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Abstract

In this paper, we consider the problem of dispatching a production load of a certain good or a resource
(money, energy, water, ...) among a group of production units or alternatives; or simply establishing priority
for that group of alternatives when optimizing a number of (possible) antagonist objectives (cost, benefit,
environnmental impact, reliability, safety, ...) in pressence of different actors or stakeholders that do not
have the same opinion regarding the importance of each objective. The first part of this problem (single
stakeholder or a group of stakeholders acting as one person) is a part of more general problems known in
the literature as multiple objetives/criteria optimization/decision aid problems that are widely recognized
as a framework for realistic and practical decision making by individuals or corporates. There are few works
in the literature that combine multiple objectives and multiple stakeholders for modeling decision making
problems whereas such problems are common in practice. In this paper we will adopt a hierarchical analysis
approach that will go from general purpose objectives to more precise objectives about which stakeholders
are able to do one-on-one comparisons in the framework of analytic hierarchy process (AHP) or its network
extension (ANP) to determine some relative weights for objectives. These weights are then used in the
process of computing the “satisfiability (selectability and rejectability) functions” using satisficing game
theory and finally a set of “satisficing” or “good enough” allocations, assignments, dispatchings or settings
is defined to be those for which the selectability exceeds the rejectability with regard to a boldeness index.
The boldeness index is a parameter that permits decision maker(s) to adjust the size of satisficing set leading
to some flexibility. Two real world problems (porfolio management and thermal power dispatch) are solved
by this approach to show its applicability.

Keywords: Multiple Objectives Decision Making, AHP, Satisficing Game Theory, Multiple Actors.

1 Introduction

We consider in this paper the problem of assigning a fraction xi of a resource, a task load or simply a priority
to an alternative i of a group of n alternatives. Without loss of generality, the admissible assignments set X is
given by

X =
{
x ∈ Rn

+ : 1Tx = 1, xmin ≤ x ≤ xmax
}
. (1)

where x =
[
x1 x2 ... xn

]T
; Rn

+ is a n dimensional real vector space with non negative components, 1 is
a column vector with all entries equal to 1; yT is the transpose of y and the inequalities xmin ≤ x ≤ xmax are
considered componentwise. Each assignment, dispatching or setting x ∈ Rn

+ is with associated m objectives
fj(x), j = 1, 2, .., m and we suppose that d actors that we designate generically as stakeholders must express
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their opinion about the relative importance of objectives with regard to the overall assignment goal. The version
of this problem without stakeholders intervention is what is typically known in the literature (see for instance
[4, 8, 10, 16, 17, 25, 28, 30]) as multicriteria, multiattributes or mutiltiobjectives decision making or decision
analysis. In our opinion three issues characterize any practical decision making (choosing, sorting or ranking
alternatives or options) problem:

• multiple objectives: an admissible solution of a decision making problem is always chosen to optimize
multiple objectives; the classical constrained optimization problems (see [6, 11]) can be seen as multiple
objectives optimization problems where some objectives are transformed to constraints;

• uncertainty: it is rarely possible to define precisely objectives and to assign to them infinitely divisible
grade; in many cases only the sense of their goodness (larger the better or smaller the better) is known;

• multiple actors (stakeholders): for a number of practical decision making problems, the (antagonist)
opinions of many actors have to be taken into account.

Classical (treating stakeholders as a single decision maker) multiple objectives decision making has been
used in economics and management science for years and has gradually crept in engineering. Many real-
world problems are often formulated in terms of multiple objectives optimization problems, see for instance
[4, 8, 10, 16, 17, 21, 25, 28, 30] and references therein. For instance in a production planning problem one
wants to maximize the output and minimize the resources utilized. The problem of production planning in a
company that produces two types of manufacturing tools where the objectives were to maximize simultaneously
the profit and the quantity of one type of tool that has less profit margin under constraints of resource in terms
of available time has been considered in [14]. In the domain of mechanical engineering, civil engineering, and
material engineering, the design of a structure is a multiple objectives optimization problem in the sense that, it
is required in many case to minimize the mass or the volume of the material used and to maximize some index
of safety. In [4] the problem of choosing the dimensions of a beam that minimize the mass and minimize the
deflection has been considered; this problem is clearly the optimization of two conflicting objectives. Software
design and implementation require considerations of many conflicting objectives as minimization of the cost
of development, maximization of the speed of the system, minimization of power consumption and the weight
of the system mainly in what concern embedded systems design. For embedded systems there is more and
more need of co-synthesis and optimization of hardware/software implementation. In Electronics design mainly
when one is dealing with VLSI design many conflicting criteria will be being considered simultaneously such
as minimization of area occupied by components, minimization of power consumption, maximization of heat
evacuation. Other objectives related to environment for instance can be considered [21]. In the following
paragraphs, we will review the main approaches that are used to solve classical multiple objectives decision
making problems. Most of the time the analyst (the person or expert in charge of establishing the decision
model) face intervention of different actors with opposite opinions that must be integrated in the model, this
paper addresses these issues.

The remainder of this paper is organized as follows: in the second section some classical approaches used to
solve multiple objectives decision making problems are reviewed; the third section (the main contribution of this
paper) establishes the satisficing game model for solving the assignment problems presented in the introduction
section including the presentation of the basic materials of satisficing decision theory that are relevant to our
modeling problem and a brief recall of analytic hierarchy process approach; the section four is devoted to the
application of the approach established in the paper to two real world practical problems and concluding remarks
are given in the fifth section.

2 Classical approaches for solving multiple objectives optimization

problems

Classical approaches for solving multiple objectives decision problems rely on the notion of the so-called Pareto
dominance [30] and Pareto-optimal set and the resolution is organized around two processes: search and decision
making. Depending on how search (finding a sample of Pareto-optimal set) and decision process are combined,
multiple objectives optimization methods can be classified in three categories [30].
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• Decision making before search: The objective functions are aggregated into a single objective by using
some preference of the decision maker.

• Search before decision making: Here a sample (or totality) of Pareto-optimal set is obtained first and then
a choice is made by a decision maker.

• Decision making during search: Here an interactive sequential optimization is performed where after each
search step, the decision maker is presented with a number of alternatives.

The first approach to deal with multiple objectives decision making problems has been the aggregation of
objectives into a single objective in different ways leading to weighting methods, constraint methods and goal
programming methods. The advantage of these methods is that efficient and broad algorithms developed to
single objective optimization problems (see [6, 11, 13] and references therein) can be used to solve the resulting
problems. The drawback of these techniques is that the subjective intervention of the user is needed to fix
weighting factors and it is known [30] that these methods are most of the time not able to finding Pareto-
optimal solutions in the case of non convex feasible space. To overcome these drawbacks, new methods have
been designed based on evolutionary algorithms, mainly genetic algorithms that are able to generating efficiently
Pareto-optimal solutions. In the following paragraphs we will review some basic methods that are used to solve
multiple objectives decision making problems.

2.1 Weighting method ([25])

Here the original multiple objectives optimization problem is converted to a single objective optimization prob-
lem as (2)

max /min
x




m∑
j=1

ωjfj(x)


 s.t. x ∈ X . (2)

where s.t. stands for “subjected to”. The parameters ωj are called the weights and are most of the time

normalized as
∑k

j=1 ωj = 1, ωj ≥ 0. By varying the weights ωj , different Pareto-optimal solutions can be
generated.

2.2 Constraint method ([25])

Here m−1 objective functions are transformed into constraints and the remaining objective is optimized under
these constraints. The resulting single objective optimization problem is (3)

max /min
x

{f(x) = fh(x)} s.t. fi(x)− δi ≤ 0, 1 ≤ i ≤ m, i �= h, x ∈ X . (3)

By varying parameters δi, different Pareto-optimal solutions are obtained.
Another approach that fall in the framework of transforming a multiple objectives optimization problem

into a single objective optimization problem is the so-called goal programming. This technique has had many
applications and variant. It is a particular case of method of inequalities where all objectives are transformed
into constraints.

2.3 Goal Programming

Goal programming was first introduced by [3] and gained its popularity after the work by [8, 10]. A number
of engineering applications where goal programming has been used can be found in [16]. The main idea in the
goal programming approach is to find solutions which attain a pre-specified target for one or more objective
functions; if there is no solution which achieves targets in all objective functions, the task is then to find solutions
which minimize deviations from targets. The specification of the goal can take 4 possibilities. For each objective
function fj(x) the goal may be:

1) less-than-equal-to, fj(x) ≤ tj ,
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2) greater-than-equal-to, fj(x) ≥ tj ,

3) equal-to, fj(x) = tj ,

4) within a range, fj(x) ∈ [tlj , t
u
j ].

To tackle this problem, two deviation variables n and p are introduced. For the less-than-equal-to type goal,
a positive value pj is substracted from fj(x) so that fj(x)− pj ≤ tj (if fj(x) > tj then pj must take a positive
value and zero if not); for the greater-than-equal-to type goal, a positive value nj is added to fj(x) so that
fj(x) + nj ≥ tj (if fj(x) < tj then nj must take a positive value and zero if not); for the equal-to type goal, we
have fj(x) − pj + nj = tj . For the within type goal, two constraints are introduced for each target tlj and tuj .
To solve the resulting problem different techniques are used.

2.3.1 Weighted Goal Programming

Here the problem is reduced to classical optimization problem (4)

min
x




m∑
j=1

(
αjpj + βjnj

)

 s.t. fj(x)− pj + nj = tj , nj , pj ≥ 0 ∀ j, x ∈ X . (4)

where αj and βj are weighting factors fixed by the user. This is a drawback for this method, as weighting
factors may be not easy to chose and this make the method subjective.

2.3.2 Lexicographic Goal Programming

Here goals are categorized into several levels of preemptive priorities; goals of lower-level are infinitely more
important than goals of higher level and so are considered first in the solving process. The solving process is
then sequential, first goals and corresponding constraints of first level priority are considered in the formulation
of goal programming and solved. If there is only one solution then the rest of goals are ignored. If there are
many solutions then the goals and corresponding constraints of second level priority are considered with solution
of first level as a hard constraint. This process is repeated until only one solution is found.

2.3.3 Minimax Goal Programming

This method is similar to weighted goal programming. The objective to minimize is the maximum deviation in
any goal from its target. The optimization problem is (5)

min
x

(d) s.t. αjpj + βjnj ≤ d, fj(x)− pj + nj = tj , nj , pj ≥ 0 ∀ j, x ∈ X . (5)

The main drawback of previous techniques to deal with multiple objectives optimization is the necessity
for the user to intervene by specifying weights and the fact that these techniques in general don’t find Pareto
solutions for a non-convex decision space.

2.4 Other approaches: outranking and evolutionary algorithms

Other approaches that are considered in the multiple objectives decision aid community are dominated by
outranking approaches where a partial order of alternatives is derived by an interactive procedure between the
analyst and the decision maker (see [1, 2, 17, 28]) and the evolutionary algorithms that are a class of stochastic
optimization methods that attempt to simulate the process of natural evolution. Evolutionary algorithms have
been proved useful in optimizing difficult functions that might mean: non-differentiable objective functions,
many local optima, a large number of parameters, or a large number of configurations of parameters [30].

In this paper we consider a modeling approach, known as satisficing dispatching and setting, that differs
from classical ones presented previously in two ways: first many stakeholders will be considered and second
the stakeholders preferences aggregation is based on the idea that there are two categories of objectives with
regard to the setting or dispatching goal, those that behave as “larger is better” and those which are such that
“smaller is better”; the aggregation procedure will be carried separately on each group of objectives to obtain
the selectability measure and the rejectability measure respectively in the framework of satisficing game theory.
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3 Satisficing dispatching and setting

The approach considered in this paper is based on the idea that given setting or dispatching objectives as defined
in the introduction section, there are (almost always) those which variation is positively correlated to the overall
goal (larger is better) and those which variation is negatively correlated to the goal (smaller is better). The
former can be interpreted as delivery and the later as the effort to be furnished to obtain deliveries. By so
doing one can establish a setting or dispatching model based on two measures: satisfiability measure µS(x)
that aggregate deliveries contributions and the rejectability measure µS(x) that aggregate efforts contributions
in the framework of satisficing game theory [26]; this interpretation has been successfully used for production
units evaluation by the author in [27]. In the following paragraph we will recall the materials of satisficing game
theory that are relevant to our problem. For more details to this theory, see [26].

3.1 Satisficing game theory

The underlying philosophy of most of the techniques used in the literature to construct the evaluation model
is the superlative rationality, looking for the best, all the alternatives must be compared against each other.
But the superlative rationality paradigm is not necessarily the way humans evaluate alternatives (and maybe
not the best one). Most of the time humans content themselves with alternatives that are just “good enough”
because their cognitive capacities are limited and information in their possession is almost always imperfect
that is the fundamental idea behind the theory of bounded rationality that has its roots in the work by H.
Simon [23]; the concept of being good enough allows a certain flexibility because one can always adjust its
aspiration level. On the other hand, decision makers more probably tend to classify units as good enough or
not good enough in terms of their positive attributes (benefit) and their negative attributes (cost) with regard
to the decision goal instead of ranking units with regard to each other. For instance, to evaluate cars, we often
make a list of positive attributes (driving comfort, speed, robustness, etc.) and a list of negative attributes
(price, consumption per kilometer, maintainability, etc.) of each car and then make a list of cars for which
positive attributes “exceed” negative attributes in some sense. This way of evaluation falls into the framework
of praxeology or the study of theory of practical activity (the science of efficient action). Here decision maker(s),
instead of looking for the best options, look for satisficing alternatives. Satisficing is a term that refers to a
decision making strategy where options, units or alternatives are selected which are “good enough” instead of
being the best [26]. Let us consider a universe U of alternatives; then for each alternative u ∈ U, a selectability

function µS(u) and a rejectability function µR(u) are defined to measure the degree to which u works towards
success in achieving the decision maker’s goal and costs associated with this alternative respectively. This pair
of measures called satisfiability functions or measures are mass functions (they have the mathematical structure
of the probabilities [26]): they are non negative and sum to one on U . The following definition then gives the
set of options arguable to be “good enough” because for these options, the “benefit” expressed by the function
µS exceeds the cost expressed by the function µR with regard to the index of boldness q.

Definition 1 The satisficing set Σq ⊆ U with the index of boldness q is the set of alternatives defined by
equation (6)

Σq = {u ∈ U : µS(u)(u) ≥ qµR(u)} . (6)

The boldness index q can be used to adjust the aspiration level: increase q if Σq is too large or on the contrary
decrease q if Σq is empty for instance.

Applying the satisficing game theory to the setting and dispatching problem return then to determining
satisfiability measures µS(u) and µR(u); the process of determining these measures will be considered in the
following paragraphs.

3.2 Defining satisfiability measures

As stated previously, we argue that for a multiple objectives optimization problem as that of setting and/or
dispatching considered in this paper, it is possible to divide the set of objectives O into two groups:
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• objectives that acts in the sense of optimization goal (larger is better); we denote their set by OS and the
equation (7) gives the vector representation of these objective functions

FS(x) =
[

f1(x) f2(x) . . f|OS|(x)
]T

, fi ∈ OS (7)

where |OS | stands for the cardinality of OS ;

• objectives that acts in the opposite sense of optimization goal which set is denoted by OR and their vector
representation given by equation (8)

FR(x) =
[

f1(x) f2(x) . . f
|OR|

(x)
]T

, fi ∈ OR. (8)

We consider this partition to be beyond the scope of this paper and is accepted by the stakeholders. To
definitely define the satisfiability measures, one needs to integrate stakeholders opinion about the importance of
objectives; this is done using the analytic hierarchy process approach [19] that is briefly recalled in the following
paragraph.

3.2.1 Brief recall of AHP

The analytic hierarchy process is a comprehensive, powerful and flexible decision making process to help people
set priorities and make the best decision when both qualitative and quantitative aspects are used to evaluate
alternatives, see [19, 20]. By reducing complex decisions to a series of one-on-one comparisons, then synthesizing
the results, AHP not only helps decision makers arrive at the best decision, but also provides a clear rationale
that it is the best. It is designed to reflect the way people actually think and is a widely used decision-making
theory. The basic AHP decomposes a decision problems in different elements, grouped in clusters, that it
arranges in a linear hierarchy form where the top element of the hierarchy is the overall goal of the decision
making and is based on the following axioms (see [18]).

• Axiom 1 (reciprocity): if element A is x times as important than element B, then element B is 1

x
times

as important as element A.

• Axiom 2 (homogeneity): only comparable elements are compared. Homogeneity is essential for comparing
similar things, as errors in judgement become larger when comparing widely disparate elements.

• Axiom 3 (independence): the relative importance of elements at any level does not depend on what
elements are included at a lower level.

• Axiom 4 (expectation): the hierarchy must be complete and include all the criteria and alternatives in the
subject being studied. No criteria and alternatives left out and no criteria and alternatives are included.

The hierarchy goes from the general to more particular until a level of operational criteria against which
the decision alternatives can be evaluated is reached. The elements of cluster Cc in a top down hierarchy are
pairwise compared with regard to each element of the cluster Cc−1 to obtain a nc × nc−1 weighting matrixWc

where ni is the number of elements in the cluster Ci. This matrix is given by equation (9)

Wc =

[
w1

c
w2

c
... w

nc−1
c

]
(9)

where wi

c
are nc column vectors obtained as follows: for each element i of the cluster Cc−1, a pairwise comparison

matrixWi

c
of elements of cluster Cc is constructed by answering questions of the form “how important is element

X compared to the element Y of the cluster Cc with regard to upper level element Z of the cluster Cc−1 ?”
using the scales given by the following Table I (see [19], [20])
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Verbal scale Numerical values

Equally important 1
Moderately more important 3
Strongly more important 5

Very strongly more important 7
Extremely more important 9

Intermediate scales (compromise) 2, 4, 6, 8

Table I: scales for AHP comparison procedure.

Once this matrix is constructed, the vector wi

c
is computed as the unique eigenvector of this matrix associated

with eigenvalue nc, that is the solution of the equation (10)

W
i

c
w
i

c
= ncw

i

c
(10)

and a consistency1 index is computed for possible modification of comparison weights (see [20]). The overall
weights vector ω of bottom cluster, that is the alternatives cluster, with regard to the decision goal is then given
by the following equation (11)

ω =WNWN−1...W1W0 (11)

whereW0 is a column vector representing the comparison weights of the first cluster with regard to the overall
decision goal andWN (N is the number of clusters) is the comparison matrix of alternatives with regard to the
direct upper level cluster elements (measurable criteria). A typical AHP structure of the setting and dispatching
problem we are considering here is given by the directed graph of Figure 1 where the arrows mean dependency;
elements that are pointed by an arrow are evaluated against the elements from which the arrow emanate. Let

STAKEHOLDERS

OBJECTIVES

GOAL

Figure 1: The AHP architecture of the problem under consideration

us denote by Wk
S (respect. Wk

R), for k = 1, 2, .., d, the pairwise comparison matrix of the objectives in OS

(respect. of the objectives in OR) according to the stakeholder k that supplies weights ωkij (how important is
objective i compared to the objective j according to the stakeholder k ?). One rapid way to obtain this matrix
is to ask the stakeholder to choose a pivot objective p and compare other objectives to it using the standard
AHP scales by supplying weights ωkip (how important is objective i compared to the pivot objective p according

to stakeholder k ?). Then one constructs a consistent comparison matrix Wk
×

(where × stands for S or R)
using the relations defined by equation (12)

W
k
×
(i, i) = 1, Wk

×
(i, p) = ωkip, W

k
×
(p, i) =

1

ωkip
, Wk

×
(i, j) =Wk

×
(i, l) ·Wk

×
(l, j). (12)

1A comparison matrix M is said to be consistent if it verifies: Mii = 1, Mji =
1

Mij
and Mik =MijMjk.
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Once these matrices are obtained, the column weight vectors ωk
S

and ωk
R

for objectives according to each

stakeholder k are computed as shown by equation (13)

ω
k
S(i) =

1

|OS |

∑
j

(
W

k
S(i, j)∑

lW
k
S(l, j)

)
and ωk

R(i) =
1

|OR|

∑
j

(
W

k
R(i, j)∑

lW
k
R(l, j)

)
, (13)

and the |OS | × d (respect. |OR| × d) weighting matrixWS (respect. WR) is given by equation (14)

WS =
[
ω
1

S ω
2

S ... ω
d
S

]
andWR =

[
ω
1

R ω
2

R ... ω
d
R

]
(14)

where the weight ωS(i) for the objective i that will be used for computing the selectability/rejectability measures
is determined by (15)

ωS(i) =
1

d

d∑
k=1

WS(i, k) & ωR(i) =
1

d

d∑
k=1

WR(i, k). (15)

As we dispose with the stakeholders opinions in terms of weighting vectors ωS and ωR, we are ready to
define the satisfiability measures µS(x) and µR(x) for each setting or dispatching x; that will be done in the
following paragraph.

3.2.2 Satisfiability measures

Now we are ready to define these measures; first of all we have to normalize the objectives functions. The
normalization of the original objective functions is necessary before weighting because objectives are not, in
general, expressed in the same units (money, memory capacity, human resources, surface, machines, qualitative,
etc.). Let us then define the normalized column vectors (utilities) Fn

S
(x) of the objectives corresponding to the

selectability and Fn

R
(x) corresponding to the rejectability objectives by

Fn

S (x) =
[

fn
1
(x), fn

2
(x), ..., fn

|GS|
(x)

]T
, fi ∈ GS (16)

Fn
R(x) =

[
fn
1
(x), fn

2
(x), ..., fn

|GR|
(x)

]T
, fi ∈ GR. (17)

There is not a unique way to define normalized function fni (x) that can be interpreted as utility associated with
objective function fi; but as the utilities are unique only up to a positive affine transformation (see for instance
[22]), to ensure comparability of utilities, both the scale and the zero point need to be chosen, so we consider
the following normalization scheme (18)

fni (x) =
fi(x)− fi,min

fi,max − fi,min

. (18)

where
fi,max = max

x∈X
fi(x) and fi,min = min

x∈X
fi(x). (19)

Notice that the values fi,max and fi,min will exist as the set X is a compact closed set and the objective

functions fi will be considered to be continuous functions. The following definition then gives the way to obtain

the satisfiability functions or measures µS and µR on X .

Definition 2 The selectability measure µS and the rejectability measure µR of the setting and dispatching
problem are given by (20)

µ
S
(x) =

ω
T

S
Fn

S
(x)

∫
X
ω
T

S
Fn

S
(x)dx

and µ
R
(x) =

ω
T

R
Fn

R
(x)

∫
X
ω
T

R
Fn

R
(x)dx

. (20)

Notice that these measures define probability density functions over the compact closed set X and so fulfill
the requirements of satisficing game theory. The following paragraph presents different approaches to select a
setting or dispatching vector x arguable to be satisficing or good enough.
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3.3 Satisficing or good enough setting/dispatching

The satisficing or good enough setting/dispatching vectors x at the boldness index q1 are given by equation (21)

x ∈ X : µS(x) ≥ q1µR(x)⇔ ω
T
SF

n
S (x) ≥ q1

∫
X
ω
T
SF

n
S (x)dx∫

X
ω
T
RF

n
R(x)dx

ω
T
RF

n
R(x) = qωTRF

n
R(x) (21)

so that the satisficing set Σq at the boldness index q = q1

∫
X
ω
T

S
Fn
S
(x)dx

∫
X
ω
T

R
Fn
R
(x)dx

is defined by equation (22)

Σq =
{
x ∈ X : ω

T
SF

n
S (x)− qωTRF

n
R(x) ≥ 0

}
(22)

and a particular satisficing setting or dispatching x ∈ Σq can be calculated by solving the following optimization
problem (23)

min
x
(0) s.t. − ωTSF

n
S (x) + qωTRF

n
R(x) ≤ 0, x ∈ X (23)

that can be solved using a general purpose software such as MatlabTM with Optimization Toolbox or writing
one’s own code. The final setting/dispatching can then be selected using different criteria such as the following.
.

• Most selectable setting/dispatching x∗ defined by (24)

x∗ = argmax
x

(
ω
T
SF

n
S (x)

)
s.t. − ωTSF

n
S (x) + qωTRF

n
R(x) ≤ 0, x ∈ X . (24)

• Least rejectable setting/dispatching x∗ defined by (25)

x∗ = argmin
x

(
ω
T
RF

n
R(x)

)
s.t. − ωTSF

n
S (x) + qωTRF

n
R(x) ≤ 0, x ∈ X . (25)

• Maximal discriminant setting/dispatching x∗ defined by (26)

x∗ = argmax
x

(
ω
T
SF

n
S (x)− qωTRF

n
R(x)

)
s.t. − ωTSF

n
S (x) + qωTRF

n
R(x) ≤ 0, x ∈ X . (26)

• Maximum boldness setting/dispatching x∗ defined by (27)

x∗ = argmax
x

(
ω
T
SF

n
S (x)

ω
T
RF

n
R(x)

)
s.t. x ∈ X . (27)

• Other criteria: for instance one or a combination of original objectives o(x) may be optimized (maximized
or minimized) subjected to satisficing condition, that is

x∗ = argmax /min
x

(o(x)) s.t. − ωTSF
n
S (x) + qωTRF

n
R(x) ≤ 0, x ∈ X . (28)

A summary of the important steps to apply the approach established in this paper is presented in the
following paragraph.

3.4 Summary

In summary, the approach presented so far to solve a setting or dispatching problem is organized around 5 steps
as presented in the following.

1. Considering the partition of objectives into selectable objectives and rejectable objectives as done, do an
AHP analysis with stakeholders to obtain weight vectors ωS and ωR.
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2. Compute the maximum and the minimum values fj,max and fj,min on X of each objective function fj by
solving mathematical programming problems (29).

max /min
x∈X

f(x). (29)

3. Define normalized objectives or utilities fni (x) =
fi(x)−fi,min
fi,max−fi,min

.

4. Find the maximum boldness index qmax by solving the problem (27).

5. Choose a boldness index q ∈
[
0, qmax

]
and solve one of the problems (23) - (28) and implement

the solution or possibly reconsider the boldness index or the weighting vectors until a good solution is
obtained.

In the following section, two real world applications will be considered to show the potential applicability of
the approach presented in this paper.

4 Applications

Two applications will be considered in this section: the first application is related to portfolio management and
the second one is concerned by power load dispatching among thermal power plants.

4.1 Portfolio management

Modern theory of portfolio management has been initiated in 1952 by Markowitz [12] when he proposed his
mean-variance model for selection purpose. According to this theory, any portfolio investor should seek the
optimization of two conflicting criteria: maximize the mean return and minimize the risk measured by the
variance of this return. Thus, managing a portfolio is a multiple objectives or attributes decision problem [7]
and actually an efficient management of portfolio must consider more than two conflicting criteria because each
firm is determined by different performance indices that must be optimized by portfolio manager when selecting
firms for investment. Investment decision is made in two stages: at the first stages the portfolio manger selects
a set of firms from a stock exchange database for instance and in second stage solves an affectation problem
that is which proportion of his fund will be invested in each selected firm. Two main performance indices are
used in practice: financial performance indices, namely:

• current ratio (CR), an index related to cash that is a “larger is better” objective;

• return on equity (ROE), a “larger is better” objective measuring capital profitability;

• cash flow over liability ratio (CFLR), a creditworthiness behaving in the sense of “larger is better”;

and stock exchange performance indices given by:

• earnings per share (EPS), a “larger is better” index;

• monthly mean return (MMR), a “larger is better” objective;

• β − 1 (Beta-1), a technical coefficient which absolute value is a “smaller is better” objective;

• price earning ratio (PER), a “smaller is better” objective.

In summary, we have 5 objectives working toward selectability, that is

OS = {CR, ROE, CFLR, EPS, MMR} (30)

and 2 objectives that contribute to the rejectability

OR = {β − 1, PER} . (31)
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For simulation, we consider data of 31 firms of a certain stock exchange (extracted from [7]) given on the
following Table II . Notice that the intention here is not a comparative study but rather a proof of a possible
use of our approach for the prioritizing and allocating fund for firms in a portfolio.

Selectability objectives Rejectability objectives

Firms CR ROE CFLR EPS MMR β − 1 PER

X01 1.23 0.147 4.91 9538 0.095 0.300 0.8097

X02 1.36 0.098 0.74 518 0.011 0.106 −8.0645

X03 0.85 0.141 0.19 600 0.019 0.013 32.2581

X04 0.97 0.118 0.69 328 0.009 0.158 22.7273

X05 1.63 0.230 0.26 10762 0.024 0.066 11.6279

X06 1.72 0.241 0.64 105 0.010 0.101 52.6316

X07 0.89 0.163 0.52 68 −0.002 0.070 20.8333

X08 1.10 0.212 0.88 1312 0.013 0.031 7.4627

X09 1.31 0.202 1.72 2335 0.012 0.097 9.4340

X10 1.57 0.137 0.58 1018 0.018 0.079 13.5135

X11 0.82 0.171 0.88 639 0.003 0.156 19.6078

X12 1.28 0.177 0.31 86 0.110 5.740 2.2883

X13 1.58 0.216 0.32 217 −0.001 0.131 30.3030

X14 1.41 0.186 0.24 168 −0.001 0.205 −22.2222

X15 1.07 0.181 0.19 2651 0.007 0.017 58.8235

X16 1.10 0.177 1.01 859 0.017 0.140 11.1111

X17 2.60 0.164 0.51 25 0.005 0.002 13.1579

X18 1.06 0.114 0.34 212 −0.001 0.176 9.2308

X19 1.43 0.299 1.66 294 0.010 0.090 19.2308

X20 1.04 0.064 0.71 168 0.001 0.084 18.1818

X21 1.87 0.104 0.31 235 0.002 0.059 16.3934

X22 0.68 −0.57 0.96 −88 −0.015 0.288 2.3866

X23 0.64 0.150 0.23 316 0.011 0.064 −0.5851

X24 2.48 0.150 9.41 371 0.005 0.350 13.6986

X25 1.91 0.066 4.87 127 −0.006 0.417 55.5556

X26 0.43 0.112 0.82 176 0.005 0.656 333.3333

X27 0.44 0.075 1.36 139 0.008 0.808 25.0000

X28 0.74 0.025 2.99 125 0.002 0.192 13.3333

X29 2.88 0.172 3.67 1485 0.004 0.016 10.1010

X30 2.31 0.163 0.62 3155 0.042 0.207 20.8333

X31 0.85 0.152 1.31 687 0.010 0.172 12.3457

Table II: Data for portfolio management application

In [7] two methods were used for the first stage (selection of firms where to invest) purpose: MINORA that
uses interactive UTA algorithms (see [9]) for preference breakup and an outranking method ELECTRE TRI
(see [29]) and finally ADELAIS (see [24]), an interactive method for multiple objectives linear programming is
used for second stage process.

By solving problem (27) with these data and the equal importance assumption for objectives, we find that
the maximum boldness index is qmax = 15.9531. By solving problem (23) we find that for a small index of
boldness q (less than 3), all the firms have the same priority of 1/31 and the following Table III presents the
priority index and the rank for each firm for q = 5, 10 & 15; the numbers in brackets in the rank column
correspond to the rank obtained in [7] where the authors had an initial preferences of a portfolio manager.
We can see that as the index of boldness increase less and less firms have a priority greater than 0 (what is
conform to theory because as the index of boldness increase, the satisficing set tend to empty set) and without
any qualitative knowledge, our approach performs well. By asking an expert portfolio manager to express its
opinion about objectives by doing a pairwise comparison, the results obtained here will be surely improved. The
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portfolio manager may use the approach presented here to select a group of firms (for instance the top X firms)
and then allocate fund proportionally to the priority index within the group.

q 5 10 15

priority rank priority rank priority rank

X01 0.0408 01 (01) 0.1624 02 (01) 0.0000 16 (01)
X02 0.0370 06 (14) 0.1206 05 (14) 0.1073 02 (14)
X03 0.0328 22 (20) 0.0000 21 (20) 0.0000 14 (20)
X04 0.0328 23 (17) 0.0000 25 (17) 0.0000 08 (17)
X05 0.0390 02 (03) 0.1247 04 (03) 0.0000 27 (03)
X06 0.0300 27 (27) 0.0000 13 (27) 0.0000 31 (27)
X07 0.0332 19 (23) 0.0000 27 (23) 0.0000 12 (23)
X08 0.0362 09 (10) 0.0664 07 (10) 0.0000 11 (10)
X09 0.0364 08 (06) 0.0515 09 (06) 0.0000 17 (06)
X10 0.0355 12 (09) 0.0196 10 (09) 0.0000 18 (09)
X11 0.0332 20 (24) 0.0000 31 (24) 0.0000 09 (24)
X12 0.0004 30 (25) 0.0000 27 (25) 0.0000 05 (25)
X13 0.0329 21 (16) 0.0000 26 (16) 0.0000 10 (16)
X14 0.0377 04 (18) 0.1635 01 (18) 0.8927 01 (18)
X15 0.0306 26 (07) 0.0000 15 (07) 0.0000 23 (07)
X16 0.0350 14 (12) 0.0010 12 (12) 0.0000 30 (12)
X17 0.0369 07 (08) 0.0715 06 (08) 0.0000 19 (08)
X18 0.0328 24 (21) 0.0000 22 (21) 0.0000 04 (21)
X19 0.0352 13 (13) 0.0000 18 (13) 0.0000 28 (13)
X20 0.0334 18 (19) 0.0000 26 (19) 0.0000 15 (19)
X21 0.0349 15 (15) 0.0000 20 (15) 0.0000 07 (15)
X22 0.0307 25 (31) 0.0000 23 (31) 0.0000 21 (31)
X23 0.0355 11 (30) 0.0651 08 (30) 0.0000 25 (30)
X24 0.0373 05 (02) 0.0185 11 (02) 0.0000 29 (02)
X25 0.0295 28 (11) 0.0000 30 (11) 0.0000 03 (11)
X26 0.0000 31 (28) 0.0000 28 (28) 0.0000 22 (28)
X27 0.0275 29 (29) 0.0000 14 (29) 0.0000 06 (29)
X28 0.0335 17 (26) 0.0000 29 (26) 0.0000 20 (26)
X29 0.0389 03 (04) 0.1352 03 (04) 0.0000 26 (04)
X30 0.0361 10 (04) 0.0000 19 (04) 0.0000 13 (04)
X31 0.0341 16 (22) 0.0000 24 (22) 0.0000 24 (22)

Table III: Simulation results for portfolio management application

4.2 Power dispatch

Dispatching a demand power load among a number of thermal power generators must be done when paying
attention to some objectives such as fuel cost, emission cost , transmission losses cost as well as risk measured by
the deviation of the generated power around the demand load. Other objectives such as the reliability and/or
the safety of operating as well as economical benefit such as employment must be taken into account. The
problem is specified as follows: a random power demand PD must be satisfy by n thermal power generation
plants when ensuring the following objectives.

• Minimization of the expected fuel cost, objective F ; in general the fuel cost curve Fi of a thermal generator
i is approximated by a quadratic function (see [5]) of generator output power Pi by (32)

Fi = aiP
2

i
+ biPi + ci [$/H] (32)
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where ai, bi and ci are random parameters independent of Pi. The expected value F i of the fuel cost for
the plant i is then given by

F i = aiP
2

i
+ biP i + ci + aivar(Pi) = ai

(
1 + C2

V Pi

)
P
2

i
+ biP i + ci (33)

where CV Pi
is the coefficient of variation of random variable Pi; the expected total fuel cost F is (34)

F =
n∑

i=1

F i = P
T

AP+ b
T

P+ c
T
1 (34)

with

A = diag(ai
(
1 + C2

V Pi

)
), i = 1, 2, ..., n (35)

b =
[
b1 b2 . . bn

]T
, (36)

c =
[
c1 c2 . . cn

]T
, (37)

P =
[
P 1 P2 . . Pn

]T
(38)

where diag(αi), i = 1, 2, ..., n is a n dimensional square diagonal matrix with the coefficients of the
principal diagonal equal to αi.

• Minimization of the expected emission cost (emission of CO2, NOx and SO2), objective E; this cost is
also considered to be a quadratic function of the form (39), see [5]

Ei = diP
2

i + eiPi + fi [Kg/H] (39)

so that the total expected emission cost is given by (40)

E =
n∑

i=1

Ei = P
T

DP+ e
T
P+ f

T
1 (40)

where D, e and f are defined similar to A, b and c respectively.

• Minimization of the expected transmission loss L ; the transmission lost L is in general expressed by a
simple approximate expression using B-coefficient (see [5]) as (41)

L =
n∑

i=1

n∑

j=1

PiBijPj [MW] (41)

where Bij and Pi are independent random variables; the expected transmission loss is given by (42)

L =
n∑

i=1

n∑

j=1

P iBijP j +
n∑

i=1

Biivar(Pi) =
n∑

i=1

n∑

j=1

P iBijP j +
n∑

i=1

BiiC
2

V Pi
P
2

i = P
T
BP (42)

with
B(i, j) = Bij for i �= j and B(i, i) = Bii

(
1 + C2

V Pi

)
. (43)

• Minimization of the expected risk, R is defined as the expected value of the deviation (44)

R = Expected



(
PD + L−

n∑
i=1

Pi

)2
 [MW

2
] (44)

which is reducible (with the balance constraint
∑n

i=1 P i = PD + L) to (45)

R =
n∑
i=1

var(Pi) = P
T
RP with R = daig(C2

V Pi
). (45)
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• The balance constraint
∑n

i=1 P i = PD + L and mini-max constraints P i,min ≤ P i ≤ P i,max define the
admissible set (46)

X =

{
P ∈ R

n
+ :

n∑
i=1

P i = PD + L, P i,min ≤ P i ≤ P i,max

}
. (46)

All the objectives, F, E, L, and R behave in the sense of “smaller is better” so they work in the sense of
rejectability, that is (47)

GR =
{
F, E, L, R

}
. (47)

Most of the published works concerning power dispatch problems consider only these objectives whereas in
practical situation one has to consider also other objectives such as reliability, safety, economical benefit of
operating a plant, ... Let us suppose that one determine a reliability function for each plant i that decrease
exponential with the mean output power P i as (48)

Rei = exp
(
−λiP i

)
(48)

where λi is a positive constant parameter. The overall reliability Re of operating the n plants, is then given by
(49)

Re =

n∏
i=1

Rei = exp

(
−

n∑
i=1

λiP i

)
, (49)

an objective that works in the sense of selectability, that is (50)

GS = {Re} . (50)

In the following paragraph, we consider a practical case of 6 interconnected power generators for simulations
purpose.

4.2.1 Simulation results

Let us consider the case of 6 generators network with the following parameters extracted from [5].

• Fuel cost parameters

A =




0.0050 0 0 0 0 0

0 0.010 0 0 0 0

0 0 0.020 0 0 0

0 0 0 0.003 0 0

0 0 0 0 0.015 0

0 0 0 0 0 0.010



, b =




2.0

2.0

2.0

1.95

1.45

0.95



, c =




100

200

300

80

100

120



. (51)

• Parameters related to emission (of NOx) cost

D = 10−3




0.6573 0 0 0 0 0

0 0.5917 0 0 0 0

0 0 0.4906 0 0 0

0 0 0 0.378 0 0

0 0 0 0 0.4906 0

0 0 0 0 0 0.5174



, e =




−0.05497

−0.05880

−0.05014

−0.03150

−0.05014

−0.05548



, f =




4.111

2.593

4.268

5.526

4.268

6.132



.

(52)
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• Transmission loss parameters

B = 10−2




0.0200 0.0010 0.0015 0.0005 0.0000 0.0030

0.0010 0.0300 −0.0020 0.0001 0.0012 0.0010

0.0015 −0.0020 0.0100 0.0010 0.0010 0.0008

0.0005 0.0001 0.0010 0.0150 0.0006 0.0050

0.0000 0.0012 0.0010 0.0006 0.0250 0.0020

0.0030 0.0010 0.0008 0.0050 0.0020 0.0210



. (53)

Furthermore we consider that λ1 = λ2 = .. = λ6 = λ = 3.72 × 10−4 so that Re is constant and equal to
(54)

Re = exp

(
−

n∑
i=1

λiP i

)
= exp

(
−λ

n∑
i=1

P i

)
= exp

(
−λ

(
PD + L

))
. (54)

The maximum boldness index qmax obtained by solving the optimization problem (27) when considering
all objectives of each category to be with equal importance is given by the following Table IV.

PD + PL qmax

200 [MW] 6.2079

400 [MW] 6.5120

600 [MW] 7.6928

Table IV: Maximum boldness of power dispatch problem
with equal importance objectives

The Table V shows the dispatching results obtained by optimizing different criteria with a boldness index
of 1 (q = 1); notice that as the selectability measure is constant, the maximally discriminant dispatching and
the least rejectable (min µR) dispatching are equivalent.

PD + PL 200 [MW] 400 [MW] 600 [MW]

min F min E min µR min F min E min µR min F min E min µR
P 1 36.44 33.33 33.33 66.67 66.67 66.67 100 100 100

P 2 25.14 33.33 33.33 66.67 66.67 66.67 100 100 100

P 3 2.52 33.33 33.33 66.67 66.67 66.67 100 100 100

P 4 42.66 33.33 33.33 66.67 66.67 66.67 100 100 100

P 5 32.48 33.33 33.33 66.67 66.67 66.67 100 100 100

P 6 60.76 33.33 33.34 66.67 66.67 66.67 100 100 100

F 1287.5 1315 1315 1870 1870 1870 2565.1 2565.1 2565.1

E 21.31 20.34 20.34 20.72 20.72 20.72 28.05 28.05 28.05

L 2.35 1.72 1.72 6.86 6.86 6.86 15.44 15.44 15.44

R 0.85 0.67 0.67 2.67 2.67 2.67 6.00 6.00 6.00

Table V: Results of dispatching for different criteria and q = 1

In the paper [5], the surrogate worth trade-off algorithm was used and the results obtained in terms of
principal objectives (fuel cost, emission cost, transmission loss and risk) are globally less than those obtained
here.

Let us suppose now that the fuel cost is considered to be Extremely more important than transmission loss
and risk (deviation) costs and moderately more important than emission cost. In terms of AHP analysis we
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obtain the following pairwise comparison matrixWR and the corresponding weights vector ωR (55)

WR =




F E L R
F 1 3 9 9

E 1/3 1 3 3

L 1/9 1/3 1 1

R 1/9 1/3 1 1




and ωR =




0.6429
0.2143
0.0714
0.0714


 . (55)

In this case the maximum boldness index qmax is given by the following Table VI.

PD + PL qmax

200 [MW] 14.4774
400 [MW] 16.0433
600 [MW] 17.0373

Table VI: Maximum boldness of power dispatch problem
with weight vector ωR

and the corresponding dispatching results with q = 1 are given on the Table VII.

PD + PL 200 [MW] 400 [MW] 600 [MW]

min F min E min µ
R

min F min E min µ
R

min F min E min µ
R

P 1 36.44 33.33 35.41 82.25 66.67 79.21 100 100 100

P 2 25.13 33.33 25.47 59.58 66.67 57.66 100 100 100

P 3 2.52 33.33 11.96 14.26 66.67 27.29 100 100 100

P 4 42.66 33.33 41.10 93.02 66.67 91.64 100 100 100

P 5 32.48 33.33 31.71 55.62 66.67 55.27 100 100 100

P 6 60.76 33.33 54.35 95.28 66.67 88.93 100 100 100

F 1287.5 1315 1288.8 1801.30 1870 1801.3 2565.1 2565.1 2565.1
E 21.31 20.34 20.89 23.29 20.72 22.41 28.05 28.05 28.05
L 2.35 1.72 2.12 8.49 6.86 7.98 15.44 15.44 15.44
R 0.85 0.67 0.77 3.13 2.67 2.97 6.00 6.00 6.00

Table V: Results of dispatching for different criteria with weight vector ωR and q = 1

Once again, we obtain globally better results in terms of principal objectives than those of [5].

5 Conclusion

The problem of setting priority, dispatching load or resource for a group of alternatives that are characterized
by multiple objectives or attributes in presence of different actors that do not have the same opinion regarding
the importance of objectives has been considered in this paper. The main modeling idea of this problem rely
on two procedures. First, a distinction is made among objectives in terms of objectives that behave as “larger
is better” and those behaving in the sense of “smaller is better” with regard to the overall goal and actors or
stakeholders are asked to do a pairwise comparison of each group of objectives, using the analytic hierarchy
process approach, to obtain some relative weights. In a second stage, the obtained weights and the objectives
performance interpreted as utilities are combined to define two measures: the selectability measure related to
“larger is better” objectives and the rejectability measure with regard to “smaller is better” objectives in the
framework of satisficing game theory. The settings, assignments or dispatching arguable to be satisficing or
“good enough” are those for which the selectability measure exceeds the rejectability measure times a boldness
index that is used to adjust the size of satisficing set. The final assignment or dispatching can be selected
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by optimizing an extra criteria subjected to satisfiability. The application of this approach to two real world
problems show its potentiality ; the Matlab files used for this purpose are given at the end of the paper as
annex.
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6 Annex: Matlab files for the applications considered in the paper

The following paragraphs contain the Matlab files of the two applications problems considered in this paper
that can be modified for a personal usage. To modify these files one needs to be familiar with Matlab software
and its Optimization Toolbox.

6.1 Matlab Files for Portfolio Management Example

This paragraph contains the material related to the portfolio priority setting problem that can be executed
using Matlab with Optimization Toolbox. There are 3 M_files and 3 Functions.

6.1.1 M_files

• data: this file contains all data related to portfolio problem. Any interested user can modify parameters
of this file for custom use.

CurrentRatio = [1.23 1.36 0.85 0.97 1.63 0.72 0.89 1.1 1.31 1.57 0.82 1.28 1.58 1.41 1.07 1.1 2.6 1.06
1.43 1.04 1.87 0.68 0.64 2.48 1.91 0.43 0.44 0.74 2.88 2.31 0.85] ;

ROE = [0.147 0.098 0.141 0.118 0.23 0.241 0.163 0.212 0.202 0.137 0.171 0.177 0.216 0.186 0.181 0.177
0.164 0.114 0.299 0.064 0.104 -0.57 0.15 0.15 0.066 0.112 0.075 0.025 0.172 0.163 0.152] ;

CFLOW = [4.91 0.74 0.19 0.69 0.26 0.64 0.52 0.88 1.72 0.58 0.88 0.31 0.32 0.24 0.19 1.01 0.51 0.34
1.66 0.71 0.31 0.96 0.23 9.41 4.87 0.82 1.36 2.99 3.67 0.62 1.31] ;

EPS = [9538 518 600 328 10762 105 68 1312 2335 1018 639 86 217 168 2651 859 25 212 294 168 235
-88 316 371 127 176 139 125 1485 3155 687] ;

INVPER = [1.235 -0.124 0.031 0.044 0.086 0.019 0.048 0.134 0.106 0.074 0.051 0.437 0.033 -0.045 0.017
0.09 0.076 0.052 0.052 0.055 0.061 0.419 -1.709 0.073 0.018 0.003 0.04 0.075 0.099 0.048 0.081] ;

PER = 1./INVPER ;

BetaMoinsUn = [0.3 0.106 0.013 0.158 0.066 0.101 0.07 0.031 0.097 0.079 0.156 5.74 0.131 0.205 0.017
0.14 0.002 0.176 0.09 0.084 0.059 0.288 0.064 0.35 0.417 0.656 0.808 0.192 0.016 0.207 0.172] ;

Rend = [0.095 0.011 0.019 0.009 0.024 0.01 -0.002 0.013 0.012 0.018 0.003 0.11 -0.001 -0.001 0.007
0.017 0.005 -0.001 0.01 0.001 0.002 -0.015 0.011 0.005 -0.006 0.005 0.008 0.002 0.004 0.042 0.01];

Gs = [CurrentRatio’ ROE’ CFLOW’ EPS’ Rend’] ; [ns,ms] = size(Gs) ; [n, m] =size(Gs) ;

Gr = [BetaMoinsUn’ PER’] ; [nr,mr] = size(Gr) ;

ws = ones(1,ms)/sum(ones(1,ms)) ; wr = ones(1,mr)/sum(ones(1,mr)) ; % weights that must be defined
by the user.

q = index of boldness used ;

• Qmax: this file use the Matlab function fmincon and the user defined function QmaxFun to compute the
maximum boldness index.

data ;

A = [] ; b = []; Aeq = ones(1,n) ; beq = 1; Xmin = zeros(n,1) ; Xmax = ones(n,1) ; X0 = zeros(n,1) ;

[prio,qmin] = fmincon(’QmaxFun’, X0,A,b,Aeq,beq,Xmin,Xmax,[]) ; qmax = 1/qmin ;

• dispatch: this file computes the priority for a desired boldness index given in the data file.

data ;

A = [] ; b = [] ; Aeq = ones(1,n) ; beq = 1 ; Xmin = zeros(n,1) ; Xmax = ones(n,1) ; X0 = zeros(n,1);

prio = fmincon(’DispatchFun’, X0,A,b,Aeq,beq,Xmin,Xmax,’SatConstr’) ; [X, I] = sort(-prio) ;
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6.1.2 Functions

• QmaxFun: this function defines the objective to minimize to obtain the maximum boldness index.

function [q] = QmaxFun(x)

data ; A = [] ; b = [] ; Aeq = ones(1,n) ; beq = 1 ; Xmin = zeros(n,1) ; Xmax = ones(n,1) ;

% Determination of maximum and minimum value of each objective function for normalization purpose

for j=1:ms

x1 = linprog(-Gs(:,j), A,b, Aeq, beq, Xmin, Xmax) ; Gsmax(1,j) = Gs(:,j)’*x1 ;

x2 = linprog(Gs(:,j), A,b, Aeq, beq, Xmin, Xmax) ;

Gsmin(1,j) = Gs(:,j)’*x2 ;

end

for j=1:mr

x1 = linprog(-Gr(:,j), A,b, Aeq, beq, Xmin, Xmax) ; Grmax(1,j) = Gr(:,j)’*x1 ;

x2 = linprog(Gr(:,j), A,b, Aeq, beq, Xmin, Xmax) ;

Grmin(1,j) = Gr(:,j)’*x2 ;

end

% Normalized objective functions

for j=1:ms

fs(j,1) = (Gs(:,j)’*x - Gsmin(1,j))/(Gsmax(1,j)-Gsmin(1,j)) ;

end

for j=1:mr

fr(j,1) = (Gr(:,j)’*x - Grmin(1,j))/(Grmax(1,j)-Grmin(1,j)) ;

end

% Definition of the function to be minimized

q = (wr*fr)/(ws*fs) ;

• SatConstr: this function defines the constraint of equation (23). This function is similar to QmaxFun;
only the ouputs change.

function [C,Ceq] = satconstr (x)

data ; A = [] ; b = [] ; Aeq = ones(1,n) ; beq = 1 ; Xmin = zeros(n,1) ; Xmax = ones(n,1) ;

for j=1:ms

x1 = linprog(-Gs(:,j), A,b, Aeq, beq, Xmin, Xmax) ; Gsmax(1,j) = Gs(:,j)’*x1 ;

x2 = linprog(Gs(:,j), A,b, Aeq, beq, Xmin, Xmax) ;

Gsmin(1,j) = Gs(:,j)’*x2 ;

end

for j=1:mr

x1 = linprog(-Gr(:,j), A,b, Aeq, beq, Xmin, Xmax) ; Grmax(1,j) = Gr(:,j)’*x1 ;

x2 = linprog(Gr(:,j), A,b, Aeq, beq, Xmin, Xmax) ;

Grmin(1,j) = Gr(:,j)’*x2 ;

end

for j=1:ms

fs(j,1) = (Gs(:,j)’*x - Gsmin(1,j))/(Gsmax(1,j)-Gsmin(1,j)) ;
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end

for j=1:mr

fr(j,1) = (Gr(:,j)’*x - Grmin(1,j))/(Grmax(1,j)-Grmin(1,j)) ;

end

C = q*wr*fr - ws*fs ; Ceq = [] ;

• DispatchFun: this function defines the objective the user wants to optimize, the user can modify this
function (mainly the last line) to set up its own objective. By default this function does not optimize a
criterion (F = 0). Remove comments % and change the last line to define a particular criterion function.

function [F] =DispatchFun(x)

% data ; A = [] ; b = [] ; Aeq = ones(1,n) ; beq = 1 ; Xmin = zeros(n,1) ; Xmax = ones(n,1) ;

%for j=1:ms

% x1 = linprog(-Gs(:,j), A,b, Aeq, beq, Xmin, Xmax) ; Gsmax(1,j) = Gs(:,j)’*x1 ;

x2 = linprog(Gs(:,j), A,b, Aeq, beq, Xmin, Xmax) ;

%Gsmin(1,j) = Gs(:,j)’*x2 ;

%end

% for j=1:mr

% x1 = linprog(-Gr(:,j), A,b, Aeq, beq, Xmin, Xmax) ; Grmax(1,j) = Gr(:,j)’*x1 ;

x2 = linprog(Gr(:,j), A,b, Aeq, beq, Xmin, Xmax) ;

%Grmin(1,j) = Gr(:,j)’*x2 ;

%end

%for j=1:ms

% fs(j,1) = (Gs(:,j)’*x - Gsmin(1,j))/(Gsmax(1,j)-Gsmin(1,j)) ;

%end

%for j=1:mr

% fr(j,1) = (Gr(:,j)’*x - Grmin(1,j))/(Grmax(1,j)-Grmin(1,j)) ;

%end

F = 0 ; % q*wr*fr - ws*fs ; wr*fr ; -ws*fs ; .....

6.2 Matlab Files for Power Dispatching Example

This paragraph contains the material related to the power dispatching problem that can be executed using
Matlab with Optimization Toolbox. There are 3 M_files and 3 Functions.

6.2.1 M_files

• data: this file contains all data related to power dispatch problem. Any interested user can modify
parameters of this file for custom use.

CV = 0.01 ; % Coefficient of variation

A1 = [0.005 0 0 0 0 0 ; 0 0.010 0 0 0 0 ; 0 0 0.020 0 0 0 ; 0 0 0 0.003 0 0 ; 0 0 0 0 0.015 0 ; 0 0 0 0 0
0.010] ;

n = length(A1) ; A = A1 + CV^2*A1 ;

b = [2.0 2.0 2.0 1.95 1.45 0.95]’ ; c = [100 200 300 80 100 120]’ ;

D1 = 10^(-3)*[0.6572 0 0 0 0 0 ; 0 0.5916 0 0 0 0 ; 0 0 0.4906 0 0 0 ; 0 0 0 0.378 0 0 ; 0 0 0 0 0.4906
0 ; 0 0 0 0 0 0.5173] ;
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D = D1 + CV^2*D1 ;

e = [-0.05497 -0.05880 -0.05014 -0.03150 -0.05014 -0.05548]’ ;

f = [4.111 2.593 4.268 5.526 4.268 6.132]’ ;

B1=10^(-2)*[0.0200 0.0010 0.0015 0.0005 0.0000 0.0030 ; 0.0010 0.0300 -0.0020 0.0001 0.0012 0.0010 ;
0.0015 -0.0020 0.0100 0.0010 0.0010 0.0008 ; 0.0005 0.0001 0.0010 0.0150 0.0006 0.0050 ; 0.0000 0.0012
0.0010 0.0006 0.0250 0.0020 ; 0.0030 0.0010 0.0008 0.0050 0.0020 0.0210] ;

for i = 1:length(B1)

for j = 1:length(B1)

if i==j

B(i,j) = (1+CV^2)*B1(i,i) ;

else

B(i,j) = B1(i,j) ;

end

end

end

R = diag(ones(1,n))*CV^2 ; PD = 200 ; % power demand to be supplied by the user

PL = 0 ; % average loss to be supplied by the user

lambda = -log(0.8)/600 ; % parameter defined in equation (48) of the corresponding paper to be supplied
by the user

Relmax = exp(-lambda*(PD+PL)) ; Relmin = 0 ; q = 1 ; % boldness index to be supplied by the user

OmegaS = 1 ; % weights to be supplied by the user

OmegaR = ones(4,1)/sum(ones(4,1)) ; % [0.6429 0.2143 0.0714 0.0714]’, weights to be supplied by the
user

• Qmax: this file use the Matlab function fmincon and the user defined function QmaxFun to compute the
maximum boldness index.

data ;

[P, qmin] = fmincon(’QmaxFun’, zeros(n, 1), [], [], ones(1,n), PD+PL, zeros(n,1), Inf*ones(n,1), []) ;
qmax = 1/qmin ;

• dispatch: this file computes the dispatching and its related cost when one supply the desired boldness
index in the data file.

data ;

P = fmincon(’dispatchfun’, zeros(n, 1), [], [], ones(1,n), PD+PL, zeros(n,1), Inf*ones(n,1), ’dispatchcon-
str’) ;

F = P’*A*P + b’*P + ones(1,n)*c ; E = P’*D*P + e’*P + ones(1,n)*f ; L = P’*B*P ; R = P’*R*P ;

Constr = dispatchconstr(P) ;

6.2.2 Functions

• QmaxFun: this function defines the objective to minimize to obtain the maximum boldness index.

function [q] = QmaxFun(x)

data ;

% Determination of maximum and minimum value of each objective function for normalization purpose

[PFmax,Fmax] = quadprog(-2*A, -b, [],[],ones(1,n),PD+PL,zeros(n,1),Inf*ones(n,1)) ;
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Fmax = -Fmax ;

[PFmin,Fmin] = quadprog(2*A, b, [],[],ones(1,n),PD+PL,zeros(n,1),Inf*ones(n,1)) ;

[PEmax,Emax] = quadprog(-2*D, -e, [],[],ones(1,n),PD+PL,zeros(n,1),Inf*ones(n,1)) ;

Emax = -Emax ;

[PEmin,Emin] = quadprog(2*D, e, [],[],ones(1,n),PD+PL,zeros(n,1),Inf*ones(n,1)) ;

[Plmax,Lmax] = quadprog(-B, zeros(n,1), [],[],ones(1,n),PD+PL,zeros(n,1),Inf*ones(n,1)) ;

Lmax = -Lmax ;

[Plmin,Lmin] = quadprog(B, zeros(n,1), [],[],ones(1,n),PD+PL,zeros(n,1),Inf*ones(n,1)) ;

[PRmax,Rmax] = quadprog(-R, zeros(n,1), [],[],ones(1,n),PD+PL,zeros(n,1),Inf*ones(n,1)) ;

Rmax = -Rmax ;

[PRmin,Rmin] = quadprog(R, zeros(n,1), [],[],ones(1,n),PD+PL,zeros(n,1),Inf*ones(n,1)) ;

Relmax = exp(-lambda*(PD+PL)) ; Relmin = 0 ;

% Normalized objective functions

gS = (exp(-lambda*ones(1,n)*x)-Relmin)/(Relmax-Relmin) ; % related to selectability measure

f = OmegaR(1,1)*((x’*A*x+b’*x - Fmin)/(Fmax - Fmin)) ;

e = OmegaR(2,1)*((x’*D*x+e’*x - Emin)/(Emax - Emin)) ;

l = OmegaR(3,1)*((x’*B*x - Lmin)/(Lmax - Lmin)) ;

r = OmegaR(4,1)*((x’*R*x - Rmin)/(Rmax - Rmin)) ;

gR = f + e + l + r ; % related to selectability measure

% Definition of the function to be minimized

q = gR/gS ; % minimizing gR/gS is equivalent to maximizing gS/gR

• dispatchconstr: this function defines the nonlinear constraint of equation (23) of the above paper. This
function is similar to QmaxFun ; only the ouputs change.

function [C,Ceq] = dispatchconstr(x)

data ;

[PFmax,Fmax] = quadprog(-2*A, -b, [],[],ones(1,n),PD+PL,zeros(n,1),Inf*ones(n,1)) ;

Fmax = -Fmax ;

[PFmin,Fmin] = quadprog(2*A, b, [],[],ones(1,n),PD+PL,zeros(n,1),Inf*ones(n,1)) ;

[PEmax,Emax] = quadprog(-2*D, -e, [],[],ones(1,n),PD+PL,zeros(n,1),Inf*ones(n,1)) ;

Emax = -Emax ;

[PEmin,Emin] = quadprog(2*D, e, [],[],ones(1,n),PD+PL,zeros(n,1),Inf*ones(n,1)) ;

[Plmax,Lmax] = quadprog(-B, zeros(n,1), [],[],ones(1,n),PD+PL,zeros(n,1),Inf*ones(n,1)) ;

Lmax = -Lmax ;

[Plmin,Lmin] = quadprog(B, zeros(n,1), [],[],ones(1,n),PD+PL,zeros(n,1),Inf*ones(n,1)) ;

[PRmax,Rmax] = quadprog(-R, zeros(n,1), [],[],ones(1,n),PD+PL,zeros(n,1),Inf*ones(n,1)) ;

Rmax = -Rmax ;

[PRmin,Rmin] = quadprog(R, zeros(n,1), [],[],ones(1,n),PD+PL,zeros(n,1),Inf*ones(n,1)) ;

Relmax = exp(-lambda*(PD+PL)) ; Relmin = 0 ;

gS = (exp(-lambda*ones(1,n)*x)-Relmin)/(Relmax-Relmin) ;

f = OmegaR(1,1)*((x’*A*x+b’*x - Fmin)/(Fmax - Fmin)) ;
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e = OmegaR(2,1)*((x’*D*x+e’*x - Emin)/(Emax - Emin)) ;

l = OmegaR(3,1)*((x’*B*x - Lmin)/(Lmax - Lmin)) ;

r = OmegaR(4,1)*((x’*R*x - Rmin)/(Rmax - Rmin)) ;

gR = f + e + l + r ;

C = q*gR-gS ; Ceq = [] ;

• dispatchfun: this function defines the objective the user wants to optimize, the user can modify this
function to set up. This function is similar to QmaxFun ; only the ouputs change.

function [F] = dispatchconstr(x)

data ;

[PFmax,Fmax] = quadprog(-2*A, -b, [],[],ones(1,n),PD+PL,zeros(n,1),Inf*ones(n,1)) ;

Fmax = -Fmax ;

[PFmin,Fmin] = quadprog(2*A, b, [],[],ones(1,n),PD+PL,zeros(n,1),Inf*ones(n,1)) ;

[PEmax,Emax] = quadprog(-2*D, -e, [],[],ones(1,n),PD+PL,zeros(n,1),Inf*ones(n,1)) ;

Emax = -Emax ;

[PEmin,Emin] = quadprog(2*D, e, [],[],ones(1,n),PD+PL,zeros(n,1),Inf*ones(n,1)) ;

[Plmax,Lmax] = quadprog(-B, zeros(n,1), [],[],ones(1,n),PD+PL,zeros(n,1),Inf*ones(n,1)) ;

Lmax = -Lmax ;

[Plmin,Lmin] = quadprog(B, zeros(n,1), [],[],ones(1,n),PD+PL,zeros(n,1),Inf*ones(n,1)) ;

[PRmax,Rmax] = quadprog(-R, zeros(n,1), [],[],ones(1,n),PD+PL,zeros(n,1),Inf*ones(n,1)) ;

Rmax = -Rmax ;

[PRmin,Rmin] = quadprog(R, zeros(n,1), [],[],ones(1,n),PD+PL,zeros(n,1),Inf*ones(n,1)) ;

Relmax = exp(-lambda*(PD+PL)) ; Relmin = 0 ;

gS = (exp(-lambda*ones(1,n)*x)-Relmin)/(Relmax-Relmin) ;

f = OmegaR(1,1)*((x’*A*x+b’*x - Fmin)/(Fmax - Fmin)) ;

e = OmegaR(2,1)*((x’*D*x+e’*x - Emin)/(Emax - Emin)) ;

l = OmegaR(3,1)*((x’*B*x - Lmin)/(Lmax - Lmin)) ;

r = OmegaR(4,1)*((x’*R*x - Rmin)/(Rmax - Rmin)) ;

gR = f + e + l + r ;

F = f ; %gR ; % -gS ; %1/gS ; %q*gR-gS ; f ; e ; l ; r
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