
AMO - Advanced Modeling and Optimization - Volume 8, Number 2, 2006

Elitist genetic algorithm approach for Assignment Problem

J. Majumdar1* and A.K. Bhunia2**

1 Department of Mathematics, Durgapur Government College, Durgapur-713214, India.
2 Department of Mathematics, The University of Burdwan, Burdwan-713104, India.

Abstract

The name ‘Assignment Problem’ (AP) originates from the classical problems where the objective is to find the

optimum assignment of a number of tasks (jobs) to an equal number of facilities (or persons) at a minimum cost

(or time) or maximum profit. In this paper, a new approach for solving an assignment problem (balanced) is

proposed with the help of an elitist genetic algorithm (EGA) and also its computational behaviour is reported. The

mathematical formulation of the problem indicates that this problem is a 0-1 programming problem. To solve this

problem, an EGA with new types of initialization, crossover, mutation and existing rank-based selection has been

developed. As special cases, different types of assignment problems like unbalanced assignment problem,

maximization assignment problem, restricted assignment problem have been reported and illustrated with some

numerical examples.

Keywords : Assignment Problem, Genetic Algorithm, Elitism, Heuristic.

1 Introduction

 The assignment problem (AP) is one of the most-studied, well-known and important problem in

mathematical programming in which our objective is to assign a number of jobs (tasks) to an equal number

of facilities (persons) so as to minimize the total assignment cost. This problem can be formulated as a

linear programming problem (L.P.P.) particularly 0-1 programming problem. This problem can be solved

using different methods like enumeration method, Simplex Method, Branch and Bound Method and

Hungarian Method. However, as an assignment problem is highly degenerate, it will be frustrating to

attempt to solve it by Simplex Method or Branch-bound Method. In fact, a very convenient and efficient

iterative procedure for solving an assignment problem is the Hungarian Method. But for large assignment

problems, this method will be very much laborious and therefore unsuitable.

 Genetic Algorithm (GA) is a class of computerized adaptive heuristic search and optimization

algorithm based on natural genetics. It is an iterative optimization procedure and it maintains a population

** Corresponding author: e-mail: bhuniaak@rediffmail.com
* e-mail: majumdarjayanta@rediffmail.com

of probable solutions within a search space over many simulated generations. The population members are

string entities of artificial chromosomes. In natural terminology, we say that each chromosome (or string)

is composed of genes, the basic building blocks. In each iteration (generation), three basic genetic

operations viz., selection, crossover and mutation are performed. The basic concepts of GA were primarily

developed by [Holland, 1976]. Thereafter, a number of researchers have contributed to the development of

this field. Detailed reviews on the development of the subject can be obtained in the books of [Golberg,

1989], [Michalawicz, 1999], [Deb, 1995], [Sakawa, 2002], [Gen and Cheng, 1997], [Devis, 1991] and

others.

 In the last decade of 20th century, several researchers developed different methodologies for solving

generalised assignment problems. Among them, one may refer to the works of [Catrysse and Van

Wassenhove, 1992], [Chu and Beasley, 1997], [Lorena and Narciso, 1996], [Ross and Soland, 1975],

[Wilson, 1997]. Again as special cases of the generalised assignment problem, manpower scheduling,

nurse-scheduling, employee-scheduling etc. problems have been solved by [Bradley and Martin, 1990],

[Easton and Mansour, 1993], [Tanomaru, 1995], [Dowsland, 1998], [Dowsland and Thompson, 2000].

Recently, [Aickelin and Dowsland, 2004] solved a nurse-scheduling problem by genetic algorithm using an

indirect coding based on permutations of the nurses, and a heuristic decoder that builds schedules from

these permutations. Again, [Harper et.al., 2005] developed a project assignment problem with the help of

genetic algorithm. Among the above-mentioned researchers, [Aickelin and Dowsland, 2004], [Chu and

Beasley, 1997], [Easton and Mansour, 1993], [Harper et.al., 2005], [Tanomaru, 1995] and [Wilson, 1997]

used genetic algorithm for solving either generalised assignment problem or manpower scheduling

problem or project assignment problem. In their genetic algorithms, initialization, crossover and mutation

processes have been reported differently.

 In this paper, an assignment problem has been solved by a new approach using elitist genetic

algorithm (EGA). Initially, the problem has been formulated as 0-1 programming problem. Then EGA has

been developed to solve the problem. In our proposed GA, new methodologies for initialization, crossover

and mutation have been developed instead of existing methodologies. However, for the

reproduction/selection, existing rank-based selection has been used. Finally, different special cases of

assignment problems like unbalanced, maximization and restricted assignment problems have been

mentioned and the proposed method has been illustrated with some numerical examples.

2 Assumptions and notations

 The following assumptions and notations are used in developing the proposed model:

 (i) There are n jobs in a factory and the factory has n machines to process the jobs.

 (ii) Each job can be associated with one and only one machine.

 136

(iii) be the cost which is incurred when a job 0ijC ≥ (1, 2,.....,)i i n= is processed by the

 machine . (1, 2,.....,)j j n=

(iv) The crisp number ijx denotes that the job is assigned to the machine. thi thj

 (v) Each machine can perform each job but with varying degree of efficiency.

 3 Mathematical formulation

 Mathematical formulation of this problem is given by

 Minimize
1 1

n n

ij ij
i j

Z C x
= =

=∑∑ (1)

 subject to

1

1, 1, 2,.....,
n

ij
i

x j
=

= =∑ n (2)

 and
1

1, 1, 2,.....,
n

ij
j

x i
=

= =∑ n (3)

 where if the job is assigned to the machine 1,ijx = thi thj

 = 0, if the job is not assigned to the machine. thi thj

 The constraint (2) ensures that only one job is assigned to one machine while the constraint (3)

ensures that only one machine should be assigned to one job.

4 Genetic Algorithm structure

 Now, we shall develop an elitist GA (EGA) for solving the above mentioned constrained minimization

problem involving integer variables 2n ijx (whose values are either 0 or 1). The working steps of our

developed elitist GA are :

Step-1. Generate randomly a family of initial population of chromosomes

(potential solutions).

Step-2. Calculate the fitness of each chromosome.

Step-3. Obtain the best found result from the initial population.

Step-4. Reproduce a new population for the next generation from the

population of the earlier generation using ranking selection.

Step-5. Alter the chromosomes by crossover and mutation operations.

 137

Step-6. Calculate the fitness of the population of child chromosomes of

the next generation.

Step-7. (Perform elitist operation)

 Obtain the best found result from the population of the current

generation and compare that with the same of the previous

generation and replace the worst result of the current

population by the best found result of the previous generation

if it is better than that of the current generation.

Step-8. Repeat Step-4 to Step-7 until the termination criterion is

satisfied.

Step-9. Print the best found result.

Step-10.Stop

For implementing the above GA the following basic components are to be considered.

 • Parameters of GA

 • Representation of chromosomes

 • Initialization

 • Evaluation function

 • Selection process

 • Genetic operators (crossover and mutation)

4.1 Parameters of Genetic algorithm

 Genetic Algorithm (GA) depends on some parameters like population size (psize), maximum number

of generation (mgen), probability of crossover (pc) and probability of mutation (pm). About the population

size of GA, though there is no clear indication, but for large population size, there arises a difficulty in

storing of data. However, for small population size there may not be sufficient chromosomes for good

crossover as well as mutation.

4.2 Representation of chromosomes

 The first problem met during the implementation of GA is the appropriate representation of the

chromosomes. This representation is connected to the specifications of the concerned optimization

problem. Although binary strings have been favoured by many GA researchers for their chromosome

representation, [Chu and Beasley, 1997] use the string of decimal numbers, in their approach to the

generalised assignment problem (GAP). Our representation is similar to Chu and Beasley’s GAP

representation and specifies, for each job (task), the machine (person) number to which it is assigned. Thus,

 138

in order to design an appropriate chromosome representation of solutions of our proposed GA, we have

used square matrix of order n containing genes whose values represent the values of the crisp variable 2n

ijx (either 0 or 1). This representation ensures that the constraints (2) and (3) are automatically satisfied.

4.3 Initialization

 In GA, generally, each component (gene) of a chromosome of the population is generated randomly

within the boundary of the component, satisfying all the constraints given in the problem. However, in the

assignment problem, each gene in the chromosomes is defined for each job by randomly assigning a

machine from the set of n machines. So, each component (gene) of chromosome of the assignment

problem may be either 0 or 1. To generate all the components of a chromosome, we have proposed a new

scheme for initialization of chromosomes by which all the constraints will be satisfied automatically. The

steps are as follows:

Step-1. Set ‘0’s to all the components (genes) of a chromosome. 2n
Step-2. Randomly select a gene of the chromosome.

Step-3. Set a ‘1’ in each row and in each column according to

constraint equations (2) and (3).

Step-4. Stop.

In this way, psize number of such chromosomes (1 2,,,

sizepV V V) are generated randomly. All these

chromosomes constitute the initial population of GA.

 4.4 Evaluation function

 After getting a population, we need to find out a chromosome which gives the better value (minimum)

of the objective function. For this purpose, we have to calculate the fitness for each chromosome. In our

case, the fitness of a chromosome is defined to be the value of the objective function due to the

chromosome which is nothing but the sum of the costs (times) in the assignment cells represented by the

chromosome.

4.5 Selection Process

 The selection process is one of the most important factor in the genetic search. This process is

stochastic and biased towards the best solutions. It depends on the evolutionary principle “Survival of the

fittest”. During the selection, the “parent” chromosomes aimed at producing the “child” chromosomes are

chosen. Several methods exist in the literature to achieve this task. Initially, [Holland, 1976] used the

selection process based on spinning the Roulette wheel (known as Roulette Wheel selection). However,

 139

this selection has some limitations. In the proposed algorithm, rank-based selection method has been used.

This selection procedure is not dependent on the actual values of the objective function, it is dependent on

the position of arrangement of the fitness values from best to worst. The probability of the chromosome

being selected in this method is defined by

thi

 P(select the chromosome)=thi 1(1)ip p −−

where ‘ p ’ is the probability of selecting the best chromosome and ‘ i ’, the rank of the chromosome.

 4.6 Crossover

 The crossover operator is acknowledged as one of the main causes of the efficiency of GA: it

generates improved offspring combining the beneficial features of their parents. It operates on two or more

randomly selected highly fitted chromosomes at a time and generates offspring by recombining the parent

chromosomes features. For this operation, expected .c sizep p number of chromosomes will take part. We

have observed that in matrix representation for chromosomes, standard crossover schemes, like partially

matched crossover (PMX), order crossover (OX) cannot produce chromosomes better than the parents in

maximum cases. For this reason, we have tested three new crossover schemes, viz., (i) modified form of

whole arithmetical crossover (MWAX) given in [Michalewicz, 1999], (ii) matrix binary crossover (MBX)

and (iii) row exchange crossover (REX). Now we shall describe these schemes in details.

(i) Modified form of whole arithmetical crossover (MWAX)

Step-1. Select two chromosomes(in matrix form) and

randomly from the population.

'
1 ()ijV v= ''

2 ()ijV v=

Step-2. Generate two temporary matrices ()ijD d= and ()ijR r= given by

 [Integer division] ' "()ij ij ijd v v= + / 2

 and

 [Remainder division] ' "() mod 2ij ij ijr v v= +

 Note that the matrix R has an interesting property for assignment problems. This property has

been described in Theorem -1.

Theorem -1. For matrix R, the values of the marginal sums of rows or columns will be either ‘0’ or

‘2’. (For Proof Ref. Appendix A)

Step-3. Decompose the matrix R into two matrices and such that 1R 2R

 1R R R2= + .

 140

 where every row of both and has at most one ‘1’ and all

the elements of the column containing that element ‘1’ must be

0s.

1R 2R

Step-4. Produce two offspring and given by 3V 4V

 3 1V D R= +

 4 2V D R= +

 It is to be noted that decomposition of the matrix R into two matrices and is a formidable task

in most of the cases. In those cases, offspring and will be infeasible. To make them feasible, we

have to apply repair algorithm.

1R 2R

3V 4V

(ii) Matrix binary crossover (MBX)

 Matrix binary crossover (MBX) is a natural extension of the conventional 1-point or 2-point crossover

on strings and deals with column positions rather than bit (i.e., 0 or 1) positions. The steps are as follows:

Step-1. Randomly select two parent chromosomes (matrices) and

 from the population.

'
1 ()ijP p=

''
2 ()ijP p=

Step-2. Randomly select two crossover sites ,1s 2s {2,3,....., 1}n∈ − with

. [n being the order of the matrix] 2s s≥ 1

'

Step-3. Exchange all the entries of and determined by and to

produce two child chromosomes and given by

1P 2P 1s 2s
'

1 ()ijC c= ''
2 ()ijC c=

' '

'' '

,ij ij

ij ij

c p

c p

=

=

 where i = 1, 2,, n; j = , + 1,, . 1s 1s 2s

(iii) Row exchange crossover (REX)

Step-1. Select two chromosomes (matrices) and randomly

from the population as parents.

'
1 ()ijP p= ''

2 ()ijP p=

Step-2. Exchange successively the first row of with the last row of

, the second row of with the last but one row of and so

on to produce two offspring and given by

1P

2P 1P 2P
'

1 ()ijC c= ''
2 ()ijC c=

 141

' ''
1,

'' '
1,

,ij n i j

ij n i j

c c

c c
− −

− −

=

=

 where i = 1, 2,, n; j = 1, 2,, n.

4.7 Repair algorithm

 In the earlier mentioned crossover methods (i) and (ii), as most of the offspring chromosomes

(solutions) are infeasible, the said crossover methods need a scheme to repair infeasible solutions to

feasible ones from time to time. For this purpose, we have used the following steps:

Step-1. Find rows containing duplicate ‘1’s and rows containing no ‘1’s

(i.e., vacant rows).

Step-2. Remove the duplication by moving a ‘1’ from each row with

duplicate ‘1’s into each vacant row.

Step-3. Set a ‘0’ in the position of the row with duplicate ‘1’s

wherefrom ‘1’ is removed.

 In our study, this repair algorithm is treated as if it is a part of the crossover operation, although it is

applied separately after offspring generated by crossover operation.

 4.8 Mutation

 Mutation introduces random variations into the population thereby increases genetic diversity. It is

applied to a single chromosome only with lower probability. It attempts to bump the population gently into

a slightly better one. In this operation, expected .m sizep p number of chromosomes will take part. In our

GA, we have proposed three types of mutation as follows:

(i) Row/Column exchange mutation (REM/CEM)

 For any randomly selected chromosome (in matrix form), randomly select any two rows/columns and

interchange the values of the corresponding two rows/columns. In our experiments, we have used REM.

(ii) Inversion mutation (IM) given in [Gen and Cheng, 1997]

 For any randomly selected chromosome (in matrix form), randomly choose two mutation sites along

the rows/columns and invert the rows/columns of the sub-matrix specified by the sites. Here, we have

chosen the sites along columns.

 142

(iii) Displacement mutation (DM) given in [Gen and Cheng, 1997]

 For any randomly selected chromosome (in matrix form), randomly choose two mutation sites along

the rows/columns and insert the sub-matrix specified by the sites in a random position. In our study, we

have chosen the sites along columns.

5 Various types of Assignment Problems:

5.1 Unbalanced Assignment Problem

 Whenever the cost matrix [] is not a square one, such assignment problem is known as Unbalanced

Assignment Problem. An unbalanced problem can be modified to a balanced one by simply introducing

fictitious (dummy) jobs or machines whichever are necessary to convert [] into a square one with zero

elements for dummy jobs or machines. After this, we can apply our method to the resulting problem.

ijC

ijC

5.2 Maximization Assignment Problem

 Instead of minimizing the cost, an assignment problem may be concerned with the maximizing profit.

A maximization problem can be converted into the usual minimization problem by the relation

 Max Z = – Min (– Z) = – Min Z*.

5.3 Restricted Assignment Problem

 There are assignment problems having restrictions that one or more job(s)/operator(s) cannot be

assigned to some particular machine(s). In our method, has been assigned a suitably large value for

those cells of the matrix where such case(s) occur.

ijC

Table-1 GA version for different combinations

of crossover and mutation

Crossover Mutation Version name
MWAX REM GA-1
MWAX IM GA-2
MWAX DM GA-3
MBX REM GA-4
MBX IM GA-5
MBX DM GA-6
REX REM GA-7
REX IM GA-8
REX DM GA-9

 6 Numerical illustrations with discussion

 To illustrate our algorithm, we have solved a large number of assignment problems using EGA which

is coded in C++ programming language and the whole computational work has been done in Pentium IV

PC with 1 GB RAM in LINUX environment. Among these, nine (9) problems are listed in the Appendix B

 143

ranging from 25 variables to 100 variables. To solve the problems, we have developed 9 versions of our

GA based on different types of crossover and mutation (Ref. Table-1). Because of the stochastic nature of

GAs, all the results reported in this paper are obtained using 50 executions per problem.

Table-2 Parameters used for different problems

Prob. Set AP-1 AP-2 AP-3 AP-4 AP-5 AP-6 AP-7 AP-8 AP-9

psize 147 500 72 500 50 400 729 700 640
mgen 200 600 30 600 40 600 600 800 600
pc 0.8 0.8 0.6 0.8 0.6 0.8 0.7 0.8 0.8 GA-1

pm 1/49 0.01 1/36 0.01 1/25 0.01 1/81 0.01 1/64
psize 637 1000 72 800 70 700 891 100 1088
mgen 500 800 90 600 50 800 700 1200 1000
pc 0.8 0.6 0.8 0.8 0.6 0.7 0.7 0.8 0.8 GA-2

pm 1/49 0.01 1/36 0.01 1/25 0.01 1/81 0.01 1/64
psize 588 1000 432 800 50 900 1053 1200 960
mgen 500 1200 200 1000 80 1200 1000 1200 2200
pc 0.8 0.7 0.8 0.8 0.8 0.8 0.7 0.8 0.8 GA-3

pm 1/49 0.01 1/36 0.01 1/25 0.01 1/81 0.01 1/64
psize 637 800 288 800 60 800 810 800 896
mgen 600 900 200 900 60 900 900 900 900
pc 0.8 0.8 0.8 0.8 0.7 0.8 0.8 0.8 0.8 GA-4

pm 1/49 0.01 1/36 0.01 1/25 0.01 1/81 0.01 1/64
psize 680 1200 288 1200 50 1000 810 1000 896
mgen 700 1500 200 1200 70 1200 900 2000 1000
pc 0.6 0.7 0.8 0.8 0.8 0.8 0.7 0.8 0.8 GA-5

pm 1/49 0.01 1/36 0.01 1/25 0.01 1/81 0.01 1/64
psize 735 1200 576 1800 50 1200 972 1200 960
mgen 600 1000 300 1500 60 1000 1000 2200 1000
pc 0.7 0.7 0.7 0.7 0.7 0.8 0.7 0.6 0.6 GA-6

pm 1/49 0.01 1/36 0.01 1/25 0.01 1/81 0.01 1/64
psize 147 900 432 1000 70 1000 729 1200 832
mgen 300 900 400 1200 50 1000 800 1500 900
pc 0.8 0.8 0.8 0.7 0.6 0.6 0.6 0.7 0.7 GA-7

pm 1/49 0.01 1/36 0.01 1/25 0.01 1/81 0.01 1/64
psize 1029 1000 288 1200 60 1000 1053 1500 1024
mgen 1000 1200 200 1500 60 1200 900 1800 1500
pc 0.8 0.7 0.7 0.8 0.8 0.7 0.7 0.8 0.7 GA-8

pm 1/49 0.01 1/36 0.01 1/25 0.01 1/81 0.01 1/64
psize 882 1500 576 1800 70 1500 1215 1200 1216
mgen 1000 1800 500 2000 80 1500 1600 2000 2200
pc 0.8 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.8 GA-9

pm 1/49 0.01 1/36 0.01 1/25 0.01 1/81 0.01 1/64

 In Table-2, different values of parameters for different GAs used for 9 problems have been presented.

Here it is seen that

- population size (psize) is proportional to the number of variables,

- maximum number of generations (mgen) is different for different problems,

- the crossover probability (pc) is its classical value viz., 0.6 to 0.8,

- the mutation probability (pm) is equal to the reciprocal of the number of variables.

We also notice from Table-2 that psize varies between 50 and 1216 while mgen varies from 40 to 2200.

 144

Table-3: Computational results of 9 different problems for different GA versions

Prob. Set AP-1 AP-2 AP-3 AP-4 AP-5 AP-6 AP-7 AP-8 AP-9

Best 215 61 333 283.75 37 55.25 228.25 155.5 101
Worst 230 64 - 268.5 - 58.25 220 154 106

Suc-rate(%) 86 85 100 75 100 70 98 70 96
GA-1

Time(s) 0.133 3.569 0.013 3.608 0.006 2.548 5.709 28.374 5.131
Best 215 61 333 283.75 37 55.25 228.25 155.5 101
Worst 232 78.25 - 272.375 - 71.125 216.5 148.75 109

Suc-rate(%) 70 52 100 43 100 42 56 48 54
GA-2

Time(s) 3.263 14.043 0.028 23.484 0.012 6.010 9.113 21.526 20.153
Best 215 61 333 283.75 37 55.25 228.25 155.5 101
Worst 234 70 326 275 - 58.25 220 147 111

Suc-rate(%) 60 62 92 64 100 62 60 64 60
GA-3

Time(s) 2.001 18.236 0.493 25.586 0.008 21.326 2.593 22.374 21.925
Best 215 61 333 283.75 37 55.25 228.25 155.5 101
Worst - 64 - 273.625 - 58.25 - 154 106

Suc-rate(%) 100 70 100 70 100 70 100 66 98
GA-4

Time(s) 4.726 12.198 0.344 12.317 0.007 12.351 10.999 12.147 12.861
Best 215 61 333 283.75 37 55.25 228.25 155.5 101
Worst 232 69 312 279 - 66.625 225.5 151.75 105

Suc-rate(%) 80 66 88 75 100 70 80 68 66
GA-5

Time(s) 5.776 39.520 0.314 32.521 0.006 23.801 10.519 38.825 13.430
Best 215 61 333 283.75 37 55.25 228.25 155.5 101
Worst 235 68 322 275 - 64.5 220 148.25 109

Suc-rate(%) 60 64 88 60 100 60 72 64 60
GA-6

Time(s) 3.412 35.352 0.993 49.974 0.005 16.777 9.682 35.879 8.947
Best 215 61 333 283.75 37 55.25 228.25 155.5 101
Worst 234 65 326 273.375 - 58.25 218 154 106

Suc-rate(%) 74 66 64 60 100 60 98 66 88
GA-7

Time(s) 0.186 13.672 1.043 19.328 0.007 16.287 6.706 32.156 8.458
Best 215 61 333 283.75 37 55.25 228.25 155.5 101
Worst 227 71.75 323 272.375 - 71.125 221.5 150.5 109

Suc-rate(%) 64 62 64 62 100 64 62 64 60
GA-8

Time(s) 15.847 18.119 0.269 28.457 0.007 18.943 14.958 31.224 9.584
Best 215 61 333 283.75 37 55.25 228.25 155.5 101
Worst 236 72 322 268.5 - 71 218 147.5 108

Suc-rate(%) 60 64 66 60 100 62 60 66 62
GA-9

Time(s) 12.654 22.235 0.665 35.232 0.010 20.572 19.653 32.937 23.257

AP : Assignment Problem ; Best : Best solution obtained from GAs ; Worst : Worst solution obtained from GAs
Suc-rate(%) : Success rate of the best solution ; Time(s) : Average coputation time (in seconds) ; - : Nil.

 In Table-3, the objective values of the best and the worst solution, success rates of the best solution

and the average execution times of 50 trials (in CPU seconds) for each problem and also for each version

of GA have been reported.

 From Table-3, it is seen that the objective values of the best solution for each problem as obtained

from different GAs remain the same. Further, it is observed that in general, our GAs perform well, as the

success rate is 60% and more for the majority of the 81 results. Moreover, this rate is 100% for 14 cases.

The average execution times are all within a reasonable time of 40 seconds which indicates that within a

reasonable computation time, our GAs are able to find best found results for all the test problems.

 As seen from Table-3, on an average, GA-1, GA-4 and GA-5 are the best, GA-3, GA-6, GA-7, GA-8

and GA-9 are the moderate whereas GA-2 is the worst method.

 145

7 Conclusion:

 In this paper, we have proposed an elitist genetic algorithm (EGA) as an aid for solving assignment

problems. At first, these problems have been converted to equivalent linear programming problems. After

that, to obtain the solutions, an EGA for discrete variables with new types of initialization, crossover and

mutation have been developed. These operations together act as a very powerful search mechanism. As

indicated from our experiments, modified form of whole arithmetical crossover (MWAX) with row

exchange mutation (REM), matrix binary crossover (MBX) with row exchange mutation (REM) and

matrix binary crossover (MBX) with inversion mutation (IM) are able to preserve good solutions for all the

problems. Also it is found that row exchange mutation (REM) and inversion mutation (IM) are far better

than displacement mutation (DM). The proposed algorithm shows good performances for all the test

problems. The developed GA for integer variables has efficiently compared to an optimum integer

programming approach, both for small and large assignments, as GA works with a set of potential solutions

to the problem in each generation. In the existing literature, to design a chromosome of GA, ordinal

representation, adjacency representation and path representations have been used. Among these

representations, path representation has been used widely. In our approach, a matrix representation has

been used to generate genes of a chromosome. The developed model can be improved in different

ways. For future works in this area, one can perform similar analysis for the problems with interval valued

assignment cost/profit/time and multi-objective assignment problems.

2n

Acknowledgement:

The authors would like to acknowledge the support of Research Project provided by the UGC, India, for

conducting this research work.

 References:

1. Aickelin, U., and Dowsland, K.A., (2004) An indirect Genetic Algorithm for a nurse-scheduling

problem. Computers and Operations Research, vol.31, pp. 761-778.

2. Bradley, D., and Martin, J. (1990) Continuous personnel scheduling algorithms: a literature review.

Journal of the Society for Health Systems, vol.2, pp. 8-23.

3. Catrysse, D., and Van Wassenhove, L. N. (1992) A survey of algorithms for the generalized assignment

problem. European Journal of Operational Research, vol.60, pp. 260-272.

4. Chu, P.C., and Beasley, J.E. (1997) A genetic algorithm for the generalized assignment problem.

Computers and Operations Research, vol.48, pp. 17-23.

5. Davis, L. (1991) Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York.

 146

6. Deb, K. (1995) Optimization for Engineering Design-Algorithms and Examples. Prentice Hall of India,

New Delhi.

7. Dowsland, K.A. (1998) Nurse scheduling with Tabu search and strategic oscillation. European Journal

of Operational Research, vol.106, pp. 393-407.

8. Dowsland, K.A., and Thompson, J. M. (2000) Nurse scheduling with knapsacks, networks and Tabu

Search. Journal of the Operational Research Society. pp. 825-833.

9. Easton, F., and Mansour, N. (1993) A distributed Genetic Algorithm for employee staffing and

scheduling problems. In: Forrest S, editor, Proceedings of the Fifth International Reference on Genetic

Algorithms. San Mateo: Morgan Kaufmann Publishers. pp. 360-367.

10. Gen, M., and Cheng, R. (1997) Genetic Algorithms and Engineering Design. Wiley, New York.

11. Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Addison

Wesley, New York.

12. Harper, P.R., Senna, V., Vieira I.T., and Shahani, A.K. (2005) A genetic algorithm for the project

assignment problem. Computers and Operations Research, vol.32, pp. 1255-1265.

13. Holland, J.H. (1976) Adaptation of Natural and Artificial system. University of Michigan Press, Ann

Arbor, MI.

14. Lorena L., and Narciso, M.G. (1996) Relaxation heuristics for a generalized assignment problem.

European Journal of Operational Research, vol.91, pp. 600-610.

15. Michalawicz, Z. (1999) Genetic Algorithms + Data structures = Evolution Programs. Springer-Verlag,

Berlin.

16. Ross, G.T., and Soland, R.M. (1975) A branch and bound algorithm for the generalized assignment

problem. Mathematical Programming, vol.8, pp. 91-103.

17. Sakawa, M. (2002) Genetic Algorithms and fuzzy multiobjective optimization. Kluwer Academic

Publishers.

18. Tanomaru, J. (1995) Staff scheduling by a Genetic Algorithm with heuristic operators. Proceedings of

the IEEE Conference on Evolutionary Computation, New York, pp. 456-461.

19. Wilson, J.M. (1997) A genetic algorithm for the generalized assignment problem. Journal of the

Operational Research Society, vol. 24.

Appendix A

Proof of the Theorem-1 :

In V1 and V2 there is one and only one ‘1’ in each row and in each column. For a particular row (say, i)

these ‘1’s lie either in the same column or in the different columns of V1 and V2, viz., or

. In the former case, the above mentioned remainder division will give and in the

1, 1ik ikv v′ ′′= =

1, 1ik ilv v′ ′′= = 0ikr′ =

 147

later case, this will give . Hence, the marginal sum of the elements of row will be either

‘0’ (for the first case) or ‘2’ (for the second case) i.e.,

1, 1ik ilr r′ ′= = thi

1

0 or 2 ; 1, 2,........., .
n

ij
i

r i
=

= =∑ n

Similar analysis will prove the result for a particular column (say, j). Hence our proof is complete.

Appendix B

List of matrices ([used for test problems])ij n nC ×

Bal. Min. (AP-1) : 7 × 7

35 22 60 41 27 52 44
51 39 42 33 65 47 58
25 32 53 41 50 36 43
32 28 40 46 3 55 49
43 36 45 63 57 49 42
27 18 31 46 35 42 34
48 50 72 59 43 64 58

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Bal. Min. (AP-2) : 10 × 10

17.75 18 15 13.25 11.25 10 5 6.5 9.5 12
16 17.5 16.5 14.75 12.75 11.5 9.25 5 5 10.25

13.5 15 17.5 17 15 13.75 11.5 10.25 5.25 5.25
12 13.5 16 17.5 16.75 15.5 13.25 12 9 6.25
9.5 11 13.5 15 17.75 18 15.75 14.5 11.5 9.5
6 4.5 11 12.5 15.25 16.5 18.25 17 14 12

4.25 5.75 4.25 9.75 12.5 13.75 15.5 17.25 16.75 14.75
10 4.75 5.5 8.75 11.5 12.75 14.5 16.25 18 16

11.5 10 6 5.25 10.25 11.5 13.25 15 17.75 17.5
14 12.5 9.5 5 5.75 4.5 10.75 12.5 15.25 17.75

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Bal. Max. (AP-3) : 6 × 6

9 22 58 11 19 27
43 78 72 50 63 48
41 28 91 37 45 33
74 42 27 49 39 32
36 11 57 22 25 18
13 56 53 31 17 28

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Bal. Max. (AP-4) : 10 × 10

28.625 28.875 26.375 24.875 11.125 11.125 16.375 17.375 11.25 10.75
27.125 28.625 28.125 26.625 11.375 11.375 11.75 16.125 16.375 11
24.875 26.375 29.375 29.125 26.375 25.125 12 11.5 16.875 16.375
11.375 24.625 27.625 29.375 28 26.75 25 11.375 11.625 17.125
11.25 11.25 25.125 26.875 29 29.125 27.375 25.625 11.5 11
17.25 15.75 11.875 24.375 26.5 27.75 29.875 28.25 25.5 11.125
15.375 16.875 15.875 12 11.375 25 27.125 28.375 28.125 25.625

11 15.625 16.875 11.75 11.125 11.125 25.875 27.125 20.125 26.625
10.875 10.875 17.125 16.75 11 11 24.375 25.625 28.625 28
24.625 10.75 11.25 16.375 16.375 15.125 11.25 10.75 26.125 28.125

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Unbal. Min. (AP-5) : 5 × 5

11 17 8 16 0
9 7 12 6 0

13 16 15 12 0
21 24 17 28 0
14 10 12 11 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Unbal. Min. (AP-6) : 10 × 10

17.625 17.875 14.875 13.125 11 9.75 4.875 6.375 9.375 11.875
15.875 17.375 16.375 14.625 12.5 11.25 9.125 4.875 4.875 10.125
13.375 14.875 17.375 16.875 14.75 13.5 11.375 10.125 5.125 5.125
11.75 13.25 15.75 17.25 16.5 15.25 13.125 11.875 8.875 6
9.375 10.875 13.375 14.875 17.625 17.75 15.625 14.375 11.375 9.375
5.875 4.375 10.75 12.25 15 16.25 18 16.875 13.875 11.875
4.125 5.625 4.125 9.625 12.375 13.625 15.375 17.125 16.625 14.625
9.875 4.625 5.375 8.625 11.375 12.625 14.375 16.125 17.875 15.875

11.375 9.875 5.75 5.125 10 11.25 13 14.75 17.5 17.375
0 0 0 0 0 0 0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 148

Unbal. Max. (AP-7) : 9 × 9

28.75 29 26.5 25 11.5 11.5 16.5 17.5 0
27.25 28.75 28.25 26.75 11.75 11.75 12 16.25 0

25 26.5 29.5 29.25 26.5 25.25 12.25 11.75 0
11.75 24.75 27.75 29.5 28.25 27 25.25 11.75 0
11.5 11.5 25.25 27 29.25 29.25 27.5 25.75 0
17.5 16 12.25 24.5 26.75 28 30 28.5 0
15.5 17 16 12.25 11.75 25.25 27.25 28.5 0
11.25 15.75 17 12 11.5 11.5 26 27.25 0
11.25 11.25 17.25 17 11.5 11.5 24.5 25.75 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Unbal. Max. (AP-8) : 10 × 10

16 17.5 16.5 14.75 12.75 11.5 9.25 5 5 10.25
13.5 15 17.5 17 15 13.75 11.5 10.25 5.25 5.25
12 13.5 16 17.5 16.75 15.5 13.25 12 9 6.25
9.5 11 13.5 15 17.75 18 15.75 14.5 11.5 9.5
6 4.5 11 12.5 15.25 16.5 18.25 17 14 12

4.25 5.75 4.25 9.75 12.5 13.75 15.5 17.25 16.75 14.75
10 4.75 5.5 8.75 11.5 12.75 14.5 16.25 18 16

11.5 10 6 5.25 10.25 11.5 13.25 15 17.75 17.5
14 12.5 9.5 5 5.75 4.5 10.75 12.5 15.25 17.75
0 0 0 0 0 0 0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Restricted (AP-9) : 8 × 8

25 15 24 26 27 29 28
25 11 15 16 15 12 25
27 28 25 27 11 15 16 11
14 12 25 27 20 26 16
16 14 12 11 12 15 10 18
13 15 16 18 15 13 11
15 25 12 15 16 15 18
12 15 20 16 15 18 12 24

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟−⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

 149

