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Abstract

Just as linear programs, a semidefinite program may have many solutions. In [Y.-B. Zhao

and D. Li SIAM J. Optim. 12(4):893-912, 2002], a path-following method was proposed to

project the origin onto the optimal solution set of a linear program, i.e., to find the least-2-norm

solution of the linear program. In this paper we generalize this method to project any vector

onto the optimal solution set of any semidefinite program.
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1 Introduction

Let Sn denote the space of symmetric real n by n matrices. Let Sn
+ be the cone of positive

semidefinite symmetric matrices. Related to Sn
+ we define the partial ordering � via

A � B ⇔ B � A ⇔ A−B ∈ Sn
+,∀A,B ∈ Sn

+.
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We denote A � 0 or 0 ≺ A if A ∈ Sn
++ ⊂ Sn, the set of symmetric positive definite matrices. For

any matrix/vector space, we use 〈·, ·〉 to denote the usual inner-product, i.e., 〈u, v〉 = tr(uT v). This

inner-product induces the Euclidean-2-norm as ‖u‖ =
√
〈u, u〉 on the corresponding space.

In this paper, we consider semidefinite program (SDP) in its standard primal-dual formulation:

Primal Problem:

Minimize 〈C,X〉

subject to A(X) :=



〈
A1, X

〉
·

·

·〈
Ai, X

〉
·

·

·

〈Am, X〉



=



b1

·

·

·

bi

·

·

·

bm



= b,

X ∈ Sn
+,

Dual Problem:

Maximize 〈b, y〉

subject to y ∈ Rm,A∗(y) :=
∑m

i=1 yiA
i � C,

(1)

where C ∈ Sn, b ∈ Rm, A(·) is a linear operator from Sn to Rm defined by a linearly independent

set {A1, A2, . . . , Am} ⊂ Sn, and A∗(·) is the adjoint operator of A(·).

It is well known that SDP is one of the most important generalization of linear programs (LP).

A linear program may have many solutions. Much research has been done to find the least-2-norm

solution of an LP, i.e., to project the origin onto the optimal solution set of the LP, see [Kanzow,

2003; Lucidi, 1987; Mangasarian, 1983; Mangasarian, 2004; Zhao and Li, 2002] for some algorithms

for this regard. The one that is most relevant to this paper is a nice path-following method

developed in [Zhao and Li, 2002].

Let Sp and Sd denote the primal solution set and dual solution set of the SDP (1), respectively.
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If Sp 6= ∅ and Sd 6= ∅, then we say that SDP (1) is solvable. We only deal with solvalbe SDP in

this paper. Just as LP, a solvable SDP may also have many solutions. For any (Q, q) ∈ Sn × Rm,

we let (XQ, yq) denote the projection of (Q, q) onto Sp × Sd, i.e., XQ = argminX∈Sp
‖X −Q‖ and

yq = argminy∈Sd
‖y− q‖. Notice that since Sp and Sq are both convex sets, XQ and yq are uniquely

defined. In particular, (X0, y0) is just the least-2-norm primal-dual optimal solution pair. There

is currently little existent research on finding the least-2-norm solution of an SDP. The purpose of

this paper is fill this gap by generalizing the method of [Zhao and Li, 2002] to SDP. We will show

that our algorithm can actually find (XQ, yq) for any (Q, q) ∈ Sn ×Rm.

Now we review some crucial concepts and facts about SDP.

The duality gap gappd is defined to be 〈C,X〉 − 〈b, y〉 = 〈X, C − A∗(y)〉 where X ∈ Sp and

y ∈ Sd. Clearly gappd ≥ 0 which is the weak-duality. When gappd = 0, then we say that the strong

duality holds. If there are X ∈ Sn
++ and y ∈ Rm such that A(X) = b and S = C −A∗(y) � 0, then

we say the SDP (1) is strictly feasible. It is well known that strict feasibility is a sufficient but not

necessary condition for strong duality to hold.

If strong duality holds, then for any (X, y) ∈ Sp × Sd and S = C −A∗(y), we have



XS = 0,

A(X) = b,

A∗(y) + S = C,

X, S ∈ Sn
+, y ∈ Rm.

(2)

On the other hand, if (X, y, S) satisfies (2), then strong duality holds and (X, y) ∈ Sp × Sd. Most,

if not all, algorithms for SDP require the strong duality assumption and try to find (X, y, S) ap-

proximately satisfying (2). Many of them actually need the strict feasibility assumption, especially

those based on the central path.

The concept of central path lies at the heart of the study of semidefinite programs. This path
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is defined as the solution to the parametric nonlinear system:



XS = µI,

A(X) = b,

A∗(y) + S = C,

X, S ∈ Sn
++, y ∈ Rm,

(3)

where µ > 0 is the path parameter and I is the identity matrix. It is well known that strict feasibility

holds if and only if for all µ > 0, system (3) has a unique solution (X(µ), y(µ), S(µ)) [Wolkowicz,

Saigal and Vandenberghe, 2000]. As µ varies in R++, the solutions form the central path. The most

important property of the central path is that as µ −→ 0+, (X(µ), y(µ)) converges to a primal-

dual solution pair. Based on this property, a lot of so-called path-following algorithms [Wolkowicz,

Saigal and Vandenberghe, 2000; Monteiro, 1997; Sturm and Zhang, 1998] have been developed to

follow the central path to a solution of the SDP (1).

We are going to follow a different path. Let (Q, q) ∈ Sn × Rm be given. For any µ ≥ 0,

X, S ∈ Sn
+, and y ∈ Rm, we define

Fµ(X, y, S) :=


S

1
2 XS

1
2 − µI

−µp(X −Q) +A∗(y) + S − C

A(X) + µp(y − q)− b

 .

Under the assumption of strong duality, it can be shown that for any µ > 0, the system Fµ(X, y, S) =

0 has a unique solution (X(µ), y(µ), S(µ)), and as µ −→ 0+, (X(µ), y(µ)) −→ (XQ, yq). Although

this property of the path motivates this research, its proof is not needed for our algorithm. We

refer interested readers to [Lin, 2006]. However, we do need the assumption of strong duality for

our analysis.

The paper is organized as follows. In Section 2 we describe the algorithm. In Section 3 we study

the feasibility of the algorithm. Then in Section 4 we prove the convergence of the algorithm.
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2 Algorithm

For any nonsingular matrix T ∈ Sn, we define HT (·) : Rn×n → Sn as

HT (M) :=
1
2

(
TMT−1 + T−1M tT

)
,

where M t denotes the transpose of M .

To measure the distance to the path, we define the “norm”of Fµ(X, y, S) as

‖Fµ(X, y, S)‖

:= max
{∥∥∥S

1
2 XS

1
2 − µI

∥∥∥ , ‖−µp(X −Q) +A∗(y) + S − C‖ , ‖A(X) + µp(y − q)− b‖
}

.

All the iterates of the algorithm will be confined in a neighborhood of the path:

Nβ(µ) :=
{
(X, y, S)|X ∈ Sn

+, y ∈ Rm, S ∈ Sn
+, ‖Fµ(X, y, S)‖ ≤ βµ‖

}
,

where β ∈ (0, 1) is a pre-picked constant.

Now we present the path-following method.

Algorithm 1 1. Pick four numbers p, β, δ, and θ from (0, 1), set k = 0.

Find µ0 > 0, X0 � 0, y0 ∈ Rm, S0 � 0 such that (X0, y0, S0) ∈ Nβ(µ0).

2. At the k-th iteration, we have (Xk, yk, Sk) ∈ Nβ(µk).

For simplicity, let (X, y, S, µ) = (Xk, yk, Sk, µk).

• If Fµ(X, y, S) = 0, then set αk = 0;

• otherwise, solve the Newton system of Fµ(X, y, S) = 0 at (X, y, S) for (∆X, ∆y, ∆S):


S

1
2 (∆X)S

1
2 + 1

2S
1
2 X(∆S)S−

1
2 + 1

2S−
1
2 (∆S)XS

1
2 = µI − S

1
2 XS

1
2 ,

−µp(∆X) +A∗(∆y) + ∆S = −(−µp(X −Q) +A∗(y) + S − C),

A(∆X) + µp(∆y) = −(A(X) + µp(y − q)− b),

139



which is equivalent to (by multiplying
√

2S
1
2 to the first equation from both sides)


2S(∆X)S + SX(∆S) + (∆S)XS = rc,

−µp(∆X) +A∗(∆y) + ∆S = rd,

A(∆X) + µp(∆y) = rp,

(4)

where rc = 2µS − 2SXS, rd = −(−µp(X −Q) +A∗(y) + S − C), and

rp = −(A(X) + µp(y − q)− b).

Let αk = min

 (1−δ)‖Fµ(X,y,S)‖∥∥∥H
S

1
2

(∆X∆S)

∥∥∥ , 1

 > 0, and (∆Xk,∆yk,∆Sk) = (∆X, ∆y, ∆S).

Set (Xk+1, yk+1, Sk+1) = (Xk, yk, Sk) + αk(∆Xk,∆yk,∆Sk).

3. Let γk be the first one among θ, θ2, θ3,. . . , satisfying

(Xk+1, yk+1, Sk+1) ∈ Nβ((1− γk)µk),

i.e.,
∥∥∥F(1−γk)µk

(Xk+1, yk+1, Sk+1)
∥∥∥ ≤ β(1− γk)µk.

Set µk+1 = (1− γk)µk.

4. Set k = k + 1, and go back to step 2.

3 Feasibility of the algorithm

In this section we discuss how to perform every step of the algorithm. First we give a simple

technical lemma which will be used several times later.

Lemma 3.1 If M ∈ Sn, β ∈ (0, 1), µ > 0, and ‖M − µI‖ ≤ βµ, then M � 0.

Proof. Let {λi|i = 1, . . . , n} be the n real eigenvalues of M . We have

βµ ≥ ‖M − µI‖

=

√√√√ n∑
i=1

(λi − µ)2

≥ |λi − µi| for each i,

≥ µ− λi for each i.
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Therefore λi ≥ (1− β)µ > 0 for each i. Hence M � 0.

3.1 Step 1

There are many ways to find µ0 > 0, X0 � 0, y0 ∈ Rm, and S0 � 0 such that (X0, y0, S0) ∈ Nβ(µ0).

For example, let µ0 = max
{

1,
(
‖A(I)‖+‖b‖

β

) 2
1+p ,

(
‖Q‖+‖A∗(q)−C‖

β

) 1
1−p

}
, X0 = µ

1−p
2

0 I, y0 = q,

and S0 = µ
1+p
2

0 I. Clearly we have µ0 > 0, X0 � 0, y0 ∈ Rm, S0 � 0, and

Fµ0(X
0, y0, S0) =


(S0)

1
2 X0(S0)

1
2 − µ0I

−µp
0(X

0 −Q) +A∗(y0) + S0 − C

A(X0) + µp
0(y

0 − q)− b

 =


0

µp
0Q +A∗(q)− C

µ
1−p
2

0 A(I)− b

 .

Since µ0 ≥ 1, then
∥∥∥∥µ

1−p
2

0 A(I)− b

∥∥∥∥ ≤ µ
1−p
2

p ‖A(I)‖+‖b‖ ≤ µ
1−p
2

0 (‖A(I)‖+‖b‖) ≤ βµ
1+p
2

0 µ
1−p
2

0 = βµ0.

Similarly, ‖µp
0Q +A∗(q)− C‖ ≤ µp

0(‖Q‖+µ−p
0 ‖A∗(q)−C‖) ≤ µp

0(‖Q‖+‖A∗(q)−C‖) ≤ βµp
0µ

1−p
0 =

βµ0. Hence ‖Fµ0(X
0, y0, S0)‖ ≤ βµ0, so (X0, y0, S0) ∈ Nβ(µ0).

3.2 Step 2

Let (X, y, S, µ) =
(
Xk, yk, Sk, µk

)
, (X+, y+, S+, µ+) =

(
Xk+1, yk+1, Sk+1, µk+1

)
, and H(·) =

H
S

1
2
(·).

We will use two matrix operators extensively in this section.

• vec(·): for any matrix M , vec(M) denotes the vector obtained from stacking the columns of

M one by one from the first to the last. Clearly, if the dimension of M is given, then it is

very easy to get M from vec(M), and vice versa.

• The Kronecker product ⊗: given A,B ∈ Rn×n, A⊗B = [aijB] ∈ Rn2×n2
.

These two operators have many useful properties. We will need the following (see chapter 4

of [Horn and Johnson, 1994], or the appendix of [Zhang,1998]):

1. vec(AXB) = (Bt ⊗A)vec(X),

2. (A⊗B)t = At ⊗Bt,

3. (A⊗B)−1 = A−1 ⊗B−1,
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4. (A⊗B)(C ⊗D) = (AC)⊗ (BD).

5. If λi’s and ξj ’s are the eigenvalues of A and B, respectively, for i, j = 1, 2, . . . , n, then the

eigenvalues of A⊗B are all λiξj ’s.

Let A = [vec(A1), vec(A2), . . . , vec(Am)]t, then the Newton system (4) is equivalent to


2vec(S(∆X)S) + vec(SX(∆S)) + vec((∆S)XS) = vec(rc),

−µpvec(∆X) + At(∆y) + vec(∆S) = vec(rd),

A(vec(∆X)) + µp(∆y) = rp.

(5)

Using ⊗, we can further rewrite (5) as


(2S ⊗ S)vec(∆X) +(I ⊗ (SX) + (SX)⊗ I)vec(∆S) = vec(rc),

−µpvec(∆X) +At∆y +vec(∆S) = vec(rd),

Avec(∆X) +µp∆y = rp.

(6)

Let E = 2S ⊗ S and F = I ⊗ (SX) + (SX) ⊗ I, then we have E−1 = 1
2S−1 ⊗ S−1 and

E−1F = 1
2(S−1⊗X + X ⊗S−1). It is easy to check that both E and E−1F are symmetric, and all

their eigenvalues are positive, in other words, E−1 � 0 and E−1F � 0.

Let Gk =


E 0 F

−µpI At I

A µpI 0

, then finally system (6) is equivalent to

Gk


vec(∆X)

∆y

vec(∆S)

 =


vec(rc)

vec(rd)

rp

 . (7)

The next lemma ensures that the Newton system is solvable.

Lemma 3.2 Gk is nonsingular.

Proof.
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Suppose Gk


u

v

w

 =


Eu + Fw

−µpu + Atv + w

Au + µpv

 = 0, then Eu + Fw = 0 =⇒ u = −E−1Fw, and

Au + µpv = 0 =⇒ utAt = −µpvt.

Therefore from −µpu + Atv + w = 0 we have

ut(−µpu + Atv + w) = −µp‖u‖2 − µp‖v‖2 − wt(E−1F )w = 0,

hence u = 0, v = 0, and w = 0. So Gk is nonsingular.

Now we know that the solution (∆X, ∆y, ∆S) to the system (6) (and (5)) exists and is unique.

On the other hand, it is straightward to check that ((∆X)t,∆y, (∆S)t) is also a solution to sys-

tem (5), so we must have ∆X = (∆X)t and ∆S = (∆S)t. Therefore both ∆X and ∆S are

symmetric. So X(α) := X + α∆X ∈ Sn and S(α) := S + α∆S ∈ Sn.

The following lemma is fundamental for our analysis.

Lemma 3.3 For all α ∈ [0, αk], ‖H(X(α)S(α))− µI‖ ≤ (1− δα)‖Fµ(X, y, S)‖.

Proof. We have

H(X(α)S(α))− µI

= H((X + α∆X)(S + α∆S))− µI

= H(XS + αX∆S + α∆XS + α2∆X∆S)− µI

= H((1− α)XS + α(XS + X∆S + ∆XS) + α2∆X∆S)− µI

= (1− α)H(XS) + αH(XS + X∆S + ∆XS) + α2H(∆X∆S)− µI

= (1− α)S
1
2 XS

1
2 + α

(
S

1
2 XS

1
2 +

1
2
S

1
2 X(∆S)S−

1
2 +

1
2
S−

1
2 (∆S)XS

1
2 + S

1
2 (∆X)S

1
2

)
+α2H(∆X∆S)− µI

= (1− α)S
1
2 XS

1
2 + αµI − µI + α2H(∆X∆S)

= (1− α)S
1
2 XS

1
2 − µ(1− α)I + α2H(∆X∆S)

= (1− α)
(
S

1
2 XS

1
2 − µI

)
+ α2H(∆X∆S).
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Therefore

‖H(X(α)S(α))− µI‖

≤ (1− α)
∥∥∥S

1
2 XS

1
2 − µI

∥∥∥ + α2‖H(∆X∆S)‖

≤ (1− α)‖Fµ(X, y, S)‖+ α2‖H(∆X∆S)‖

= (1− δα)‖Fµ(X, y, S)‖+ (δα− α)‖Fµ(X, y, S)‖+ α2‖H(∆X∆S)‖

= (1− δα)‖Fµ(X, y, S)‖ − α((1− δ)‖Fµ(X, y, S)‖ − α‖H(∆X∆S)‖)

= (1− δα)‖Fµ(X, y, S)‖ − α‖H(∆X∆S)‖
(

(1− δ)‖Fµ(X, y, S)‖
‖H(∆X∆S)‖

− α

)
≤ (1− δα)‖Fµ(X, y, S)‖ − α(αk − α)‖H(∆X∆S)‖

≤ (1− δα)‖Fµ(X, y, S)‖.

A simple but important consequence of Lemma 3.3 is the positive definiteness of X(α) and

S(α).

Theorem 3.4 For all α ∈ [0, αk], we have X(α) � 0, and S(α) � 0. In particular, X+ � 0 and

S+ � 0.

Proof. Using Lemma 3.3 and the fact that (X, y, S) ∈ Nβ(µ) we have

‖H(X(α)S(α))− µI‖ ≤ (1− δα)‖Fµ(X, y, S)‖

≤ (1− δα)βµ

≤ βµ.

Since H(X(α)S(α)) ∈ Sn, then Lemma 3.1 gives H(X(α)S(α)) � 0.

Now using (15) from [Monteiro, 1997] we know that X(α)S(α) is nonsingular for all α ∈ [0, αk].

Hence X(α) and S(α) are nonsingular symmetric matrices for all α ∈ [0, αk].

Because X(0) � 0, S(0) � 0, and the eigenvalues for X(α) S(α) are continuous functions of α,

we must have X(α) � 0 and S(α) � 0 for all α ∈ [0, αk].
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Now we show that (X+, y+, S+) is closer to (X(µ), y(µ), S(µ)) than (X, y, S) is in the sense of

having a smaller ‖Fµ‖.

Theorem 3.5 ‖Fµ(X+, y+, S+)‖ ≤ (1− δαk)‖Fµ(X, y, S)‖.

Proof. By setting α = αk in Lemma 3.3 we get

∥∥H(X+S+)− µI‖ ≤ (1− δαk)
∥∥ Fµ(X, y, S)‖.

Letting D = (S+)
1
2 X+(S+)

1
2 and W = S

1
2 (S+)−

1
2 , we have

H
(
X+S+)

=
1
2

(
S

1
2 X+S+S−

1
2 + S−

1
2 S+X+S

1
2

)
=

1
2

(
S

1
2 (S+)−

1
2 (S+)

1
2 X+(S+)

1
2 (S+)

1
2 S−

1
2 + S−

1
2 (S+)

1
2 (S+)

1
2 X+(S+)

1
2 (S+)−

1
2 S

1
2

)
=

1
2

(
WDW−1 + (WDW−1)t

)
.

So H(X+S+)− µI = 1
2

(
W (D − µI)W−1 + (W (D − µI)W−1)t

)
.

Using (21) from [Monteiro, 1997] we have

∥∥∥(S+)
1
2 X+(S+)

1
2 − µI

∥∥∥ = ‖D − µI‖

≤ 1
2
‖W (D − µI)W−1 + (W (D − µI)W−1)t‖

= ‖H(X+S+)− µI‖

≤ (1− δαk)‖Fµ(X, y, S)‖.

On the other hand, since

−µp(X+ −Q) +A∗(y+) + S+ − C

= −µp(X −Q + αk∆X) +A∗(y + αk∆y) + (S + αk∆S)− C

= (−µp(X −Q) +A∗(y) + S − C) + αk(−µp∆X +A∗(∆y) + ∆S)

= (1− αk)(−µp(X −Q) +A∗(y) + S − C),
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and

A(X+) + µp(y+ − q)− b = A(X + αk∆X) + µp(y + αk∆y − q)− b

= (A(X) + µp(y − q)− b) + αk(A(∆X) + µp∆y)

= (1− αk)(A(X) + µp(y − q)− b),

we have

‖ − µp(X+ −Q) +A∗(y+) + S+ − C‖ = (1− αk)‖ − µp(X −Q) +A∗(y) + S − C‖

≤ (1− δαk)‖ − µp(X −Q) +A∗(y) + S − C‖

≤ (1− δαk)‖Fµ(X, y, S)‖,

and

‖A(X+) + µp(y+ − q)− b‖ = (1− αk)‖A(X) + µp(y − q)− b‖

≤ (1− δαk)‖A(X) + µp(y − q)− b‖

≤ (1− δαk)‖Fµ(X, y, S)‖.

Therefore ‖Fµ(X+, y+, S+)‖ ≤ (1− δαk)‖Fµ(X, y, S)‖.

3.3 Step 3

In step 3, we try to reduce µ. Again, we let (X, y, S, µ) = (Xk, yk, Sk, µk) and (X+, y+, S+, µ+) =

(Xk+1, yk+1, Sk+1, µk+1). We also define d(γ) := ‖F(1−γ)µ(X+, y+, S+)‖ − (1− γ)βµ. Clearly d(γ)

is a continuous function. If αk = 0, then ‖Fµ(X, y, S)‖ = 0 and

d(0) = ‖Fµ(X+, y+, S+)‖ − βµ

= ‖Fµ(X, y, S)‖ − βµ

= −βµ
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< 0;

if αk > 0, then

d(0) = ‖Fµ(X+, y+, S+)‖ − βµ

≤ (1− δαk)‖Fµ(X, y, S)‖ − βµ

≤ (1− δαk)βµ− βµ

= −δαkβµ

< 0.

So when γ is sufficiently close to 0 but stays positive, we must have d(γ) < 0, i.e., (X+, y+, S+) ∈

Nβ((1− γ)µ). Hence γk is well defined, and we have 0 < γk < 1, 0 < µ+ = (1− γk)µ < µ.

4 Convergence

As mentioned in Section 1, we use (XQ, yq) to denote the projection of (Q, q) onto the optimal

solution set of the SDP (1). Because it is a feasible solution pair, so XQ � 0, A∗(XQ) = b, and

Sq := C − A∗(yq) � 0. Since we also assume strong duality, then 〈Sq, XQ〉 = 0. Our goal in this

section is to show that (Xk, yk, Sk) −→ (XQ, yq, Sq).

Let

Uk =
1
µk

(
(Sk)

1
2 Xk(Sk)

1
2 − µkI

)
,

V k =
1
µk

(
−µp

k(X
k −Q) +A∗(yk) + Sk − C

)
,

wk =
1
µk

(
A(Xk) + µp

k(y
k − q)− b

)
.

For simplicity, we will surpress the index k when there is no confusion, in other words, we let

(X, y, S, µ, U, V, w) = (Xk, yk, Sk, µk, U
k, V k, wk).

Since (X, y, S) ∈ Nβ(µ), then max {‖U‖, ‖V ‖, ‖w‖} ≤ β and 〈S, X〉 = tr(S
1
2 XS

1
2 ) ≤ 2nµ.

From the definitions of V and w we also have S = µp(X − Q) − A∗(y) + C + µV , and A(X) =

−µp(y − q) + µw + b.
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First we show the boundedness of the iterates.

Lemma 4.1 (X, y, S) is bounded.

Proof. We have

〈S − Sq, X −XQ〉

= 〈µp(X −Q)−A∗(y) + C + µV − C +A∗(yq), X −XQ〉

= 〈−A∗(y − yq), X −XQ〉+ µp〈X −Q,X −XQ〉+ µ〈V,X −XQ〉

= 〈y − yq,A(XQ)−A(X)〉+ µp〈X −Q,X −XQ〉+ µ〈V,X −XQ〉

= 〈y − yq, b + µp(y − q)− µw − b〉+ µp〈X −Q,X −XQ〉+ µ〈V,X −XQ〉

= µp〈y − yq, y − q〉 − µ〈y − yq, w〉+ µp〈X −Q,X −XQ〉+ µ〈V,X −XQ〉

= µp〈(y − q)− (yq − q), y − q〉 − µ〈(y − q)− (yq − q), w〉

+µp〈X −Q, (X −Q)− (XQ −Q)〉+ µ〈V, (X −Q)− (XQ −Q)〉

= (µp‖y − q‖2 − 〈y − q, µp(yq − q) + µw〉+ µ〈yq − q, w〉

+(µp‖X −Q‖2 − 〈X −Q,µp(XQ −Q)− µV 〉 − µ〈XQ −Q,V 〉

≥ µp‖y − q‖2 − µp‖y − q‖(‖yq − q‖+ µ1−p‖w‖)− µ‖yq − q‖‖w‖

+µp‖X −Q‖2 − µp‖X −Q‖(‖XQ −Q‖+ µ1−p‖V ‖)− µ‖XQ −Q‖‖V ‖

≥ µp‖y − q‖2 − µp‖y − q‖(‖yq − q‖+ βµ1−p)− βµ‖yq − q‖

+µp‖X −Q‖2 − µp‖X −Q‖(‖XQ −Q‖+ βµ1−p)− βµ‖XQ −Q‖

= µp
(
‖y − q‖2 − ‖y − q‖(‖yq − q‖+ βµ1−p)− βµ1−p‖yq − q‖

)
+µp

(
‖X −Q‖2 − ‖X −Q‖(‖XQ −Q‖+ βµ1−p)− βµ1−p‖XQ −Q‖

)
.

On the other hand, we also have

〈S − Sq, X −XQ〉 = 〈S, X〉 − 〈S, XQ〉 − 〈Sq, X〉+ 〈Sq, XQ〉

≤ 〈S, X〉 ≤ 2nµ.
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Therefore

µp
(
‖y − q‖2 − ‖y − q‖(‖yq − q‖+ βµ1−p)− βµ1−p‖yq − q‖

)
+ µp

(
‖X −Q‖2 − ‖X −Q‖(‖XQ −Q‖+ βµ1−p)− βµ1−p‖XQ −Q‖

)
≤ 2nµ,

so
‖y − q‖2 − ‖y − q‖(‖yq − q‖+ βµ1−p)− βµ1−p‖yq − q‖

+ ‖X −Q‖2 − ‖X −Q‖(‖XQ −Q‖+ βµ1−p)− βµ1−p‖XQ −Q‖

≤ 2nµ1−p.

(8)

Since µ0 ≥ µ, we have

‖y − q‖2 − ‖y − q‖(‖yq − q‖+ βµ1−p
0 )− βµ1−p

0 ‖yq − q‖

+ ‖X −Q‖2 − ‖X −Q‖(‖XQ −Q‖+ βµ1−p
0 )− βµ1−p

0 ‖XQ −Q‖

≤ 2nµ1−p
0 .

Notice that ‖y− q‖2−‖y− q‖(‖yq− q‖+βµ1−p
0 )−βµ1−p

0 ‖yq− q‖ and ‖X −Q‖2−‖X −Q‖(‖XQ−

Q‖+βµ1−p
0 )−βµ1−p

0 ‖XQ−Q‖ are convex quadratic functions of ‖y−q‖ and ‖X−Q‖ respectively,

they are both bounded from below, and will go to ∞ when ‖y − q‖ and ‖X −Q‖ go to ∞. Since

2nµ1−p
0 is a constant, then (X, y) must be bounded, so is S = µp(X −Q)−A∗(y) + C + µV .

Now we show that µk decreases to 0.

Lemma 4.2

lim
k−→∞

µk = 0.

Proof. Since µ0 > 0, µk+1 = (1 − γk)µk and γk ∈ (0, 1), then µk is strictly decreasing, so

µk −→ µ̂ ≥ 0. Now we prove µ̂ = 0 by contradiction.

Assume µ̂ > 0, then we must have γk −→ 0.

From Lemma 4.1 we know that {(Xk, yk, Sk)} is bounded, so there exists a convergent sub-

149



sequence
(
Xkn , ykn , Skn

)
−→

(
X̂, ŷ, Ŝ

)
, where X̂ � 0, ŷ ∈ Rm, and Ŝ � 0. Moreover, since(

Xkn , ykn , Skn

)
∈ Nβ(µkn), then

(
X̂, ŷ, Ŝ

)
∈ Nβ(µ̂). So Ŝ

1
2 X̂Ŝ

1
2 � 0 by Lemma 3.1. Hence X̂ � 0

and Ŝ � 0.

Let Ê = 2Ŝ⊗ Ŝ, F̂ = I⊗
(
ŜX̂

)
+

(
ŜX̂

)
⊗ I, and Ĝ =


Ê 0 F̂

−µ̂pI At I

A µ̂pI 0

. Then similar to the

analysis of Lemma 3.2, we have Ê � 0, Ê−1F̂ � 0, and Ĝ is nonsingular. Let r̂c = 2µ̂Ŝ − 2ŜX̂Ŝ,

r̂d = −
(
−µ̂p

(
X̂ −Q

)
+A∗(ŷ) + Ŝ − C

)
, and r̂p = −

(
A(X̂) + µ̂p(ŷ − q)− b

)
. We have

(
Ekn , F kn , Gkn , Gkn

−1
, rkn

c , rkn
d , rkn

p

)
−→

(
Ê, F̂ , Ĝ, Ĝ−1, r̂c, r̂d, r̂p

)
.

Let
(
∆X̂,∆ŷ, ∆Ŝ

)
be the (unique) solution to


2Ŝ(∆X̂)Ŝ + ŜX̂(∆Ŝ) + (∆Ŝ)X̂Ŝ = r̂c,

−µ̂p(∆X̂) +A∗(∆ŷ) + ∆Ŝ = r̂d,

A(∆X̂) + µ̂p(∆ŷ) = r̂p.

We then have


vec(∆Xkn)

∆ykn

vec(∆Skn)

 = Gkn
−1


vec(rkn

c )

vec(rkn
d )

rkn
p

 −→ Ĝ−1


vec(r̂c)

vec(r̂d)

r̂p

 =


vec(∆X̂)

∆ŷ

vec(∆Ŝ)

 .

Hence
(
∆Xkn ,∆ykn ,∆Skn

)
−→

(
∆X̂,∆ŷ, ∆Ŝ

)
.

Set

α̂ =


0, if

∥∥∥Fµ(X̂, ŷ, Ŝ)
∥∥∥ = 0,

min

{
(1−δ)‖Fµ̂(X̂,ŷ,Ŝ)‖
‖H

Ŝ
1
2

(∆X̂∆Ŝ)‖ , 1

}
, if

∥∥∥Fµ(X̂, ŷ, Ŝ)
∥∥∥ > 0,

and (X∗, y∗, S∗) = (X̂, ŷ, Ŝ) + α̂(∆X̂,∆ŷ, ∆Ŝ).

Now we show that
(
Xkn+1, ykn+1, Skn+1

)
−→ (X∗, y∗, S∗) by considering two cases.

If
∥∥∥Fµ̂(X̂, ŷ, Ŝ)

∥∥∥ = 0, then (r̂c, r̂d, r̂p) = 0 and
(
∆X̂,∆ŷ, ∆Ŝ

)
= 0. Thus (∆Xkn ,∆ykn ,∆Skn) −→
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0. Using the fact that the αk’s are bounded, we have

(
Xkn+1, ykn+1, Skn+1

)
=

(
Xkn , ykn , Skn

)
+αkn

(
∆Xkn ,∆ykn ,∆Skn

)
−→

(
X̂, ŷ, Ŝ

)
= (X∗, y∗, S∗) .

If
∥∥∥Fµ̂(X̂, ŷ, Ŝ)

∥∥∥ > 0, then
∥∥∥Fµkn

(Xkn , ykn , Skn)
∥∥∥ > 0 when kn is sufficiently large, hence

αkn = min


(1− δ)

∥∥∥Fµkn

(
Xkn , ykn , Skn

)∥∥∥∥∥∥∥H
(Skn )

1
2
(∆Xkn∆Skn)

∥∥∥∥ , 1

 −→ α̂,

by continuity, then

(
Xkn+1, ykn+1, Skn+1

)
=

(
Xkn , ykn , Skn

)
+ αkn

(
∆Xkn ,∆ykn ,∆Skn

)
−→

(
X̂, ŷ, Ŝ

)
+ α̂

(
∆X̂,∆ŷ, ∆Ŝ

)
= (X∗, y∗, S∗).

From Section 3.3, we know that there exists a positive integer l such that

∥∥∥F(1−θl)µ̂(X∗, y∗, S∗)
∥∥∥− β(1− θl)µ̂ < 0.

Since

∥∥∥F(1−θl)µkn (Xkn+1, ykn+1, Skn+1)
∥∥∥− β(1− θl)µkn −→

∥∥∥F(1−θl)µ̂(X∗, y∗, S∗)
∥∥∥− β(1− θl)µ̂

as kn approaches ∞, then we must have

∥∥∥F(1−θl)µkn (Xkn+1, ykn+1, Skn+1)
∥∥∥− β(1− θl)µkn < 0.

when kn is sufficiently large. Hence according to the definition of γk, we have γkn ≥ θl > 0 which

is a contradiction to rk −→ 0.

So µk −→ 0 as k approaches ∞.
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Finally we can prove the main convergence theorem.

Theorem 4.3

lim
k−→∞

(
Xk, yk, Sk

)
= (XQ, yq, Sq).

Proof. Assume
(
X̂, ŷ, Ŝ

)
is a limiting point (on subsequence {kn}) of

(
Xk, yk, Sk

)
.

Because µk −→ 0 and (Xk, yk, Sk) ∈ Nβ(µk), so
(
X̂, ŷ, Ŝ

)
∈ Nβ(0). Since Ŝ

1
2 X̂Ŝ

1
2 = 0 ⇐⇒

X̂Ŝ = 0, then
(
X̂, ŷ, Ŝ

)
satisfies the optimality condition (2). Hence

(
X̂, ŷ

)
is a primal-dual

optimal solution pair. Since (XQ, yq) is the projection of (Q, q) onto the optimal solution set, we

have ‖XQ −Q‖ ≤
∥∥∥X̂ −Q

∥∥∥ and ‖yq − q‖ ≤ ‖ŷ − q‖.

Using (8) we get

∥∥∥ykn − q
∥∥∥2
−

∥∥∥ykn − q
∥∥∥ (
‖yq − q‖+ βµ1−p

kn

)
− βµ1−p

kn
‖yq − q‖

+
∥∥∥Xkn −Q

∥∥∥2
−

∥∥∥Xkn −Q
∥∥∥ (
‖XQ −Q‖+ βµ1−p

kn

)
− βµ1−p

kn
‖XQ −Q‖

≤ 2nµ1−p
kn

.

Letting kn go to ∞ in the previous inequality, we have

‖ŷ − q‖2 − ‖ŷ − q‖‖yq − q‖+ ‖X̂ −Q‖2 − ‖X̂ −Q‖‖XQ −Q‖

= ‖ŷ − q‖(‖ŷ − q‖ − ‖yq − q‖) + ‖X̂ −Q‖(‖X̂ −Q‖ − ‖XQ −Q‖)

≤ 0.

Therefore ‖ŷ − q‖ = ‖yq − q‖ and ‖X̂ −Q‖ = ‖XQ −Q‖. So (X̂, ŷ) is also the projection of (Q, q)

onto Sp × Sd. But such a pair is unique, then (X̂, ŷ, Ŝ) = (XQ, yq, Sq).

Since
{
(Xk, yk, Sk)

}
is a bounded sequence with (XQ, yq, Sq) as the only limiting point, then

we must have (Xk, yk, Sk) −→ (XQ, yq, Sq) as k approaches ∞.
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