths

of the paths A∗
i+1 → A∗

i+2
∗
→ A∗

j and A
∗
i+1 → A∗

i
∗
→ A∗

j are r − 1 and r + 1 respectively. So,
the shortest distance between the vertices v∗i , v

∗
j+1 is r − 1 and shortest distance between the

vertices v∗i+1, v
∗
j is r − 1. The arc Ak is intersected with both the arcs A

∗
i and A∗

i+1. So, the

lengths of the paths Ak → A∗
i+1

∗
→ A∗

j and Ak → A∗
i

∗
→ A∗

j+1 are equal to r. So, the shortest
distance between the vertices vk and v

∗
j is r and shortest distance between the vertices vk and

v∗j+1 is r. If there exists no vertex vl ∈ D adjacent to v∗j and v
∗
j+1, so there exists no path from

vk with length greater than r. Therefore, the eccentricity of vk is r. 2

Lemma 14 Let (v∗i , v
∗
j ) and (v

∗
i+1, v

∗
j+1) be two pairs. The arc Ak corresponding to the vertex

vk ∈ D is intersected with two intersecting arcs A∗
i , A

∗
i+1 and another arc Al corresponding to

the vertex vl ∈ D is intersected with A∗
j , A

∗
j+1. Then the eccentricities of vk and vl are equal to

r + 1.

Proof: From Lemma 13 the length of the path A∗
i → A∗

i−1
∗
→ A∗

j+1 is r − 1 and the length

of the path A∗
i+1 → A∗

i+2
∗
→ A∗

j is r − 1. Ak is intersected with A
∗
i , A

∗
i+1 and Al is intersected
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with A∗
j , A

∗
j+1. So, the length of the path Ak → A∗

i → A∗
i−1

∗
→ A∗

j+1 → Al is r + 1 (see Figure

8). Also the length of the path Ak → A∗
i+1 → A∗

i+2
∗
→ A∗

j → Al is r + 1 i.e., d(vk, vl) = r + 1.
Therefore, the eccentricities of vk and vl are equal to r + 1. 2

Lemma 15 Let the arc Ak corresponding to the vertex vk ∈ D be intersected with only one arc

A∗
i . Then the eccentricities of vk and v∗j are equal to r + 1, where (v∗i , v

∗
j ) is a pair.

Proof: To prove this lemma we refer Figure 9. By the definition of the pair d(v∗i , v
∗
j ) = r. If |M |

is even then the lengths of both the paths A∗
i → A∗

i+1
∗
→ A∗

j and A
∗
i → A∗

i−1
∗
→ A∗

j are equal to

r. Since Ak is intersected with only the arc A
∗
i , the length of the path Ak → A∗

i → A∗
i−1

∗
→ A∗

j

is r + 1. Similarly, the length of the path Ak → A∗
i → A∗

i+1
∗
→ A∗

j is r + 1. Then the shortest
distance between the vertices vk and v

∗
j is r + 1. Therefore eccentricities of the vertices vk and

v∗j are equal to r + 1. 2

The above results are discussed by assuming that |M | is even. Similar, but minor modified
results are discussed in the following. Here we assume that |M | is odd.

Lemma 16 If (v∗i , v
∗
j ) and (v

∗
i , v

∗
k) are two pairs, then vertices v∗j and v∗k are adjacent.

165



A∗
i

A∗
i−1

A∗
j

A∗
j+1

Ak

A∗
i+1

A∗
j−1

Figure 9:

Proof : By definition, d(v∗i , v
∗
j ) = r and d(v∗i , v

∗
k) = r. Let v∗j and v

∗
k are non-adjacent vertices.

So, there must exist at least one vertex v∗l between v
∗
j and v

∗
k in M . Then the distance between

v∗i and v
∗
l is r+ 1. But, this result contradicts Lemma 4. So, there is no vertex between v

∗
j and

v∗k in M . Therefore, the vertices v
∗
j and v

∗
k are adjacent. 2

Lemma 17 Let the arc Ak corresponding to the vertex vk ∈ D be intersected with three consec-

utive arcs A∗
i , A

∗
i+1, A

∗
i+2. Then the eccentricities of vk is equal to the eccentricity of v∗i+1.

Proof: Let (v∗i+1, v
∗
j ) and (v

∗
i+1, v

∗
j+1) be two pairs. Then the lengths of the paths A

∗
i+1 →

A∗
i+2

∗
→ A∗

j and A
∗
i+1 → A∗

i
∗
→ A∗

j+1 are equal to r. The length of the path A
∗
i+2 → A∗

i+3
∗
→ A∗

j

is r− 1 and the path A∗
i → A∗

i−1
∗
→ A∗

j+1 is r− 1. Since Ak is intersect with both A
∗
i and A

∗
i+2,

the lengths of the paths Ak → A∗
i+2

∗
→ A∗

j and Ak → A∗
i → A∗

i−1
∗
→ A∗

j+1 are equal to r+1. So,
d(vk, v

∗
j ) = r and d(vk, v

∗
j+1) = r. Thus A∗

j and A
∗
j+1 are intersected. Also, d(v

∗
i+1, v

∗
j+1) = r.

Therefore, the eccentricity of vk is equal to the eccentricity of v
∗
i+1. 2

Lemma 18 An arc Ak corresponding to the vertex vk ∈ D has non-empty intersection with two

intersecting arcs A∗
i and A∗

i+1. Then the eccentricities of vk and v∗j are equal to r + 1, where
(v∗i , v

∗
j ) and (v

∗
i+1, v

∗
j ) are two pairs.

Proof: Refer Figure 10 to prove this lemma. If (v∗i , v
∗
j ) and (v

∗
i+1, v

∗
j ) are two pairs, then the

lengths of the paths A∗
i → A∗

i−1
∗
→ A∗

j and A
∗
i+1 → A∗

i+2
∗
→ A∗

j are equal to r. Ak is intersect

with A∗
i and A

∗
i+1. So, the length of the path Ak → A∗

i → A∗
i−1

∗
→ A∗

j is r+ 1 and length of the

path Ak → A∗
i+1 → A∗

i+2
∗
→ A∗

j is r + 1. So, d((vk, v
∗
j ) = r + 1. Therefore, the eccentricities of

vk and v
∗
j are equal to r + 1. 2

Lemma 19 Let the arc Ak corresponding to the vertex vk ∈ D be intersected with only the arc

A∗
i . Then the eccentricities of vk, v

∗
j and v∗j+1 are equal to r + 1, where (v∗i , v

∗
j ) and (v

∗
i , v

∗
j+1)

are two pairs.

Proof: Let (v∗i , v
∗
j ) and (v

∗
i , v

∗
j+1) be two pairs. So, the length of the path A

∗
i → A∗

i−1
∗
→ A∗

j+1

is r and length of the path A∗
i → A∗

i+1 → A∗
i+2

∗
→ A∗

j is also r (see Figure 11). Similarly, the arc
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Ak is intersect with only the arc A
∗
i . So, the lengths of the paths Ak → A∗

i → A∗
i+1

∗
→ A∗

j and

Ak → A∗
i → A∗

i−1
∗
→ A∗

j+1 are r + 1. Then the shortest distance between vk and v
∗
j is r + 1 and

shortest distance between vk and v
∗
j+1 is r + 1. Therefore, the eccentricities of vk, v

∗
j and v

∗
j+1

are equal to r + 1. 2

Algorithm EV

Input: The sets M , D the array pair(v∗i ), v
∗
i ∈M and the integer r.

Output: The array e(vi), vi ∈ V , the eccentricity of all vertices.
Case I. |M | is even.
Step 1: For all v∗i ∈M do

(i) if pair(v∗i ) is not adjacent to any vertex of D then e(v
∗
i ) = r.

(ii) if there exists a vertex vl ∈ D and there exists another vertex v∗k ∈ M such
that (vl, pair(v

∗
i )) ∈ E and (vl, v

∗
k) ∈ E then e(v∗i ) = r.

(iii) if there exists a vertex vl ∈ D such that (vl, pair(v
∗
i )) ∈ E but vl is not

adjacent to other vertex of M then e(v∗i ) = r + 1.
Step 2: For all vi ∈ D do

(i) if there exist three adjacent vertices v∗j , v
∗
j+1, v

∗
j+2 ∈ M such that vi is adjacent

to v∗j , v
∗
j+1, v

∗
j+2 then e(vi) = e(v∗j+1).
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(ii) If there exist two adjacent vertices v∗j , v
∗
j+1 ∈ M such that (vi, v

∗
j ) ∈ E and

(vi, v
∗
j+1) ∈ E, vl ∈ D and

(a) (pair(v∗j ), vl) /∈ E and (pair(v∗j+1), vl) /∈ E then e(vi) = r.
(b) (pair(v∗j ), vl) ∈ E but (v∗k, vl) /∈ E for v∗k ∈M then e(vi) = r + 1.
(c) (pair(v∗j+1), vl) ∈ E but (v∗k, vl) /∈ E for v∗k ∈M then e(vi) = r + 1.
(d) (pair(v∗j ), vl) ∈ E and (pair(v∗j+1), vl) ∈ E then e(vi) = r + 1.

(iii) if vi is adjacent to a vertex v
∗
j ∈M , and there exists a vertex vl ∈ D and

(a) (pair(v∗j ), vl) /∈ E then e(vi) = r + 1.
(b) (pair(v∗j ), vl) ∈ E and (v∗k, vl) ∈ E for v∗k ∈M , then e(vi) = r + 1.
(c) (pair(v∗j ), vl) ∈ E but (v∗k, vl) /∈ E for v∗k ∈M , then e(vi) = r + 2.

Case II. |M | is odd.
Step 3: For all v∗i ∈M do

(i) if pair(v∗i ) is not adjacent to any vertex of D then e(v
∗
i ) = r.

(ii) if there exists a vertex vl ∈ D and there exists another vertex v∗k ∈ M such
that (vl, pair(v

∗
i )) ∈ E and (vl, v

∗
k) ∈ E then e(v∗i ) = r.

(iii) if there exists a vertex vl ∈ D such that (vl, pair(v
∗
i )) ∈ E but vl is not

adjacent to other vertex of M then e(v∗i ) = r + 1.
Step 4: For all vi ∈ D do

(i) if there exist three adjacent vertices v∗j , v
∗
j+1, v

∗
j+2 ∈ M such that vi is adjacent

to v∗j , v
∗
j+1, v

∗
j+2 then e(vi) = e(v∗j+1).

(ii) if there exist two adjacent vertices v∗j , v
∗
j+1 ∈ M such that (vi, v

∗
j ) ∈ E and

(vi, v
∗
j+1) ∈ E, vl ∈ D and

(a) (pair(v∗j ), vl) /∈ E and (pair(v∗j+1), vl) /∈ E then e(vi) = r + 1.
(b) (pair(v∗j ), vl) ∈ E but (v∗k, vl) /∈ E for v∗k ∈M then e(vi) = r + 1.
(c) (pair(v∗j+1), vl) ∈ E but (v∗k, vl) /∈ E for v∗k ∈M then e(vi) = r + 1.
(d) (pair(v∗j ), vl) ∈ E and (pair(v∗j+1), vl) ∈ E then e(vi) = r + 1.
(e) (v∗m, vl) ∈ E but vl is not adjacent to another vertex of M then e(vi) = r + 2,
where v∗m = pair(v∗j ) = pair(v∗j+1).

(iii) if vi is adjacent to a vertex v
∗
j ∈M , and there exists a vertex vl ∈ D and

(a) (pair(v∗j ), vl) /∈ E then e(vi) = r + 1.
(b) (pair(v∗j ), vl) ∈ E and (v∗k, vl) ∈ E for v∗k ∈M , then e(vi) = r + 1.
(c) (pair(v∗j ), vl) ∈ E but vl is not adjacent to another vertex of M then
e(vi) = r + 2.

End EV

The array pair of each vertex can be computed in O(n) time. If the endpoints of each arc are
available then with the help of array pair we can compute the eccentricity of each vertex using
O(n) time. We assume that the endpoints of each arc are given as input. Thus we may conclude
the following result.

Theorem 2 The eccentricities of all vertices of a circular-arc graph with n vertices can be

determined in O(n) time, if the circular arc representation is given.
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5 The Algorithm and its Complexity

When the eccentricities of all vertices are known then computation of radius, diameter and
centre is a trivial task.
In this section, we present an algorithm to find the centre, radius and the diameter of a

circular-arc graph.
Algorithm RDC

Input: A set of arcs Ai of a circular-arc graph G = (V,E).
Output: Radius ρ(G), diameter δ(G), centre C(G).
Step 1: Find the main cycle M using Algorithm MC.
Step 2: Find the eccentricities of all vertices using Algorithm EV .
Step 3: Compute ρ(G) = min{e(vi) : vi ∈ V }.
Step 4: Compute δ(G) = max{e(vi) : vi ∈ V }.
Step 5: Initially, let C(G) = φ (the null set). For all vi ∈ V do

if e(vi) = ρ(G) then C(G) = C(G) ∪ {vi}.
End RDC

Theorem 3 The radius, diameter and centre of a circular-arc graph can be determined using

O(n) time, where n represents the number of vertices.

Proof: Steps 1, and 2 takes O(n) time (Theorem 1, 2). The steps 3, 4, 5 can easily be computed
using only O(n) time. Hence the over all time complexity is O(n).
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