
AMO - Advanced Modeling and Optimization, Volume 9, Number 1, 2007

Parallel Generation of the Biological Trees 1

H. Ahrabiana,b,c, A. Nowzari-Dalinia,b,c, M. Razaghic, F. Zare-Mirakabadc

aCenter of Excellence in Biomathematics,
School of Mathematics, Statistics, and Computer Science,

University of Tehran, Tehran, Iran.
bInstitute for Studies in Theoretical Physics and Mathematics (I.P.M.),

Tehran, Iran.
cDepartment of Bioinformatics,

Institute of Biochemistry and Biophysics,
University of Tehran, Tehran, Iran.

E-mail: {ahrabian,nowzari}@ut.ac.ir and {razaghi,zare}@ibb.ut.ac.ir

Abstract

Several biological features are presented by different types of trees. Two types of
such trees are considered in this paper. the first type is trees with n external nodes
that each internal node have at least two children, and are used in neuro-science
and called neuronal dendritic trees. The second type is trees with n internal nodes
and m external nodes. This type of trees represent the secondary structure of
RNA sequences, and called RNA trees. In this paper, we present two new parallel
algorithms for generation of these two biological trees. Both algorithms are adoptive
and cost-optimal and generate the trees in B-order. Computations run in an SM
SIMD model.

Keywords: Neuronal Dendritic Trees, RNA Trees, Parallel Algorithm, B-order.

1 Introduction

One of the most basic and simple data structures in computer science, that are used in
many other sciences such as biological science, is trees. Trees can be used to maintain
any ordered set that must be accessed and updated. For many reasons, it is often useful
to have available lists of all the shapes of trees of a certain type. Thus, many papers have
appeared which contain sequential algorithms for generating trees [8, 13, 17, 18, 20, 26]. In
most of these algorithms, trees are encoded as integer sequences and then these sequences
are generated with a certain order and consequently their corresponding trees are also
generated in a specific order. The most well-known orderings on trees are A-order and

1This research was in part supported by a grant from I.P.M. (No. 84920018).

1

B-order [27], and some of well-known encodings are P-sequences [14], inversion table [10],
0-1 sequences [27].

An optimal sequential generation algorithm takes constant average time to generate all
trees. Using parallel techniques we can improve the speed between the generation of any
two consecutive trees [3]. Recently, in this order, few parallel algorithms for generation
of trees have been published for various parallel models [1, 2, 4, 5, 12, 21, 22, 23, 24].

Here, we consider two biological trees, neuronal dendritic trees and RNA trees. A sim-
ple, efficient sequential algorithm is presented by Pallo [15] for generating the codewords
of all neuronal dendritic trees with a given number of external nodes. The correspond-
ing trees are generated in B-order. Also Pallo [14] introduced a coding and a sequential
generation algorithm for producing all RNA trees with n internal nodes and m external
nodes. Similarly, the corresponding trees are generated in B-order. Up to now, no parallel
algorithm is given in the literature for these trees.

In this paper, we present two cost-optimal and adaptive parallel algorithms for gen-
eration of dendritic trees and RNA trees. The algorithms are the parallel version of
corresponding sequential algorithms given in [14, 15]. The computational model for both
algorithms are SM SIMD computer [3].

The paper is organized as follows. Section 2 introduces the definitions and notions
that is used further. In Section 3, we introduce a new parallel generation algorithm for
neuronal dendritic trees. The parallel algorithm for RNA trees is given in Section 4.
Finally, some concluding remarks are offered in Section 5.

2 Definitions

In a rooted, ordered tree every node except the one has a parent. The node without parent
is called the root of tree. Every node has r ≥ 0 children (the order is significant) and each
of these children is also a tree called subtree of this node. The number of subtrees of a
node is called the degree of that node. A node of degree zero is called an external node of
leaf. A non-external node is called an internal node. A t-ary tree with n internal nodes
is a ordered tree, in which every internal node has exactly t ordered children. Clearly,
an n-node t-ary tree has (t − 1)n + 1 external nodes. The set t-ary trees with n internal
nodes is denoted by Tn,t [11].

As it is mentioned, in tree generation terminology, trees are encoded as integer se-
quences and then these sequences are generated with certain order and consequently their
corresponding trees are generated in a specific order. Such an ordering is B-order which
is defined for an arbitrary trees as follows [27].

Definition 1 Given a tree T , let rT be the degree of its root and Ti be the subtree rooted
at the ith son of the root of T . We say that T and T ′ are in B-order (T≺

B
T ′) if

1. rT < rT ′, or

2. rT = rT ′, and for some i (1 ≤ i ≤ rT) we have

2

(a) T
j
= T ′

j
for j = 1, 2, · · · , i − 1, and

(b) T
i
≺

B
T ′

i
.

The most well-defined ordering for integer sequences is lexicographic ordering which is
defined as follows.

Definition 2 The two integer sequence v = (v1, v2, · · · , vn) and v′ = (v′
1, v

′
2, · · · , v′

m) are
in lexicographic order, and will denote v < v′, if there exist i ∈ [1, min(n, m)] such that

1. vj = v′
j for all j ∈ [1, i − 1],

2. vi < v′
i.

As it is mentioned, we consider two biological trees, neuronal dendritic trees and RNA
trees. The term neuronal tree is used to refer a tree for which a variable degree of each
internal node is greater or equal to 2 [6, 15]. Usually, these trees are characterized with
fixed amount of external nodes. For example a tree given in Figure 1 can be regarded as a
neuronal tree with n = 13 external nodes. Translated into dendritic terminology, the root
is taken to be the axon hillock and the external nodes are the tips of the terminal segments.
The order of magnitude of branching at a node may be described as dichotomous if the
degree of that node is 2, trichotomous if the degree is 3, and so on [7, 15].

On the other hand, RNA tree refer to a tree which has n internal nodes, and m external
nodes. For example a tree given in Figure 1 can be regarded as a RNA tree with n = 5
and m = 13. These trees represent the secondary structure of a RNA sequence of length
2n − 2 + m with n − 2 base pairs. RNA is a chain molecule, mathematically a string
over a four letter alphabet. It is built from a nucleotides containing bases A (adenine), C
(cytosine), G (guanine) and U (uracil). These bases can form base pairs, conventionally
A pairs with U and C pairs with G. These are called Watson-Crick pairs. By folding

Figure 1: A sample tree with 5 internal nodes and 13 external nodes.

3

back into itself, an RNA molecule forms a structure, and is stabilized by the forms of
hydrogen bonds between certain pairs of bases and dense stacking of neighboring base
pairs. See Figure 2 (a) for an example of a so-called cloverleaf structure of sample RNA.
In Figure 2 (b), the alternative representation of these RNA is shown. The primary
structure is written along the horizontal axis and the base pairs are shown as arcs [25].

Now, we illustrate the bijection relation between the tree and the secondary structure of
RNA sequences with an example given in Figure 3 (a). We put a node above the outside
of all loops as the root of tree. Then inside of each arcs we insert a node as internal nodes
of tree. Each internal node is connected to the node in the upper loop as its parent, and
to any unpaired base in its corresponding loops as its children. These unpaired bases are
considered as external nodes of tree. With regard to this bijection, the tree corresponding
to secondary structure of the RNA sequence given in Figure 3 (a) is shown in Figure 3 (b).

3 Neuronal dendritic trees

In this section, we review the concepts introduced in [15] for neuronal trees such as
sequential generation algorithm, that we need further for designing our parallel algorithm
for generation of neuronal trees given later.

Let Sn denotes the set of neuronal trees with n external nodes. The number of trees
in Sn (i.e., |Sn|) is the well-known nth Schröder number [19] and can be computed by a

C GA CG C A A A A AG G G G GC C C C C C G CU U U

C

CC

C
C

C

C

C

C

CG

G

G

G

G

G G

A

A

A

A
A

U

U

U G

A

(a)

(b)

Figure 2: Two different representation for the secondary structure of a sample RNA.

4

(a) (b)

Figure 3: Trees corresponding to the secondary structure of the sample RNA .

linear recurrence formula.

Theorem 1 The Schröder number counts the trees of Sn as follows:

|Sn| =
3(2n − 3)|Sn−1| − (n − 3)|Sn−2|

n
, for n > 2,

|S1| = |S2| = 1.

Each tree in the set Sn can be encoded as an integer sequences based on the following
definition [15].

Definition 3 Given a neuronal tree T with n external nodes, the S-sequences s =
{s1, s2, · · · , s�} is obtained by labeling each internal node of tree with its degree minus
one and each external node with zero, and the labels are the listed in pre-order traversal
of T as a sequence.

For example the S-sequence corresponding to the tree T denoted in Figure 1 is the
sequence s = {2, 2, 0, 3, 0, 0, 0, 0, 0, 0, 3, 0, 0, 2, 0, 0, 0, 0}.

The properties of a sequence corresponding to a neuronal tree is given in the following
theorem [15].

Theorem 2 An integer sequence s = {s1, s2, · · · , s�} is a feasible codeword of a neuronal
tree iff s� = 0, and for k ∈ [1, � − 1]

k∑
i=1

si > |{j ∈ [1, k] : sj = 0}|.

Clearly, there is one to one correspondence between a neuronal tree and feasible code-
words. With respect to the above theorem, the length of feasible sequences alters between

5

2n − 1 to n + 1 . In the corresponding lexicographic ordering of the S-sequence, the first
S-sequence is

{1, 0, 1, 0, · · · , 1, 0︸ ︷︷ ︸
2n−2

, 0},

with length 2n − 1, and the last is

{n − 1, 0, 0, · · · , 0︸ ︷︷ ︸
n

},

with length n + 1. Actually, the first sequence corresponds to a right-chain binary tree
with n − 1 internal nodes and n external nodes, and the last sequence corresponds to a
n-ary tree with one internal node and n external nodes. Therefore, recall from [15], we
can write the following theorem.

Theorem 3 Given two neuronal trees T and T ′ belong to the set Sn, T and T ′ are in
B-order, T ≺

B
T ′, iff sT is lexicographically less than sT ′.

As it is mentioned, the sequential generation algorithm for S-sequences in B-order is
given by Pallo [15]. Pallo postulated an algorithm that returns the successor of a given
sequence s = {s1, s2, · · · , s�} with length � = O(n). In this algorithm, the sequence s is
a scanned from right to left and the first non-zero element is obtained, and its position
is assigned in k. If k = 1 then this sequence corresponds to the last sequence and there
is no successor. Otherwise, the successor is computed as follows. First the length of the
new sequence is evaluated and this length is kept in �. Later, the k − 1th element is
incremented and a subsequence corresponding to a right-chain subtree with size sk − 1 is
replaced by the last sk −1 elements in the sequence and the elements from k to �−2sk +1
are set to zero. In fact, this process is similar to the replacement of the right-most child
of the node k by a right-chain binary subtree, and the appropriate number of external
nodes is added as the first children of the kth node. Clearly, the running time of this
algorithm is O(n) in worst-case.

Now, we present a parallel version of the above sequential algorithm. This algorithm
is illustrated in Figure 4 and similar to the sequential version, this algorithm generates
the successor sequence of a given tree sequence s = {s1, s2, · · · , s�}. Our computational
model is a CREW SM SIMD with N ≤ � processors (� is a length of longest S-sequence),
and it can be proved that the algorithm is cost-optimal and adaptive.

Initially, the value of � must be made known to all N processors. This can be done
by using the procedure broadcast in O(log N) time complexity. Later, the S-sequence is
subdivided to N subsequences of length d = ��/N� and each processor i is assigned to the
subsequence {s(i−1)×d+1, s(i−1)×d+2, · · · , si×d}, where 1 ≤ i ≤ N . Each processor i finds
the position of right-most non-zero value and stores it in variable gi. This process requires
O(�/N) time complexity. Then between all the N computed values gi, the maximum posi-
tion is evaluated. This process can be done by algorithm parallel maximum [3] in O(log N).
Let k be this maximum position with value u. Now, the length of the new sequence is com-
puted by one of processors (e.g., processor 1), (k − 1)th element is incremented, and the

6

Procedure Parallel-Next-Sseq (s : Sseq) ;
Var i, j, k, u, q, d : Integer ; g : Array [1 .. N] of Integer ;
Begin

d := ��/N� ;
For i := 1 To N Do In Parallel

gi := 0 ;
For j := i × d DownTo (i − 1) × d + 1 Do

If (j ≤ �) And (sj �= 0) And (gi = 0) Then
gi := j ;

End ;
ParallelMax (g, k) ; u := sk ;
If (k = 1) Then Exit ;
If (sk−1 = 0) Then � := � + u − 1 ;
Else � := � + u − 2 ;
sk−1 := sk−1 + 1 ; sl := 0 ;
BroadCast (k, u, �) ;
d := �u − 1/N� ;
For i := 1 To N Do In Parallel

For j := i × d DownTo (i − 1) × d + 1 Do
If (j ≤ u − 1) Then Begin

sl−2j := 1 ; sl−2j+1 := 0 ;
End ;

End ;
d := �(l − 2u − k + 2)/N� ;
For i := 1 To N Do In Parallel

For j := i × d DownTo (i − 1) × d + 1 Do
If ((j + k − 1) ≤ (l − 2u + 1)) Then

sj+k−1 := 0 ;
End ;

End ;

Figure 4: Parallel algorithm Parallel-Next-Sseq.

three values k, u, � are broadcasted to all processors in O(log N) time. Later, the sequence
{s�−2u+2, · · · , s�} are subdivided into N subsequences of length d = �� − 2u + 2/N�, and
each processor i is assigned to the subsequence {s(i−1)×d+1, s(i−1)×d+2, · · · , si×d}, where
1 ≤ i ≤ N . All the processors in parallel replace the sequence {s�−2u+2, · · · , s�} with
a sequence corresponding to the right-chain binary tree of size u − 1. This operation is
performed in O(�/N). Again the sequence {sk, · · · , s�−2u+1} is set to zero in parallel in
O(�/N), and the successor sequence is obtained.

With regard to the time complexity of the above steps, the total required time for this
algorithm is T (n) = O(�/N + log N), and because l = 2n − 1 in worst-case therefore

7

T (n) = O(n/N + log N) . Now we can easily prove that the algorithm is cost-optimal
and adaptive.

Theorem 4 The presented Parallel-Next-Sseq is cost-optimal and adaptive.

Proof. Considering the time complexity of Parallel-Next-Sseq, the cost of this algorithm
is equal to C(n) = O(n + N log N). Thus, with regard to the time complexity of the
sequential algorithm which is O(n), the parallel algorithm is cost-optimal for N ≤ n/log n.
The adaptivity of this algorithm is clear. �

4 RNA trees

In this section, we present a parallel generation algorithm for RNA trees. For this reason,
we first review few concepts introduced in [14, 25] that we need further. Later, Pallo’s
sequential generation algorithm [14] that our parallel algorithm is based on, is discussed.

Let Ln,m be the set of all order trees with n internal nodes and m external nodes. The
number of these trees can be counted by Narayana numbers [16].

Theorem 5 The Narayana numbers counts the trees of Ln,m as follows:

|Ln,m| =
1

n + m − 1

(
n + m − 1

m

)(
n + m − 1

m − 1

)
.

Now the encoding given by Pallo [14] for trees with n internal nodes and m external
nodes is described. For this purpose, the P-sequences introduced for t-ary trees in [14],
are used for m-ary trees, such that the trees with n internal nodes and m external nodes
are embedded in the set of regular, m-ary trees with n internal nodes.

Let us define T n,m as the set of all regular m-ary trees with n internal nodes and with
two kinds of external nodes: m real external nodes �, and (n− 1)(m− 1) virtual external
nodes �. This definition is justified by the following injective embedding, ∅ : Ln,m →
T n,m, such that for each internal node with degree r < m, m − r virtual external nodes
are attached as a m− r first children. In Figure 5, a 4-ary tree corresponding to the tree
given in Figure 3 (b) is shown.

Now, we introduce P-sequence for regular t-ary tree, and then we extend this definition
for T n,m, as P-sequence [14].

Definition 4 The P-sequence of a t-ary tree T with n internal nodes is the integer se-
quence {p1, p2 · · · pn(t−1)}, where pi is the number of internal nodes written before external
node i in pre-order traversal of T . Since the integer corresponding to the last external
node, the n(t − 1) + 1th external node, is always equal to n therefore we omit it.

Let us denote N = {n, n ∈ N} and |n| = |n| = n, then with regard to the definition
of the P-sequences, the P-sequences for encoding the trees in the set T n,m are defined as
follows [14].

8

Definition 5 Given a tree T ∈ T n,m, the P-sequence of T is the sequence
{p1, p2 · · · pn(m−1)} defined by: If ni is the number of internal nodes written before the
external node i in pre-order traversal of T , then pi = ni if the external node i is real
external node, and pi = ni if the external node i is virtual external node.

For example the P-sequence corresponding to the tree T denoted in Figure 5 is the
sequence p = {1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5}. Actually, the integers with symbol
′−′ are the labels of the virtual external nodes, and the integers without symbol ′−′ are
the labels of the real external nodes.

Now, the properties of a feasible sequence encoding a tree T ∈ Ln,m is given [14].

Theorem 6 The sequence {p1, p2 · · · pn(m−1)} on N ∪ N is the P -sequence of a tree T ∈
Ln,m iff:

1. The sequence obtained by deleting the symbol ′−′ is the P-sequence of a tree T ′ ∈
Tn,m.

2. |{i ∈ [1, n(m − 1)] : pi ∈ N}| = (n − 1)(m − 1).

3. For all � ∈ [1, n], |{i ∈ [1, n(m − 1)] : pi = �}| ≤ m − 1.

4. For all k ∈ [1, n], if there exist i and j such that pi = k and pj = k, then j < i.

Let us define on N ∪ N the following ordering:

1 < 1 < 2 < 2 < 3 < 3 · · · < n < n + 1 < n + 1 < · · · .

In the corresponding lexicographic ordering of the P-sequence, the first P-sequence is

{1, · · · , 1︸ ︷︷ ︸
m−1

, 2, · · · , 2︸ ︷︷ ︸
m−1

, n − 1, · · · , n − 1︸ ︷︷ ︸
m−1

, n, · · · , n︸ ︷︷ ︸
m−1

},

and the last is
{2, · · · , 2︸ ︷︷ ︸

m−1

, 3, · · · , 3︸ ︷︷ ︸
m−1

, n, · · · , n︸ ︷︷ ︸
m−1

, n, · · · , n︸ ︷︷ ︸
m−1

}.

Therefore, recall from [14], we can write the following theorem.

Figure 5: A sample embedded RNA tree.

9

Theorem 7 Given two RNA trees T and T ′ belong to the set Ln,m, T and T ′ are in
B-order, T ≺

B
T ′, iff pT is lexicographically less than pT ′.

As it is mentioned, the sequential generation algorithm for P-sequence in B-order is
given by Pallo [14]. Pallo designed an algorithm that returns the successor of a given
sequence {p1, p2, · · · , p�} with length � = n(m − 1). In this algorithm, the codeword is
scanned from right to left and the last incrementable element is searched. With regard
to this point that it is assumed, 1 < 1 < 2 < 2 < 3 < 3 · · · < n < n, therefore the
elements are selected for increasing with this order. The incrementable element, is the
element with the least index k such that {pk+1, p2, · · · , p�} is a subsequent of the last
P-sequence. Now, the number of elements pj (k < j ≤ �) that belongs to N, is obtained
and saved in the variable u. If the kth element belongs to N, it is added by one and
is changed to an element of N, and u is decremented, otherwise the kth element loses
its symbol ′−′ and is changed to an element in N. Then, each pj (k < j ≤ �) is set
to Max (|pk|, 1 +
(j − 1)/(m − 1)�), where |pk| is pk without the symbol ′−′. Clearly
the constructed sequence {pk+1, p2, · · · , p�} is a P-sequence. Finally, k elements of pj

(k < j ≤ �) is changed to an element of N, with regard to the Theorem 6. Clearly, the
running time of this algorithm is O(nm) in worst-case.

Now, we present a parallel version of the above sequential algorithm. This algorithm
illustrated in Figure 6 and similar to the sequential version, this algorithm generates the
successor sequence of a given tree sequence p = {p1, p2, · · · , p�}. Our computational model
is a CRCW SM SIMD with N ≤ � processors, and it can be proved that the algorithm is
cost-optimal and adaptive.

Initially, the values n, m, and � = n(m − 1) must be made known to all proces-
sors. This can be done using procedure broadcast in O(log N) time. The P-sequence is
subdivided into N subsequences of length d = ��/N�, and each processor i is assigned
{p(i−1)×d+1, p(i−1)×d+2, · · · , pi×d}, where 1 ≤ i ≤ N . All processor now perform the fol-
lowing steps. Each processor i finds the position of right-most incrementable element and
stores it, and betweens all the N computed value, the minimum position is evaluated
and stored in variable k. This step can be performed in O(�/N) by the parallel pattern
matching algorithm [9]. If we can not find any incrementable element, then this sequence
is considered as the last sequence and no successor sequence is defined. Now again, the
subsequence {pk, · · · , p�} is subdivided between N processors. Each processor computes
the number of elements in each subsequences that belong to N, and assigns in the variable
u. This process is performed by the procedure ParallelCard, which is shown in Figure 7,
in O(�/N + log N). Later, in O(1) the incrementable element pk, is incremented based on
the order 1 < 1 < 2 < 2 < 3 < 3 · · · < n < n. Then u is decremented and the values k
and u are broadcasted to all processors in O(log N). Now, the subsequence {pk+1, · · · , p�}
is subdivided between N processors, and each processor i (1 < i ≤ N) construct a sub-
sequence without regarding the symbol ′−′. With respect to this fact that each internal
node should have maximum m − 1 virtual external nodes, therefore k elements of the
subsequences {pk+1, · · · , p�} are converted to the element with symbol ′−′. For this pro-
cess, the number of ′−′ symbols is computed in parallel by each processor i and assigned

10

Procedure Parallel-Next-Pseq (p : Pseq) ;
Var i, j, k, u, d : Integer ; q : Array [1 .. N] of Integer ;
Begin

k := ParallelPattenMatching (p) ;
If (k > 0) Then u :=ParallelCard(p, k, �);
Else Exit;
If (pk ∈ N) Then Begin

pk := pk + 1 ; u := u − 1 ; qk+1 := 1 ;
End
Else Begin

pk := |pk| ; qk+1 := m − 1 ;
End ;
BroadCast (k, u) ;
d := �(� − k)/N� ;
For i := 1 To N Do In Parallel

For j := i × d + k DownTo (i − 1) × d + k + 1 Do
pj :=Max (|pk|, 1 +
(j − 1)/(m − 1)�) ;

End ;
For i := 1 To N Do In Parallel

For j := (i − 1) × d + k + 1 To i × d + k Do
If (j ≤ �) Then If (pj �= |pj−1|) Then qj+1 := 1

Else If (qj < m − 1) Then qj+1 := qj + 1 ;
Else qj+1 := qj ;

End ;
For i := 1 To N Do In Parallel

For j := (i − 1) × d + k + 1 To i × d + k Do
If (u > 0) And (j ≤ �) Then

If (pj �= |pj−1|) Then Begin
pj := pj ; u := u − 1 ;

End
Else If qj < m − 1 Then Begin

pj := pj ; u := u − 1 ;
End ;

End ;
End ;

Figure 6: Parallel algorithm Parallel-Next-Pseq.

in qi in O(�/N). Later each processor i, adjusts the numbers of ′−′ symbols with regard
to the value of qi. It should be noted that, by adding an element with symbol ′−′, each
processor decrements the value u in parallel. This process needs a concurrent write op-
eration. Therefore, this step is the only step we might need our model to be concurrent

11

Function ParallelCard (p : P̄seq; f, e : Integer) ;
Var i, j, d : Integer ; g : Array [1..N] of Integer
Begin

d := �(f − t + 1)/N� ;
For i := 1 To N Do In Parallel

gi := 0 ;
For j := i × d + f − 1 DownTo (i − 1) × d + f Do

If (j ≤ e) And (pj ∈ N) Then
gi := gi + 1 ;

End ;
For i := 1 To N/2 Do In Parallel

For j := 0 To �log N� − 1 Do
If (2i + 2j − 1 ≤ N) And ((i − 1) mod 2j = 0) Then

g2i−1 := g2i−1 + g2i+2j−1 ;
End ;
Return g1 ;

End ;

Figure 7: Algorithm ParallelCard.

write. In this case the summation of the values are considered. This recent operation
require O(�/N) time.

With regard to the time complexity of the above steps, the total required time for this
algorithm is T (�) = O(�/N + log N). Now we can easily prove that the algorithm is
cost-optimal and adaptive.

Theorem 8 The presented Parallel-Next-Pseq is cost-optimal and adaptive.

Proof. Considering the time complexity of Parallel-Next-Pseq, the cost of this algorithm
is equal to C(�) = O(� + N log N). Thus, with regard to the time complexity of the
sequential algorithm which is O(�), the parallel algorithm is cost-optimal for N ≤ �/log �.
It should be noted that � = nm. The adaptivity of this algorithm is clear. �

5 Conclusion

We have given two simple parallel algorithms for generating the neuronal trees and RNA
trees. These algorithm are the first parallel algorithms for generation of these type of trees
given in the literature. The algorithms generate the neuronal trees and RNA trees in B-
order on a SM SIMD model. Our model supports the cost-optimality of the algorithm
with different number of processors. The algorithms are adaptive and the number of
processors are variable.

12

References

[1] H. Ahrabian and A. Nowzari-Dalini, Parallel generation of binary trees in A-order,
Parallel Comput. 31 (2005), 948–955.

[2] H. Ahrabian and A. Nowzari-Dalini, Adaptive generation of t-ary trees in parallel,
Adv. Modeling Optim. 8 (2006), 19–28.

[3] S. G. Akl, The Design and Analysis of Parallel Algorithms, Prentice Hall, Englewood
Cliffs, 1989.

[4] S. G. Akl and I. Stojmenovic, Generating binary trees in parallel, in: Proc. 30th Annual
Allerton Conference on Communication, Monticello, Illinois, 1992, pp. 135–147.

[5] S. G. Akl and I. Stojmenovic, Generating t-ary trees in parallel, Nordic J. Comput. 3
(1996), 63–71.

[6] S. Berger and L. Tucker, Binary tree representation of three-dimentional, recosytruted
neuronal trees: a simple, efficient algorithm, Comput. Methods Programs Biomed. 23
(1986), 231–235.

[7] M. Berry and P. Bradley, The application of network analysis to the study of branching
patterns of large dendritic fields, Brain Res. 109 (1976), 111–132.

[8] M. C. Er, Efficient generation of k-ary trees in natural order, Comput. J. 35 (1992),
306-308.

[9] Z. Galil, A constant-time optimal parallel string-matching algorithm, J. ACM 42
(1995), 908–918.

[10] G. Knott. A numbering system for binary trees. Comm. ACM 20 (1977), 113–115.

[11] D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms,
2nd Ed., Addison-Wesley, Reading, 1973.

[12] Z. Kokosinski, On parallel generation of t-ary trees in an associative model, Lecture
Notes in Computer Science 2328 (2002), 228–235.

[13] J. F. Korsh, A-order generation of k-ary trees with 4k−4 letter alphabet, J. Inform.
Optim. Sci. 16 (1995), 557-567.

[14] J. Pallo, Generating trees with n nodes and m leaves, Intern. J. Comput. Math. 21
(1987), 133-144.

[15] J. Pallo, A simple algorithm for generating neuronal dendritic trees, Comput. Methods
Programs Biomed. 33 (1990), 165–169.

13

[16] H. Prodinger, A coresspondence between orderd trees and nondecresing partitions,
Discrete Math. 46 (1983), 205–206.

[17] D. Roelants Van Baronaigien and F. Ruskey, Generating t-ary trees in A-order,
Inform. Process. Lett. 27 (1988), 205–213.

[18] F. Ruskey, Generating t-ary trees lexicographically, SIAM J. Comput. 7 (1978), 424–
439.

[19] E. Schröder, Vier combinatorische problem, Z. Math. Phys. 15 (1870), 361–376.

[20] E. Trojanowski, Ranking and listing algorithm for k-ary trees, SIAM J. Comput. 7
(1978), 492–509.

[21] V. Vajnovszki and J. Pallo, Parallel algorithms for listing well-formed parentheses
strings, Parallel Process. Lett. 8 (1998), 19–28.

[22] V. Vajnovszki and C. Phillips, Two optimal parallel algorithms for generating P-
sequences, in: Proc. 9th International Conference on Parallel and Distributed Com-
puting Systems (eds. K. Yetongnon and S. Hairi), International Society for Computers
and their Applications, Raleigh, 1996, pp. 819–821.

[23] V. Vajnovszki and C. Phillips, Generating k-ary trees in parallel, in: Proc. High
Performance Computing (ed. B. Werner), IEEE Computer Society Press, Las Vegas,
1997, pp. 117–121.

[24] V. Vajnovszki and C. Phillips, Systolic generation of k-ary trees, Parallel Process.
Lett. 9 (1999), 93–101.

[25] M. S. Waterman, Introduction to Computational Biology, CRC Press, New York,
1995.

[26] Z. Yongjin and W. Jianfang, Generating k-ary trees in lexicographic order, Sci. Sin.
23 (1980), 1219-1225.

[27] S. Zaks, Lexicographic generation of ordered tree, Theoret. Comput. Sci. 10 (1980),
63–82.

14

