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A two-level trust-region method for
optimal control problems with radiative transfer

M. Herty1 and G. Thömmes1

Abstract

We consider optimal control problems for the radiative transfer
equation with a distributed source as control variable and the radiation
intensity as state variable minimising a quadratic functional of track-
ing type. The problem is solved using a trust-region method where the
model in the trust-region subproblem uses the numerically more effi-
cient well-known PN approximations. This leads to a two-level method
based on the radiative transfer equations on the fine level and the PN

equations on the coarse level. Numerical results show the feasability of
the new approach and confirm that it can lead to significant benefits
in terms of computational costs.

1 Introduction

Radiation transport [22, 23] is central to many technical processes – e.g.
glass cooling [26, 27, 34], gas turbine combustion chambers [29, 30] or com-
bustion car engines – and appears also in medical applications like radiation
therapy [4, 5, 13]. These phenomena are modeled by the radiative transfer
equations, which are challenging from the point of view of numerical solu-
tion because of the high dimensionality of the problem. This has led to the
development of various approximate equations ranging from moment expan-
sions like PN or diffusion equations like simplified PN (SPN ), among others
[19, 16, 17, 28, 32]. In recent years optimal control problems have gained
growing interest since efficient methods for solving the underlying radiative
transfer equations have been developed such that the goal of controlling
radiation in a desired way can be addressed using computer simulations,
see e.g. [31, 1, 3, 21]. Owing to the high complexity of the full equations,
however, many optimisation approaches are based on simpler approximate
models whenever they are appropriate. They allow to solve the optimisation
problems with acceptable computational costs. Our approach is based on
the full radiative transfer equations and at the same time tries to make use
of the numerically efficient approximations by employing them as models in
the subproblems of a trust-region method.

We consider an optimal control problem in the realm of radiative transfer
with a tracking-type cost functional for given functions R̄, Q̄ : D → R,

F̃ (R, Q) =
α1

2

∫

D
(R− R̄)2dx +

α2

2

∫

D
(
∫

S2

Qdω − Q̄)2dx. (1)
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Here, R(x) =
∫
S2 I(x, ω)dω denotes the radiosity or total flux corresponding

to the space and direction dependent intensity I.
The intensity I(x, ω) : Rd×S2 → R is computed by solving the radiative

transfer equation,

εω · ∇I + (σs + σa)I =
σs

4π

∫

S2

I dω′ + Q(x, ω), (2)

where d is the space dimension of the underlying domain, S2 is the sphere in
R3 and σs and σa are problem dependent scattering and absorption parame-
ters [23] and ε is a scaling factor of the equation, i.e., ε = xref/(σref

a +σref
s ).

The equation contains the source term Q(x, ω) which can be interpreted as
an exterior source or sink of radiation energy. The external source is the
control variable of our problem, see also section 2.

Existence results and first-order optimality conditions for this problem
have been derived in [14, 25, 27] using adjoint calculus. Moreover,the cor-
responding PN and SPN optimal control problems can be found in the lit-
erature [15]. Starting from these results, we set up a numerical multilevel
trust-region method based on the full radiative transfer system and sim-
plified problems. There is a variety of literature on trust-region methods
and we refer to [6] and the references therein for further information on
this numerical method. The trust-region method we consider here has been
inspired by [11], see also [24, 12, 8] and the discussion in section 2.

The paper is organised as follows. In section 2 we give an overview of the
optimal control problem for the radiative transfer equation (fine level prob-
lem) and its approximations based on the PN and SPN equations (coarse
level problem) and present the details of the two-level trust-region method
we propose. The results of two test cases are summarized in section 3 illus-
trating the feasibility of the new method.

2 Optimal control problem and two-level trust re-
gion method

We are interested in fast and efficient numerical methods for solving optimal
control problems in radiative transfer. A general mathematical formulation
of the problems under consideration is the following: Let x ∈ D, where D is a
bounded, convex subset with Lipschitz boundary of Rd with d = 1, 2, 3, and
let ω ∈ S2. We assume that the radiative intensity I = I(x, ω) at position x
propagating along direction ω satisfies the scaled radiative transfer equation
(2). The equation is accompanied by boundary conditions on the incoming
directions

I(x, ω) = A, n(x) · ω < 0, (3)

where n denotes the outer normal on D. For simplicity we assume constant
boundary data A. Even though equation (2) is a simplification of the full

188



AMO - Advanced Modeling and Optimization - Volume 8, Number 2, 2006

time- and frequency-dependent radiative transfer equation, it is still a valid
model when dealing, for example, with grey media or when the mean free
path of the radiation is small compared to the characteristic length. More
details on modeling aspects can be found e.g. in [23].

The optimisation problem for determining a distributed control Q(x, ω)
then reads

min
R,Q

F̃ (R, Q) subject to (2). (4)

Problem (4) has been studied in [14] and an adjoint calculus has been de-
rived. Furthermore, the corresponding optimality conditions have been in-
vestigated in [15] and [9]. Here, we contribute to this investigation a nu-
merical algorithm for solving (4) based on a multilevel model hierarchy in
numerical optimisation. This will be accomplished by using the multilevel
trust-region method proposed by Gratton et al. [11] as well as by the fact,
that there exists a well-known model hierarchy for (2), namely the PN and
SPN approximations [16, 19, 17, 7].

Usually, for a numerical solution to (4) by a descent-type method for the
reduced cost functional F defined by F (Q) := F̃ (R(Q), Q) where R(Q) is
the radiosity obtained by solving (2). As derived in [14], the gradient of the
reduced cost functional ∇QF at Q is given by

∇QF (Q)[δQ] = α2(Q− 1
4π

Q̄) · δQ + J · δQ, (5)

where J = J(x, ω) is the adjoint variable solving the corresponding equation

−εω · ∇J + (σa + σs)J =
σs

4π

∫

S2

J dω′ + α1(R− R̄), (6a)

J(x, ω) = 0, n(x) · ω > 0, (6b)

and, again, R =
∫
S2 Idω, where I the solution to (2). A full discretisation

of (2) and (6) in angle ω and space x variables leads to a high-dimensional
discrete system which has to be solved at least once for each descent step.
In the sequel, we first introduce various coarse models approximating the
radiative transfer equation, the cost functional and its reduced gradient.
Second, we include the coarse models in an optimisation for the fine model,
i.e., (2), to reduce the numerical effort.

2.1 Model hierarchies for radiative transfer

The first hierarchy of coarse models are the simplified PN approximations
(SPN ). They are good approximate models if the medium can be assumed
to be optically thick, i.e., ε ¿ 1, see [18, 35]. We shortly recall the SP1,
SP2 and SP3 approximations, which are commonly-used alternatives of (2).
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Defining the total scattering cross section σt = σa + σs and the total flux of
the source q(x) =

∫
S2 Q(x, ω)dω, the SP1 approximation reads

− ε2

σt
∇2ϕ + σaϕ = q, x ∈ D, (7a)

b.c. ϕ +
2ε

3σt
n · ∇ϕ = πA, x ∈ ∂D. (7b)

The SP2 approximation is expressed in terms of an auxiliary variable ϕ̃ =
ϕ + 4σa

5σt
(ϕ− 1

σa
q):

−ε2
5σt + 4σa

15σt
∇2ϕ̃ + σaϕ̃ = q, (8a)

b.c. ϕ̃ +
4ε(5σt + 4σa)

45σ2
t

n · ∇ϕ̃ =
5σt − 8σa

15σt
q +

2(5σt + 4σa)
15σt

πA. (8b)

Finally, the SP3 approximation is given by two coupled elliptic equations for
ϕ and a second auxiliary variable denoted by ϕ̂:

− ε2

3σt
∇2(ϕ + 2ϕ̂) + σaϕ = q, (9a)

− 9ε2

35σt
∇2ϕ̂ + σtϕ̂− 2

5
σaϕ = −2

5
q, (9b)

b.c. ϕ +
5
16

ϕ̂ +
ε

6σt
n · ∇ϕ +

2ε

9σt
n · ∇ϕ̂ = πA, (9c)

b.c. − 1
16

ϕ +
5
16

ϕ̂ +
3ε

14σt
n · ∇ϕ̂ = −π

4
A, (9d)

(9e)

For the subsequent optimisation we note that the previous equations are an
approximation in the following way: given a source term Q(x, ω), the fine
model yields the radiosity R =

∫
S2 I(x, ω)dω, where I is the solution of (2).

The coarse SPN model produces an approximation ϕ to this radiosity R.
The SPN is a coarse grid model since all quantities are independent of ω.
The cost functional for the coarse SPN model reads

f̃SP (ϕ, q) =
α1

2

∫

D
(ϕ− R̄)2dx +

α2

2

∫

D
(q − Q̄)2dx, (10)

and depending on the order N = 1, 2, 3 a single evaluation of (10) consists of
a solution of one or two second order partial differential equations. Further-
more, using adjoint calculus an expression for the gradient of the reduced
functional fSP (q) := f̃SP (ϕ(q), q) where ϕ(q) is the solution to (7), (8) or
(9), respectively, has been derived in [15]:

∇qf
SP (q)[δq] = α2(q − Q̄) · δq + ψ · δq. (11)
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According to the order N of the approximation, the adjoint variable ψ is
given for SP1 by

− ε2

3σt
∇2ψ + σaψ = α1(ϕ− R̄),

b.c. ψ +
2ε

3σt
n · ∇ψ = 0,

and for SP2 with auxiliary variable ψ̃ = ψ + 4σs
5σt

(ψ − α1
σa

(ϕ− R̄)) we have

−ε2
5σa + 9σs

15σt
∇2ψ̃ + σaψ̃ = α1(ϕ− R̄),

b.c. ψ̃ +
4ε(5σt + 4σa)

45σ2
t

n · ∇ψ̃ = 0.

Furthermore, for SP3 the adjoint system for the two unknowns ψ and ψ̂ is

− ε2

3σt
∇2(ψ + 2ψ̂) + σaψ = α1(ϕ− R̄),

− 9ε2

35σt
∇2ψ̂σtψ̂ − 2

5
σaψ = −2

5
α1(ϕ− R̄)

b.c. ψ +
5
16

ψ̂ +
ε

6σt
n · ∇ψ +

2ε

9σt
n · ∇ψ̂ = 0,

b.c. − 1
16

ψ +
5
16

ψ̂ +
3ε

14σt
n · ∇ψ̂ = 0,

In these adjoint equations, ϕ = ϕ(q) is the solution to (7), (8) or (9), re-
spectively, for a given control q.

The second coarse model we investigate are the spherical harmonic ap-
proximations (PN ). In the case of a one-dimensional slab geometry and for
a control Q(x, µ) the radiative transfer equation simplifies

εµ∂xI + (σa + σs)I =
σs

2

∫ 1

−1
I dµ′ + Q, (12)

where µ = cos(ex, ω) ∈ (−1, 1) is the cosine of the angle between direction
and x-axis. We can further assume that x is normalised to x ∈ [0, 1]. The
PN approximations are obtained by assuming that I(x, µ) is approximated
by a truncated expansion with respect to Legendre Polynomials Pl using
(N + 1) terms (see e.g. [19, 32])

I(x, µ) ≡
N∑

l=0

2l + 1
2

ϕl(x)Pl(µ).
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The moments in this expansion are denoted ϕl, l = 0, . . . , N . The PN

approximation is then a N + 1 dimensional system of equations

ε∂x

(
l + 1
2l + 1

ϕl+1 +
l

2l + 1
ϕl−1

)
+ (σa + σs)ϕl = σsϕl + 2ql, l = 0, . . . , N

(13)
where the intensity and source moments are given by

ϕl =
∫ 1

−1
I(x, µ)Pl(µ) dµ, and ql =

∫ 1

−1
Q(x, µ)Pl(µ) dµ,

(formally we set ϕ−1 = ϕN+1 = 0). It may be noted that in this 1D situation
the first moment ϕ0 coincides with the integrated flux ϕ that appears in the
SPN approximations. Different boundary conditions can be imposed for (13)
[20]. We impose Mark-type boundary conditions

b.c.
N∑

l=0

ϕl(0)
2l + 1

2
Pl(µk) = 0, µk > 0

and
N∑

l=0

ϕl(1)
2l + 1

2
Pl(µk) = 0, µk < 0,

where µk is the kth zero of the Legendre Polynom PN+1.
The coarse cost functional is given by

f̃P (ϕ0, q0) =
α1

2

∫

D
(ϕ0 − R̄)2dx +

α2

2

∫

D
(q0 − Q̄)2dx, (14)

and each evaluation requires the solution of the N + 1 transport equations
(13). The gradient of the reduced cost functional fP is given by [9]

∇qf
p(q0)[δq] = α2(q0 − Q̄) · δq + ψ0 · δq, (15)

where ψl, l = 0, . . . , N denote the adjoint variables obtained from the solu-
tion of the system

−ε∂x

(
l + 1
2l + 1

ψl+1 +
l

2l + 1
ψl−1

)
+ (σa + σs)ψl = σsψl + 2α1(ϕ0 − R̄)δl0,

with ψ−1 = ψN+1 = 0, and boundary conditions

b.c.
N∑

l=0

ψl(0)
2l + 1

2
Pl(µk) = 0, µk < 0

and
N∑

l=0

ψl(1)
2l + 1

2
Pl(µk) = 0, µk > 0.

Next, we incorporate the model hierarchies in a two-level trust-region method.
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2.2 Two-level optimisation method

In [11] a general trust-region type method for multilevel models has been
introduced. The primary examples are related to the multigrid method for
partial differential equations, see [24]. However, we apply this concept in
a two-level version to solve the optimal control problem for the radiative
transfer equation (4). The independent variables are naturally divided into
space and direction variables. This is exploited in the above mentioned
models to construct approximations which contain only the space as inde-
pendent variable. We use these reduced models as an alternative to the
classical quadratic trust-region subproblem to compute a new iterate on the
fine level. We explain the algorithm in the continuous setting and refer to
section 3 for details of the implementation.

On the fine level we deal with direction dependent controls while at the
coarse level controls are independent of directions. The transition from fine
to coarse is accomplished by the restriction operator, which is realised by
angular integration

q(x) ≡ r(Q)(x) =
∫

S2

Q(x, ω) dω,

and the prolongation from coarse to fine level is then

Q(x, ω) ≡ p(q)(x, ω) =
1
4π

q(x).

To correctly couple the coarse level functional in step k to the fine level, the
coarse level iteration is started with a modified functional in each substep

f̂k(q0 + δq) = f(q0) + v · δq + w, (16)

where q0 = r(Qk) is the restriction of the current fine level control, v =
r(∇QF (Qk)) − ∇qf(q0) is a gradient shift, and w = F (Qk) − f(q0) shifts
the functional values. (Here, f denotes either the function fSPN or fP .)
In this way we can make sure that the behaviour of coarse and fine level
functionals match locally around q0 and Qk, in particular we enforce the
gradient relation

∇qf̂(q0) = r(∇QF (Qk)).

The trust-region optimisation on the coarse level then proceeds in the stan-
dard way and returns a control q∗. The difference, q∗− q0, is then projected
to the fine grid, δQk = p(q∗ − q0), where this step size proposal of the
subproblem is processed as usual.

In the following trust-region algorithm we denote by 0 < δ1 ≤ δ2 < 1 the
thresholds for the radius decrease and increase, the radius being decreased or
increased by 0 < γ1 < 1 < γ2, respectively. Furthermore, in the termination
criterion we use upper bounds εa and εs for the difference in functional
values and for size of a single step. Coarse level parameters are indicated
with superscript ’c’.

193



AMO - Advanced Modeling and Optimization - Volume 8, Number 2, 2006

I Initialisation. Set k = 0 and initialize the trust region radius ∆0

and thresholds δ1 and δ2. Initialize the approximation to the reduced
Hessian of the fine model H0 = Id. Fix an initial guess for the control
Q0 and solve the fine model by computing F0 = F (Q0) and ∇F0 =
∇F (Q0).

II Choice of the model. Either we proceed using the fine model (Taylor
step, III) or the coarse grid model (IV).

III Fine-level step. Solve the fine level minimisation problem at step k

min
δQ

F (Qk + δQ) subject to ‖δQ‖2 ≤ ∆k (17)

by a trust region method using a quadratic model approximation

Mk(δQ) = Fk +∇Fk · δQ +
1
2
δQT ·Hk · δQ. (18)

Goto step V.

IV Coarse-level step.

a) Initialisation and restriction: Let l = 0 be the iteration index
of the coarse level optimisation. Initialize the coarse level trust
region radius ∆c

0 = ∆k and an approximation to the Hessian
Hc

0 = Id. Restrict to the coarse model q0 = r(Qk). Evaluate the
cost functional f0 = f(q0) and the gradient ∇f0 = ∇f(q0) by
either (15) or (11), respectively.

b) Coarse functional: Compute the functional shift w = F (Qk) −
f(q0) and the gradient shift v = r(∇QF (Qk))−∇qf(q0). Define
the modified coarse functional by

f̂(q) = f0 + v · (q − q0) + w. (19)

c) Solve the coarse level optimisation problem at step l

min
δq

f̂(ql + δq) subject to ‖δq‖2 ≤ ∆c
l (20)

by the standard trust-region method using a quadratic model

ml(δq) := f̂l +∇f̂l · δq +
1
2
δqT ·Hc

l · δq.

d) Termination and prolongation: if |f̂l−f̂(ql+δq)| < εa or ||δq|| < εs

then stop coarse level iteration. Prolongate the control δQk =
p(ql − q0). Continue on fine level at step V.
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e) Check acceptance: Determine the decrease within the coarse
model

ρ =
f̂l − f̂(ql + δq)
ml(0)−ml(δq)

.

If ρ ≥ δ1 then accept and update coarse level control ql+1 =
ql + δq. Evaluate new f̂l+1 and ∇f̂l+1, which only involves the
evaluation of the coarse level gradient (15) or (11), respectively.
Update approximation Hc

l+1 to the reduced Hessian by BFGS
update formula. If ρ > δ2 then increase the trust-region radius
∆c

l+1 = γc
2∆

c
l . Set l:=l+1.

Else, when the step has not been accepted, decrease the trust-
region radius ∆c

l = γc
1∆

c
l .

Continue with step c).

V. Termination. if |Fk − F (Qk + δQ)| < εa or ||δQ|| < εs then Stop.

VI. Check acceptance. Determine decrease in the cost functional by
comparing predicted and realized fine level descent

ρ =
Fk − F (Qk + δQ)
Mk(0)−Mk(δQ)

.

If ρ ≥ δ1 then accept and update the control Qk+1 = Qk + δQ, and
compute Fk+1 and ∇Fk+1 by (1) and (5). Furthermore, update the
approximation Hk+1 to the reduced Hessian by BFGS update formula.
If ρ > δ2 then increase the trust-region radius ∆k+1 = γ2∆k. Set
k:=k+1.

Else, when the step has not been accepted, decrease the trust-region
radius ∆k = γ1∆k.

Continue with step III.

Some remarks are in order. First, for simplicity we restricted ourselves to
the most basic algorithm, but a variety of modifications can be applied,
e.g., different update rules for the trust-region radius can be envisioned [11],
other update formulas for the approximation to the reduced Hessian can
be included and termination and update criteria can be level and iteration
dependent. Second, the main computational advance stems from the fact
that the coarse level steps IV.c-IV.e should be iterated several times before
returning to the fine level. In these steps, we continue the optimisation with-
out recomputing any fine level quantity. The performance of the complete
algorithm then strongly depends on the quality of the approximative models
and this will be investigated in section 3. Step IV.b guarantees convergence
and first-order optimality for the combined algorithm since the following
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relations hold true

f̂(q0) = F (Qk), ∇qf̂(q0) =
∫

S2

∇QF (Qk)dω. (21)

Fourth, if we run the algorithm using only step III then we have a classical
trust-region method applied to the fine model and no gain in numerical
performance. The decisions in step II can be prescribed a priori or based on
a comparison between fine and coarse grid gradients [11].

3 Numerical results

We implemented test cases in 1D using the DSA iterative scheme for the
transport equations of the forward and adjoint equations on the fine level
([36], [37]). Equation (12) is discretised on an equidistant space grid using
the diamond differencing scheme by evaluating intensity I and source q at
the nodes xi+ = i∆x, i = 0, . . . , M and using averages Ii+ 1

2
= (Ii+1 + Ii)/2

and qi+ 1
2

= (qi+1 + qi)/2. The iteration is started by choosing an initial

iterate I0
ij and computing the flux ϕ0

i =
∑N

j=1 I0
ijwj . Then, for k ≥ 0, the

iteration proceeds in two substeps. First, the following transport equation

with given right side is solved for the intermediate intensity I
k+ 1

2
ij

εµj

I
k+ 1

2
i+1,j − I

k+ 1
2

ij

∆x
+ σtI

k+ 1
2

i+ 1
2
,j

=
σs

2
ϕk

i+ 1
2

+ qi+ 1
2
,

with b.c. I
k+ 1

2
0,j = A, µj > 0, I

k+ 1
2

M,j = A, µj < 0.

This corresponds to the transport sweep in the source iteration method.
Note that the sweep is done from left to right when µj > 0, and from right

to left when µj < 0. Then the flux difference ϕ
k+ 1

2
i =

∑N
j=1(I

k+ 1
2

ij − Ik
ij)wj

is taken as source term for the computation of the correction δϕk+ 1
2 :

− ε2

3σt

δϕ
k+ 1

2
i+1 − 2δϕ

k+ 1
2

i + δϕ
k+ 1

2
i−1

∆x2
+ σa

δϕ
k+ 1

2
i+1 + 2δϕ

k+ 1
2

i + δϕ
k+ 1

2
i−1

4

= σs

ϕ
k+ 1

2
i+1 − ϕk

i+1

2
+ σs

ϕ
k+ 1

2
i − ϕk

i

2
,

with homogeneous boundary conditions on the left and right of the interval

δϕ
k+ 1

2
0 − 2ε

3σt

δϕ
k+ 1

2
1 − δϕ

k+ 1
2

0

∆x
= 0,

δϕ
k+ 1

2
M +

2ε

3σt

δϕ
k+ 1

2
M − δϕ

k+ 1
2

M−1

∆x
= 0.
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The new iterate for the flux is eventually updated

ϕk+1
i = ϕ

k+ 1
2

i + δϕ
k+ 1

2
i .

After the iteration has stopped, we obtain a numerical solution for the inten-
sity by performing an additional sweep with the final flux. The coarse level
PN and SPN approximations corresponding to the one-dimensional transfer
equation were discretised using standard finite differences.

The basis of our two-level optimisation algorithm is a BFGS trust-region
method to solve the optimisation problem on both levels. The solution of the
classical subproblem with quadratic functional in a ball with given radius,
∆, can be reduced to the problem of solving linear systems and a nonlinear
scalar equation [38]. Directly using the symmetric matrix, H, given by the
BFGS updates leads to a descent direction, d, by solving Hd = g, where g
denotes the gradient of the functional, using Cholesky decomposition. It is
accepted if ||d|| ≤ ∆. Otherwise, we compute modified directions based on
a parameter, λ, by solving (H + λId)d = g and try to find a zero of the
nonlinear function Ψ(λ) = ||d(λ)|| −∆. Since Ψ(0) > 0 and since it can be
shown that for λ ≥ λ̄ ≡ ||g||

∆ we have Ψ(λ) ≤ 0, a numerical method can be
used to find an approximate root, λ∗, with an appropriate descent direction
d = d(λ∗). We used the bisection method starting with the interval [0, λ̄].

3.1 Dependence of the performance of the two-level trust
region method on parameters

In the first example we considered the optimisation problem (4) with the
functional given by (1) and numerically study the dependence of the two-
level trust region method on different parameters, e.g. coarse model used,
grid width, ratio α1/α2, etc. The setting is as follows: We considered a
given box-shaped source by applying a convolution to the indicator function
χ on the interval [0.25, 0.75] with a Gaussian G0,σ of variance σ = ∆x to
get a smooth source term Q̄ = χ ∗G. We then solved the radiative transfer
equation (2) to obtain R̄. This source together with the corresponding inten-
sity were the desired states (R̄, Q̄) used in functional (1). Boundary values
Il = 0 and Ir = 0 for the intensity were prescribed for ingoing directions at
the left and the right. In the transport equation the scattering parameters
were σa = 1 and σs = 1. An equidistant grid xi = i∆x in the unit interval
[0, 1] was used for space discretisation, and Ng points and weights (µk, wk)
resulting from double Gaussian quadrature were used for the angular dis-
cretisation. We started the optimisation with a zero source term Qinit = 0.
Iterations were started with a trust region radius of ∆0 = 20. The radius
was decreased when the trust region ratio

ρ =
F (Q)− F (Q + δQ)

M(0)−M(δQ)
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was smaller than the lower threshold δ1 = 0.25 by multiplying with the
factor γ1 = 0.25. Conversely, the radius was increased by γ2 = 4 when the
ratio was larger than δ2 = 0.75. The same thresholds and factors were used
on the coarse level. We used εa = 10−6 and εs = 10−6 as tolerances for the
fine level stopping criterion based on the functional value |F −M | < εa and
the step size ||d|| < εs. On the coarse level, where only approximate solutions
are needed, the tolerances were less strict: εc

a = 10−2 and εc
s = 10−2. If not

stated otherwise, we use the SP1 equations as coarse grid model since they
are considered to be a good approximation of the radiative transfer equation.
We fixed the number of coarse level iterations per fine level iteration at a
value of 4, i.e. a fine step was followed by four coarse steps, which produced
good results in our experiments. For each run, the number of fine and coarse
functional evaluations and the run-times (CPU time) are recorded.

The first numerical test consisted in a comparison of the full trust region
method with the two-level trust region method using SP1. The weights of
the two terms in the functional were α1 = 1 and α2 = 100 and Nx = 50
and Ng = 8 in this case. Figures 1 and 2 display the iteration history and
the final results of the original trust-region method and the new two-level
algorithm, respectively. We clearly observe faster convergence in the two-
level algorithm and recover the boxed-shape control.
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Figure 1: Comparison of the iteration histories for the reconstruction of the
box source.

In the second numerical test the dependence of the CPU times on the
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Figure 2: Optimisation results for control and state coincide with reference
values.

discretization was studied. We varied the number of discretization points in
space Nx (see Table 1) as well as the number of discretization points for the
directions Ng (see Table 2). In all tables f refers to the number of iterations
on the fine grid and c on the coarse grid. We observe faster convergence for
the two-level algorithm as well as independence of the number of iterations
from the discretisation level.

two-level TR TR
Nx iter (f/c) time [sec] iter (f) time [sec]
25 3(3/3) 0.23 10(10) 0.64
50 5(5/8) 0.61 11(11) 1.61
75 3(3/6) 1.21 12(12) 4.95
100 3(3/6) 2.11 13(13) 11.06

Table 1: Iterations, evaluations and run-time depending on space grid.

Third, we studied the influence of the weighting parameters α1 and α2.
Here, we used Nx = 50 and Ng = 8 discretisation points in space and angular
variables, respectively. The results are given in Table 4 and 3 and show again
the faster convergence of the two-level algorithm in terms of CPU time and
number of iterations.
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two-level TR TR
Ng iter (f/c) time [sec] iter (f) time [sec]
4 3(3/6) 0.15 6(6) 0.23
8 5(5/8) 0.61 11(11) 1.61
16 3(5/8) 1.86 25(25) 20.63
32 5(5/8) 19.34 46(46) 233.91

Table 2: Iterations, evaluations and run-time depending on angle discreti-
sation.

two-level TR TR
α2 iter (f/c) time [sec] iter (f) time [sec]
10 2(2/4) 0.30 17(17) 2.51
100 5(5/8) 0.61 11(11) 1.61
1000 5(5/18) 0.68 10(20) 2.26
10000 5(5/18) 0.68 16(31) 6.17

Table 3: Iterations, evaluations and run-time depending on the relative
weight of the source term in the functional.

two-level TR TR
α1 α2 iter (f/c) time [sec] iter (f) time [sec]
0.1 10 2(2/4) 0.27 17(17) 2.51
1 100 5(5/8) 0.61 11(11) 1.61
10 1000 5(5/18) 0.68 11(20) 2.34
100 10000 5(11/18) 1.24 16(33) 6.51

Table 4: Iterations, evaluations and run-time depending on the scaling of
the functional.

Fourth, we studied the influence of the a priori choice on the number of
coarse level steps in the two-level algorithm (Table 5). When no coarse level
steps were used we had the standard trust-region algorithm. In this example
Nx = 50, Ng = 8 and α1/α2 = 100. As expected, the computational time
decreased when we used coarse level steps. However, if we used too many
coarse level steps we no longer obtained appropriate iterates and needed
more fine level steps until convergence.

Finally, we investigated the influence of different coarse models on the
two-level trust region algorithm. We used the SPN and the PN hierarchy and
recorded iteration numbers and computing times in Table 6. With larger
N the computational times for the PN model increased due to the increase
in the number of equations. Therefore, the higher order PN models are not
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coarse iter (f/c) time [sec]
0 11(11/0) 1.61
1 2(2/2) 0.30
2 3(3/4) 0.40
3 4(4/6) 0.50
4 5(5/8) 0.61
5 4(4/8) 0.52

Table 5: Iterations, evaluations and run-time depending on the number of
coarse to fine grid steps.

recommended in the two-level algorithm, since the gain in a reduced number
of optimization steps is not as large as the additional computational cost for
the PN model.

SPN PN

N iter (f) time [sec] N iter (f) time [sec]
1 5(8) 0.61 1 7(7) 0.61
2 5(8) 0.61 3 12(12) 3.11
3 5(8) 0.65 5 12(12) 7.30

Table 6: Iterations, evaluations and run-time depending on the order N of
the SPN and PN approximations, respectively.

3.2 Source inversion problem with angular dependend source

In a second example we considered a reference intensity R̄ corresponding to
an angular and space dependent source term Q̄. The angular dependence is
given by superposition of Legendre polynomials (see Figure 3)

Qref (x, µ) =
1
2
G0.5,0.1(x)(2 ∗ P0(µ) + P1(µ) + P5(µ))

This source radiates a total flux given by a Gaussian G0.5,0.1(x) centered
at x = 0.5 with variance σ = 0.1 in the domain. Note that any of our
coarse models only have space dependent sources. Even with the higher
order P3 approximations we cannot resolve this source, due to the fifth
order polynomial in Qref .

The source inversion problem can be stated as minimizing (1) without
knowing Qref , which is a typical case in practice. We chose the weights
α1 = 100 and α2 = 1 in the functional and set Nx = 50 and Ng = 8. We
used SP1 as coarse model. In this example, two coarse steps were performed
per fine step. The iteration history and the final results of the original
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and the two-level trust-region method for the optimal control problem are
shown in figures 4 and 5. We observe the smaller number of iterations
for the two-level trust region and nearly coinciding optimal controls q for
both the full trust-region and the two-level algorithm. Furthermore, it is
interesting to note that in the two-level case the control source has little
angular dependence while the overall source flux nevertheless coincides well
with the standard trust-region result (figures 3, 5).

Table 7 compares the two algorithms for different scalings of the func-
tional. By increasing the value of α1 for fixed value of α2, we can give
the source term a lower weight compared with the flux-tracking term. In
this way the control looses regularity and the functional has less convexity,
which makes the problem harder to solve, while at the same time a closer
approximation of R̄ is enforced. It revealed that the two-level algorithm
gives comparable results when there is strong convexity of the functional,
i.e., α1 small. However, the performance deteriorated when α1 was large.

two-level TR
α1 iter (f/c) time [sec] ||R− R̄|| iter (f) time [sec] ||R− R̄||
100 7(7/7) 0.16 1.2252 20(20) 2.90 1.1928
101 7(11/7) 1.12 0.3942 34(34) 4.88 0.3152
102 19(37/35) 3.22 0.0953 59(59) 8.67 0.0450
103 11(31/16) 2.06 0.0726 42(42) 6.14 0.0054

Table 7: Iterations, evaluations and run-time depending on the scaling of
the functional. The second weight was α2 = 1.

4 Conclusions

Following the approach of Gratton et al. [11], we developed a two-level
trust-region method for optimal control problems with radiative transfer
which uses the PN approximations as the trust-region subproblem instead
of the usual quadratic model. The PN approximations, in particular the
SPN approximations, have been shown to be computationally more efficient
for radiative transfer problems in many cases. Since the trust-region sub-
problem based on these approximations is better suited than the standard
quadratic function as a model of the orginal functional, the two-level method
significantly reduces the number of iterations. This more than compensates
the slightly higher cost of the subproblem and leads to an overall reduction
of total run-time. In this way the two-level approach is computationally
more efficient for these particular optimal control problems.
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Figure 3: Comparison of the reference source (top) and source given by the
control resulting from the standard trust-region method (middle) and the
two-level algorithm (bottom).

203



AMO - Advanced Modeling and Optimization - Volume 8, Number 2, 2006

0 10 20 30 40 50 60
10

−2

10
−1

10
0

10
1

Iteration history

iteration

fu
nc

tio
na

l
TR
two−level TR

Figure 4: Comparison of the iteration histories for angular dependent source.
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[29] M. Seäıd, M. Frank, A. Klar, R. Pinnau and G. Thömmes, Efficient
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