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Abstract: The three-dimensional Fermat-Weber facility location problem with Tchebychev 

distances is investigated. Expanding on previous research for the analogous two-dimensional 

problem, this study presents a new algorithm for solving the elusive three-dimensional case. The 

algorithm presented herein finds near optimal solutions in practical computational times. Some 

experimental results are also conveyed. 
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1. INTRODUCTION 

Single facility location problems in continuous space were among the first location problems to be 

investigated [Wesolowsky, 1993]. Location problems occur often in real life whether it is locating a 

machine in a machine shop or locating a new distribution center on a supply chain network with respect to 

existing destinations. There exist several well-known and often exact techniques to solve various 

instantiations of the single facility minisum location problem. To wit, however, very few have studied 

location problems with Tchebychev distances. Herein, after a brief literature review of related works, we 
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present an algorithm that finds near optimal solutions for the three-dimensional Fermat-Weber location 

problem with Tchebychev distances. 

One of the basic parameters in continuous location modeling is the distance metric. The most common 

distance metrics in continuous space are those known as the class of lp distance metrics as shown in 

equation 1 for n dimensional space: 
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where the Xi‘s are the coordinates of the existing facilities and Xa is the n dimensional vector location of 

the new facility. Note for p = 1, l1 represents the rectilinear, or Manhattan, distance metric, for p = 2, l2 is 

the Euclidean, or straight-line, distance metric, and for p = ∞, l∞ is known as the Tchebychev distance 

metric. The Tchebychev distance metric in three dimensions can be written as:  

 ( )aiaiai zzyyxxMaxl −−−=∞ ,,  …(2) 

As noted above, the Tchebychev distance metric is not widely used in location problems. However, there 

exist some specific applications in automated warehouses for which it proves to be very useful. This rest 

of this treatise is organized as follows. First, a literature review specifically on the use of Tchebychev 

distances in location modeling and closely related is presented. Then, a formal problem definition and our 

algorithm are both delineated. A modest conclusion section ends this research note. 

2. LITERATURE REVIEW AND BACKGROUND 

Tchebychev distances have wide ranging and varied applications in the fields of material handling 

systems operations, CNC tool path planning, and manufacturing in general. Given below are some 

citations of how the Tchebychev metric has been studied in different situations.  

Francis, McGinnis and White [Francis, McGinnis and White, 1992] depict a technique in which a two-

dimensional Tchebychev space can be converted to rectilinear space. Therein, the authors solve the two-
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dimensional minimax location problem with Tchebychev distances. They detail the relationship between 

rectilinear and Tchebychev distances, with the help of the diamond-covering problem with its center at the 

origin. This diamond is rotated about the z-axis by 45 degrees to form a square with its center at the 

origin. Thus the corresponding points in are obtained using the following conversion equation. 
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The inverse transformation can be found by: 
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By using these transformations, it was found that the rectilinear distance between any two vertices of the 

diamond was the same as the Tchebychev distance between any two vertices of the square. These same 

transformations extended to three dimensions play an integral role in our algorithm below. 

Hwang and Lim [1993] described the problem of selecting a dwell point location for a server when it is 

idle in an automated storage and retrieval system. This problem is converted to one of locating a single 

facility with Tchebychev distances and the Tchebychev minimax location problem. Two known models 

are altered and converted to algorithms.  

Gass and Witzgall [2004] used linear programming techniques to approximate the Tchebychev Minimax 

Criterion that is utilized in finding a circle that is the closest to a given set of points. This is useful in 

problems in location theory and also in the quality control of shapes such as drilled holes, spheres, etc. 

Laporte, Lopes, and Soumis [1998] developed tool and strip sequencing policies for manufacturing 

applications using both the Manhattan and the Tchebychev metrics.  

Bozer, Schorn and Sharp [1990] analyze the performance of different geometric techniques that are used 

to solve the Chebychev Traveling Salesman Problem (CTSP) and also introduce a new heuristic called the 
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band insertion heuristic for the same. The band insertion technique is also compared with existing 

techniques. The CTSP has a large number of applications in material handling systems.  

Gaboune, Laporte, and Soumis [1993] derived expected distances between uniformly distributed points 

between pairs of co-planar rectangles as well as between pairs of rectangular parallelepipeds using three 

distance metrics: the rectilinear, the Euclidean, and the Tchebychev metric. Their claim of being the first 

to report l∞ expected distances in two dimensions is countered by Bozer and White [Bozer and White, 

1984]. However, their three-dimensional work on expected distances in l∞ is ingenious. Peters, Smith, and 

Hale [1996] determined where the server for an automated storage and retrieval (AS/RS) system should 

remain when idle such that the time taken for the next operation is minimized. Their two-dimensional 

location model uses a continuous approximation of discrete locations and incorporates the Tchebychev 

distance metric.  

3. PROBLEM DEFINITION 

The problem under investigation is the Fermat-Weber single facility location problem in ℜ3 with 

Tchebychev distances. One technique to solve location problems with Tchebychev distances is to search 

the entire feasible region formed by the extreme points of the existing facilities. This search technique is 

obviously a brute force technique, which involves iteratively evaluating all the integer coordinates within 

the feasible region as possible candidates for the optimal location of the new facility. Furthermore, in 

three-dimensional Tchebychev space, due to the maximum function inherent to the metric, the feasible 

region is the minimum rectangular parallelepiped that encloses the maximum coordinate-wise distances 

between pairs of the existing facilities, which enlarges the solution space significantly. We will refer to 

the dimensions of this rectangular parallelepiped as the coordinate-wise extents of the feasible region. 

Consider five coordinates in Cartesian space: (12114, 5122, 8981), (3226, 18789, 10455), (1840, 2564, 

19314), (9656, 22742, 1257), and (20346, 4910, 1127). The coordinate-wise extents for this points are 
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{1840 ≤ x ≤ 20346}, {2564 ≤ y ≤ 22742}, and {1127 ≤ z ≤ 19314} yielding (18506 * 20178 * 18187) = 

6,791,281,654,716 candidate integer locations. Obviously, brute force techniques have limits. 

Hence, based on the two dimensional work by Francis, McGinnis and White [Francis, McGinnis, and 

White, 1992], a three dimensional rotational algorithm was developed which finds near optimal (or, in 

some cases, provably optimal) locations quickly. The locations found by this new algorithm are often sub-

optimal, but the savings with respect to solution time makes it a practical solution. Furthermore, the 

relative difference between the solutions obtained herein and the optimal solutions are small (all less than 

5% and most less than 2% for the various example problems below). 

4. METHODOLOGY AND EXAMPLES 

The algorithm delineated below is an extension of the technique presented by Francis, McGinnis and 

White [1992] to accommodate the analogous three-dimensional minisum single facility location problem. 

The three-dimensional rotational algorithm is presented below. 

A rotational algorithm for the 3-D Fermat-Weber location problem 

1.  Each of the coordinate locations representing the existing facilities is rotated 45 
degrees about all three Cartesian axes using all possible combinations. There are 
total of fifteen unique possible combinations/orders to rotate the existing facility 
locations (see the rotation matrices in the Appendix) into rectilinear space. 

2.  Each of these fifteen sets of new points are then used to find the optimal location of 
the new facility using rectilinear distances for which a simple and exact heuristic is 
known. This exercise results in fifteen candidate locations. 

3.  These fifteen candidate locations are then rotated back into the original Tchebychev 
space via the corresponding inverse matrix in the Appendix. 

4.  Objective function values for the fifteen candidate locations are then calculated. The 
location(s) that result in the smallest objective function value is(are) chosen. 

Both the brute force technique and the three-dimensional rotational algorithm described herein were coded into 

VisualBasic© for evaluation and comparison. The program reads in values from an accompanying Excel© 

sheet and then executes the brute force technique as well as the rotational algorithm methodology described 

herein. It also tracks the time needed to solve each method as part of a comparison of how effective the 

rotational algorithm is in finding practical solutions. 
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Given below in tabular form are three synthetic examples, each with varying number of existing facilities 

and varying ranges of coordinate wise extents.  

Table 1. Example Problems (P4, 1.80 GHz, 752 MB RAM) 

 Example 1 Example 2 Example 3 
No. of existing facilities:  60 120 700 
Extent of coordinates: 1 to 101 1 to 300 1 to 300 
Brute force time: 82 seconds 4534 seconds  30065 seconds 
Rotational algorithm time: 15 seconds 12 seconds 86 seconds 
Brute force location:  (52, 53, 52) (159, 154, 148) (153, 148, 150) 
Rotational algorithm location:  (52, 54, 52) (156.5, 148.9, 141.8) (153.1, 145.4, 148.4) 
Percent error (x%, y%, z%): (0, 1.89, 0) (1.56, 3.30, 4.13) (0.10, 1.70, 0.10) 

A fourth example problem was tried with 1000 existing facility locations and coordinate-wise extents of 

500 in all three dimensions. The brute force program ran for two days without finding a solution.  The 

rotational algorithm found a solution within four minutes.  

5. CONCLUSIONS 

An algorithm to solve the three dimensional Fermat-Weber problem with Tchebychev distances was 

developed utilizing coordinate system conversions.  Example problems were then compared with 

searching the entire solution space.  The algorithm presented herein produced significant savings in 

computational time with near optimal solutions.  
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APPENDIX 

Rotation Matrices   

Rotate about X Inverse rotate about X 

1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

0.0000 0.7071 -0.7071 0.0000 0.7071 0.7071 

0.0000 0.7071 0.7071 0.0000 -0.7071 0.7071 

    

Rotate about Y Inverse rotate about Y 

0.7071 0.0000 0.7071 0.7071 0.0000 -0.7071 

0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 

-0.7071 0.0000 0.7071 0.7071 0.0000 0.7071 

    

Rotate about Z Inverse rotate about Z 

0.7071 -0.7071 0.0000 0.7071 0.7071 0.0000 

0.7071 0.7071 0.0000 -0.7071 0.7071 0.0000 

0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 

 


