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Abstract

In this paper we consider a continuous review perishable inventory
system with a modified (s, S) policy which allows a finite number of
orders to be placed and full backlogging of demands. However the
demand that occurred during the stock out period has the option to
join the system with prefixed probability. Moreover, we assume two
streams of demands called regular and negative. The negative demand
during the stock out periods removes one of the waiting demand if
any. The limiting distribution of the inventory level is shown to have
matrix geometric form. The measures of system performance in the
steady state are derived.
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1 Introduction

Inventory systems with stochastic input and output processes have been

attracting the researchers from the mid twentieth century. Hadley and

Whitin[1963] used the probabilistic methods to analyse such systems. Siva-

zlian[1974] used the methods of renewal processes to analyse continuous

review (s, S) inventory systems(CRIS). The work of Srinivasan[1979] pro-

vided a general analysis of CRIS with arbitrarily distributed inter-demand
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time points and random lead times. Since then many researchers con-

tributed to the analyses of CRIS (see Kalpakam and Arivarignan [1985,

1989, 1993], Kalpakam and Sapna[1994], Arivarignan[1994] and Arivarignan

and Elango[2003]).

Weiss[1980] extended the notion of perishable inventories to the realm of

continuous review system by obtaining (0, S) policy as the optimal ordering

policy for a model with Poisson demand and instantaneous supply of ordered

items. He assumed that the items fail after a fixed lifetime. Kalpakam and

Arivarignan[1988] extended this work to include exponential life time for

items.

Studies on CRIS of perishable items include Schmidt and Nahmias[1985]

and Kalpakam and Sapna[1994]. Arivarignan[1994] showed that in the case

of perishable items and instantaneous supply of ordered items, (−r, S) policy

(which places an order at the r-th demand after the depletion of stock) is

optimal.

Kalpakam and Arivarignan[1989] introduced a modified (s, S) ordering

policy which allows more than one pending orders at a time but fixes an

upper bound for it. This policy allowed full backlogging of demands and

they assumed that the number of nondefective items in a supply is a random

variable. The modified (s, S) policy was adopted by Liu and Lian[1999] for

a perishable inventory model.

In this work, we extend the work of Kalpakam and Arivarignan[1989] by

including perishable items and negative demands.

The plan of the manuscript is as follows. The section 2 describes the

model assumptions. The section 3 presents the steady state distribution of

the inventory level and expresses it in a matrix-geometric form. Finally the

measures of system performance in the steady state are calculated.
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2 The Model

Consider an inventory system which can stock a maximum of S perishable

items. The items are removed from the stock as and when items perish

(each item has exponential life time) and a demand occurs (the demand time

points form a Poisson process). We assume a modified (s, S) ordering policy:

An order for Q (0 < Q < S) items is placed whenever Q items are removed

from the stock and a maximum of m (> S/Q) orders can be placed. This

condition ensures that orders for Q items will be placed until all the available

stock is exhausted. The demands that occurred during the stock out periods

are fully backlogged and these demands may join the system with probability

p and may not join the system with probability (1 − p), (0 ≤ p ≤ 1). We

also consider a stream of negative demands which arrive according to an

independent Poisson process and it will not demand any item when the

inventory level is 0 but remove one of the waiting demands, if any during

the stockout period. We assume that not all the supplied items in the lot

are in good usable condition. Thus the number of non defective items in the

supply of the order is a random quantity.

The modified ordering policy is defined interms of the prefixed reorder

levels namely, S−Q,S−2Q, · · · , S−mQ: An order for Q(= S−s) is placed

1. whenever the net inventory level (on hand minus backorders) drops to

any one of the reorder levels.

2. at the time of replenishment, if the supply is not sufficient enough to

take the net inventory level above the preceding reorder level.

In other words we follow a modified (m + 1)-bin policy in the sense that

if we partition the state space E into (m + 1) classes, viz., E0 = {S, S −
1, . . . , S − Q + 1}, E1 = {S − Q,S − Q − 1, . . . , S − 2Q + 1}, . . . , Em−1 =

{S − (m− 1)Q, . . . , S −mQ + 1} and Em = {S −mQ, . . . , }, then a reorder

for Q items is placed at a demand point if the inventory level moves from Ei
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to Ei+1, (i = 0, 1, 2, . . . ,m−1), and at a replenishment point if the resupply

is not sufficient enough to move the level from one class to the preceeding

one.

Notations

0 : Zero matrix

A′: Transpose of any matrix A

I : Identity matrix of order Q

eT : (1, 1, . . . , 1)1×Q

3 Analysis

Let I(t) denote the net inventory level at time t. Then the process {I(t), t ≥
0} has the state space E = {S, S − 1, S − 2, . . .}. Let Z(t) be the number of

pending orders at time t which takes values 0, 1, 2, . . . ,m.

The demand is for single item and the demand occurrence times form a

Poisson process with rate λ1. The negative demands form an independent

Poisson process with rate λ2. The life time of each item has exponential

distribution with parameter µ. A reorder will be for a fixed quantity of Q

items and the maximum number of orders that can be pending at any time

is fixed as m with S −mQ ≤ 0.

The policy for placing orders is as follows: A reorder will be placed

(i) at a demand epoch t when I(t) > I(t+) = S − kQ, k = 1, 2, . . . ,m and

(ii) at a replenishment epoch t when S − (l + 1)Q < I(t) < I(t+) ≤
S − lQ, l = 1, 2, . . . ,m− 1 and I(t) < I(t+) ≤ S −mQ

For the input process, the rate of replenishment is assumed to depend

not only on the number of outstanding orders but also on the quantity of
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nondefective items in the supply. We assume for βij > 0, i = 1, 2, . . . ,m, j =

1, 2, . . . , Q

P [a replenishment for j-items in(t, t + ∆t)|Z(t) = i] = βij∆t + o(∆t).
P [more than one replenishment in(t, t + ∆t)|Z(t) = i] = o(∆t),

i = 1, 2, . . . ,m, j = 1, 2, . . . , Q.

Then we have

P [a replenishment in(t, t + ∆t)|Z(t) = i] = β1
i ∆t + o(∆t)

and P [no replenishment in(t, t + ∆t)|Z(t) = i] = 1− β1
i ∆t + o(∆t)

where β1
i =

Q∑
j=1

βij . We also write βj
i =

Q∑
k=j

βik, and gj
i =

j∑
k=1

βik.

During the stock out periods, the backlogged demand may join the

system with probability p or may not join the system with probability

(1− p), (0 ≤ p ≤ 1).

It may be observed that the net inventory level at any time uniquely

determines the number of orders pending. This fact, with the assump-

tions on the input process and the Poisson nature of demands, implies that

{I(t), t ≥ 0} is a Markov process. To determine the infinitesimal generator

A = ((a(i, j))), i, j ∈ E, we use the following arguments.

As a demand or a failure of an item takes the inventory level down by one

unit, the intensity of transition a(i, i−1) from i to i−1 is given by λ1+µi for

i > 0 and pλ1 for i ≤ 0 where µi = iµ for i > 0 and 0 for i ≤ 0. When the

net inventory level i satisfies the condition S − (l + 1)Q < i ≤ S − lQ, l (=

1, 2. . . . ,m − 1) orders are pending and the intensity of transitions from i

to i + x(where x is the quantity supplied, x = 1, 2, . . . , Q) is βlx. When

i ≤ S −mQ, the transition to the level i + x (x = 2, 3, . . . , Q) occurs at the

rate βmx and the transition to the level i+1 occurs at the rate βm1 +λ2. No

other type of transition is possible from i to j (6= i). To obtain the intensity
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of passage −a(i, i) of level i, we make use of the identity

a(i, i) = −
∑
j 6=i

a(i, j)

Hence we have a(i, j)

=



−λ1i, i = j, i = S −Q + 1, S −Q + 2, . . . , S,

−(λ1i + β
(1)
q ), j = i, i = S − (q + 1)Q + 1, . . . , S − qQ,

q = 1, 2, . . . ,m− 1
−(λ1 + β

(1)
m ), j = i, i = S −mQ,S −mQ− 1, . . . ,

λ1i, j = i− 1, i = S, S − 1, . . .
βq(j−i), j = i + 1, i + 2, . . . , i + Q, i = S − (q + 1)Q + 1, . . . , S − qQ

q = 1, 2, . . . ,m− 1
βm(j−i), j = i + 2, i + 3, . . . , Q, i = S −mQ,S −mQ− 1, . . .

βm(j−i) + λ2, j = i + 1, i = S −mQ,S −mQ− 1, . . .

0, otherwise.

where λ1i =

{
λ1 + iµ, if i > 0

pλ1, if i ≤ 0.

Define q = (S−qQ, S−qQ−1, . . . , S−(q+1)Q+1), q = 0, 1, 2, . . .. The

infinitesimal matrix A (where the row (column) numbers are S, S − 1, . . .)

can be conveniently expressed as a block-partitioned matrix with blocks of

size Q×Q, as follows,

A =



A0 B0 0 0 · · · 0 0 0 0 0
C1 A1 B1 0 · · · 0 0 0 0 0
0 C2 A2 B2 · · · 0 0 0 0 0
...

...
...

... · · · 0 0 0 0 0
0 0 0 0 · · · Cm−1 Am−1 Bm−1 0 0
0 0 0 0 · · · 0 Cm Am Bm 0
0 0 0 0 · · · 0 0 Cm Am Bm

...
...

...
... · · ·

...
...

...
...

...


where

A0 =



−λ1S λ1S 0 . . . 0 0
0 −λ1(S−1) λ1(S−1) . . . 0 0
. . . . . . . .
. . . . . . . .
. . . . . . . .
0 0 0 . . . −λ1(S−Q+2) λ1(S−Q+2)

0 0 0 . . . 0 −λ1(S−Q+1)


156



Ai =


−(λ1(S−iQ) + β

(1)
i ) λ1(S−iQ) . . . 0

βi1 −(λ1(S−iQ−1) + β
(1)
i ) . . . 0

...
... . . .

...
βi(Q−2) βi(Q−3) . . . λ1(S−(i+1)Q+2)

βi(Q−1) βi(Q−2) . . . −(λ1(S−(i+1)Q+1) + β
(1)
i )

 ,

1 ≤ i ≤ m− 1

Bi =


0 0 . . . 0 0
0 0 . . . 0 0
...

... . . .
...

...
λ1(S−(i+1)Q+1) 0 . . . 0 0

 , 0 ≤ i ≤ m− 1

Ci =


βiQ βi(Q−1) . . . βi1

0 βiQ . . . βi2
...

... . . .
...

0 0 . . . βiQ

,1 ≤ i ≤ m− 1,

Am =


−(pλ1 + λ2 + β

(1)
m ) pλ1 . . . 0 0

βm1 + λ2 −(pλ1 + λ2 + β
(1)
m ) . . . 0 0

...
... . . .

...
...

βm(Q−1) βm(Q−2) . . . βm1 + λ2 −(pλ1 + λ2 + β
(1)
m )

 ,

Bm =


0 0 . . . 0 0
0 0 . . . 0 0
...

... . . .
...

...
pλ1 0 . . . 0 0

 ,

Cm =


βmQ βm(Q−1) . . . βm1 + λ2

0 βmQ . . . βm2
...

... . . .
...

0 0 . . . βmQ

 .

We note that all the submatrices are square matrices of size Q.

3.1 The Steady-State Analysis

Before we consider the steady state distribution of the inventory level process,

we first obtain the necessary condition for the stability of the process. De-
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fine Ã = Bm + Am + Cm which is given by
−(pλ1 + λ2 + β

(1)
m ) + βmQ pλ1 + βm(Q−1) . . . βm1 + λ2

βm1 + λ2 −(pλ1 + λ2 + β
(1)
m ) + βmQ . . . βm2

βm2 βm1 + λ2 . . . βm3

...
... . . .

...
pλ1 + βm(Q−1) βm(Q−2) . . . −(pλ1 + λ2 + β

(1)
m ) + βmQ


As this matrix is a generator of some continuous time Markov chain, its

steady state probability vector Φ = (Φ1,Φ2, . . . ,ΦQ) satisfying ΦÃ = 0, and

Φe = 1 is given by

Φ =
1
Q

e.

This can be verified by noting that Ã is a circulant matrix,

Lemma 1 The stability condition of the inventory process {I(t), t ≥ 0} is

given by

pλ1 − λ2 <
Q∑

j=1

jβmj . (1)

Proof

This result follows from the well-known result of Neuts [1981] on the

positive recurrence of A, namely, ΦBme < ΦCme which reduces to (1).

Consider

lim
t→∞

Pr[I(t) = j|I(0) = i], i, j ∈ E (2)

It can be seen from the structure of A that the homogeneous Markov process

of {I(t), t ≥ 0} is irreducible. This fact with the stability condition (1)

implies that (2) exists and is independent of i, which we denote by Πj . Let

Π = (Π0,Π1, . . .) with Πq = ( πS−qQ, πS−qQ−1, . . . , πS−(q+1)Q+1 ), denote

the steady state probability vector of A, i.e., Π satisfies

ΠA = 0,Πe = 1
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Theorem 1 When the stability condition (1) holds good,the steady-state

probability vector Πi is given by

Πi = Π0Di, i = 0, 1, . . . ,m (3)

Πi = Π0DmRi−m, i = m + 1,m + 2, . . . (4)

where

Di = −(Di−2Bi−2 + Di−1Ai−1)C−1
i , i = 1, 2, . . . ,m (5)

with D−1 = 0 and D0 = I,

and the matrix R satisfies the matrix quadratic equation

R2Cm + RAm + Bm = 0 (6)

and the vector Π0 is obtained by solving

Π0 [Dm−1Bm−1 + Dm[Am + RCm]] = 0 (7)

and Π0

[
m∑

i=1

Di + DmR(I −R)−1

]
e = 1 (8)

Proof: The equation ΠA = 0 yields

Π0A0 + Π1C1 = 0 (9)

ΠiBi + Πi+1Ai+1 + Πi+2Ci+2 = 0, i = 0, 1, . . . ,m− 2 (10)

Πm−1Bm−1 + ΠmAm + Πm+1Cm = 0, i = m− 1 (11)

ΠiBm + Πi+1Am + Πi+2Cm = 0, i = m,m + 1,m + 2, . . . (12)

It can be shown by mathematical induction that

Πi = Π0Di, i = 1, 2, . . . ,m

where Di are given by (5).
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Next we look for solution of the form

Πi = ΠmRi−m,

= Π0DmRi−m, i = m + 1,m + 2, . . . ,

where R is a non-negative square matrix of order Q whose spectral radius

is less than one, which is ensured by the stability condition (1). Equation

(12) yields

Bm + RAm + R2Cm = 0.

Thus R is a solution of the above matrix quadratic equation.

Post multiplying the above equation by e, we obtain, after rearranging

the terms

(I −R)(λ−RΓ) = 0 (13)

where

λ = (0, 0, . . . , pλ1)′,

Γ = (β(1)
m + λ2, β

(2)
m , . . . , β(Q)

m )′.

Since sp(R) < 1, (I −R) is non-singular. Hence we have from (13),

RΓ = λ. (14)

From (11), we get

Π0 [Dm−1Bm−1 + Dm[Am + RCm]] = 0

Moreover

Πe = 1

⇒ Π0

[
m∑

i=0

Di + DmR(I −R)−1

]
e = 1
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Thus Π0 is obtained by solving

Π0 [Dm−1Bm−1 + Dm[Am + RCm]] = 0

and the normalizing condition

Π0

[
m∑

i=0

Di + DmR(I −R)−1

]
e = 1.

This completes the proof of the theorem.

4 Computation of Matrix R

In this section we present an efficient algorithm for computing the rate

matrix R which is the main ingredient for discussing qualitative behavior of

the model under study. Due to the special structure of coefficient matrices

appearing in (6), the matrix R of dimension Q can be efficiently computed

as follows. First note that Bme is of the form

Bme =


0
0
...

pλ1


Due to special structure of Bm matrix the matrix R has only one (row) non

zero entries as shown below

R =


0 0 . . . 0
0 0 . . . 0
...

... · · ·
...

r1 r2 . . . rQ

 .

In terms of these entries rj , equation (6) reduces to

rQRCm + RAm + Bm = 0

which becomes, for i = 1

pλ1 − r1(pλ1 + λ2 + β1
m) + r2λ2 +

Q∑
i=1

ri+1βmi + rQr1βmQ = 0
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for i = 2, 3, . . . , Q− 1

ri−1pλ1 − ri(pλ1 + λ2 + β1
m) + ri+1λ2 +

Q∑
j=i+1

rjβm(j−i) + rQ

Q∑
j=Q−i+1

rj−Q+iβmj = 0

and for i = Q

rQ−1pλ1 − rQ(pλ1 + λ2 + β1
m) + rQr1λ2 +

Q∑
j=1

rQrjβmj = 0

Solving the above homogeneous nonlinear equations, we can obtain R.

5 Special Cases

5.1 Case 1

The special case λ1 = λ, λ2 = 0, µ = 0 and p = 1, corresponds to the in-

ventory model with Poisson demand, non perishable items and the negative

demand does not enter the system during stock out periods. The matrix

A∗ = Bm + Am + Cm becomes


−λ− β1

m + βmQ λ + βm(Q−1) · · · βm1
βm1 −λ− β1

m + βmQ · · · βm2

...
... · · ·

...
βm(Q−1) + λ βm(Q−2) · · · −λ− β1

m + βmQ


which is a circulant matrix. Hence the steady state probability vector Φ

of Φ = (Φ1,Φ2, . . . ,ΦQ) satisfying ΦA∗ = 0, and Φe = 1 is given by

Φ =
1
Q

e.

Let Π̃ = (Π̃0, Π̃1, . . .) with Π̃q = (π̃S−qQ, π̃S−qQ−1, . . . , π̃S−(q+1)Q+1), denote

the steady state probability vector of A, i.e., Π̃ satisfies

Π̃A = 0, Π̃e = 1.

The limiting distribution of the inventory level process is given by

Π̃i = Π̃0Ωi, i = 0, 1, . . . ,m

Π̃i = Π̃0ΩmRi−m, i = m + 1,m + 2, . . .
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where

Di = −(Di−2B0 + Di−1Ai−1)C−1
i , i = 1, 2, . . . ,m

with D−1 = 0 and D0 = I,

and the matrix R satisfies the matrix quadratic equation

R2Cm + RAm + B0 = 0,

and the vector Π̃0 is obtained by solving

Π̃0 [Dm−1Bm−1 + Dm[Am + RCm]] = 0

and Π̃0

[
m∑

i=1

Di + DmR(I −R)−1

]
e = 1.

These results agree with the results of Kalpakam and Arivarignan [7].

5.2 Case 2

The case λ1 = λ, λ2 = 0, p = 1 and βiQ = β and βij = 0 for j =

1, 2, . . . , Q−1, i = 1, 2, . . . ,m, corresponds to the inventory model with per-

ishable item, Poisson demand, full supply of demands and negative customer

does not arrive during the stock out periods. Let Ξ = (Ξ0,Ξ1, . . .) with

Ξq = (ξS−qQ, ξS−qQ−1, . . . , ξS−(q+1)Q+1), denote the steady state probability

vector of A. We have

Ξi = Ξ0Di, i = 0, 1, . . . ,m

Ξi = Ξ0DmRi−m, i = m + 1,m + 2, . . .

where

Di = −(Di−2Bi−2 + Di−1Ai−1)C−1, i = 1, 2, . . . ,m

with D−1 = 0 and D0 = I,
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and the matrix R satisfies the matrix quadratic equation

R2Cm + RAm + B0 = 0,

and the vector Ξ0 is obtained by solving

Ξ0 [Dm−1Bm−1 + Dm[Am + RCm]] = 0

and Ξ0

[
m∑

i=1

Di + DmR(I −R)−1

]
e = 1.

These agree with the results of Liu and Yang [10].

6 System Performance Measures

In this section we derive some stationary performance measures of the sys-

tem. Using these measures, we can construct the total expected cost per

unit time.

6.1 Mean Inventory Level

Let ηI denote the mean inventory level in the steady state of the system.

Then it is given by

ηI =
S∑

i=1

(S − i + 1)πi.

6.2 Mean Reorder Rate

The mean reorder rate ηR in the steady state of the system is given by

ηR = λ1

m∑
i=1

πS−iQ+1 +
m−1∑
i=1

Q−1∑
j=1

gj
i πS−iQ−j

+γ(1)
m

∞∑
i=1

πS−(m+1)Q−i +
m∑

i=1

(S − iQ + 1)µπS−iQ+1.
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6.3 Expected Backlogging Rate

Let ηB denote the expected backlogging rate in the steady state of the

system. Then it is given by

ηB =
−1∑

i=−∞
pλπi.

6.4 Expected Deterioration Rate

Let ηD denote the expected deterioration rate in the steady state of the

system and it is given by

ηD =
S∑

i=1

(S − i + 1)µπi.

6.5 Loss due to Negative Demand

The expected loss rate due to negative demand in the steady state of the

system is given by

ηL =
−1∑

i=−∞
λ2πi.

6.6 Expected Cost rate

Let

ci = the inventory holding cost per unit per unit time.

cr = the reorder cost per unit per unit time.

cb = the backlogging cost per unit time.

cd = the deterioration cost per unit per unit time.

cl = the cost of loss due to negative demand per unit per unit time.

The total expected cost rate per unit per unit time is given by

TC(S, Q, m) = ciηI + crηR + cbηB + cdηD.
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Substituting η’s, we get

TC(S, Q, m) = ci

S∑
i=1

(S − i + 1)πi + crλ1

m∑
i=1

πS−iQ+1 +
m−1∑
i=1

Q−1∑
j=1

gj
i πS−iQ−j

+γ(1)
m

∞∑
i=1

πS−(m+1)Q−i +
m∑

i=1

(S − iQ + 1)µπS−iQ+1

+cb

−1∑
i=−∞

pλπi + cd

S∑
i=1

(S − i + 1)µπi + cl

−1∑
i=−∞

λ2πi.

Due to the complex form of the limiting distribution, it is difficult to

discuss the properties of the cost function analytically.

Conclusion

In this work we considered an inventory model under continuous review,

by incorporating the perishable nature of stocked items, by allowing more

than one pending order at a given time, by assuming the number of non

defective items in the supplied lot is a random variable and by considering

the negative demand. We are able to derive the steady state inventory level

distribution in matrix geometric form. Finally we have computed measures

of system performance and constituted the total expected cost rate under a

broad cost structure.
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