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Abstract: In this paper we first considered a maximum likelihood estimation of trip distribution 
problem and next use primal-dual geometric programming method the said trip distribution problem 
converted into an entropy maximization trip distribution problem. Here the generalized cost function is 
assumed in different form, and then the said formulation is equivalent to single or multi-objective 
entropy maximization trip distribution problem. We use fuzzy mathematical programming method to 
show this equivalent problem formulation. The present article we use the concept of multi-objective 
trip distribution problem. 
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1.  Introduction:  
           Entropy models are emerging as valuable tools in the study of various social and engineering 
problems of spatial interaction. In the study of trip distribution problems or more precisely spatial 
interaction problems the researcher is often confronted with phenomena, which are a pairing of two 
locations. These pairing may be, for example, home and business location for a worker, home and 
school location for a student, home and shopping center locations for a housewife, warehouse and retail 
shops for a company, origin and destination of a central business district of a transport system etc. In 
general while we may have some idea about the number of people who live, work, go to school or shop 
in a various locations it is very difficult to acquired information on the pairing of locations caused by 
the various social transactions. Because there is many such pairing, which is compatible with the data 
generally, available it makes sense to choose the most probable set of pairings. This is the ‘Principle of 
Insufficient Reason’ of Laplace and the resulting problem is the maximization of entropy with respect 
to the available information’s or data.  
The maximum-entropy principle initiated by Jaynes’(1957) is a powerful optimization technique of 
determining the distribution of random system in the case of partial or incomplete information or data 
available about the system. This principle has now been broadened and extended and has found wide 
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applications in different fields of science and technology [Wilson(1970); Templeman and Li (1989); 
Kapur (1992, 1993)] . 
 In conventional mathematical programming, the coefficient or parameters of trip distribution 
problems are assumed to be deterministic and fixed. But, there are many situations where they may not 
be exactly known i.e., they may be somewhat uncertain in nature. Thus the decision-making methods 
under uncertainty are needed. The fuzzy programmings have been proposed from this viewpoint. In 
Fuzzy programming problems, the coefficients, constraints and the goals are viewed as fuzzy number 
or Fuzzy sets. It is also assume that their membership functions are known. In decision-making proces, 
first Bellman and Zadeh (1965) introduced fuzzy set theory. Tanaka et al. (1974) applied the concepts 
of fuzzy sets to decisions making problems by considering the objectives as fuzzy goals and 
Zimmermann (1978) showed the classical algorithms could be used to solve multi-objective fuzzy 
linear programming problems. The non-linear optimization problems have been solved by various non-
linear optimization techniques. Among those techniques, geometric programming (GP) is an efficient 
and effective method to solve a particular type of non-linear problems. Duffin,Peterson and Zener 
(1967) , Braighter and Philips(1976) developed geometric programming to solve a class of  problems 
called Posynomial problems. 
    This paper deals with two-type formulation of entropy trip distribution problem from maximum 
likelihood estimation of trip distribution problem. Here use fuzzy mathematical programming we are to 
show multi-objective entropy trip distribution problem, which is equivalent, the said formulation of the 
trip distribution problem. 
 
2. Geometric Programming method: 
 
        The constrained Posynomial  Geometric Programming (PGP) problem is as follows: 
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                        tj >0, ( j =1,2,….,m ). 
Here ck>0, ( k=1,2,..,T0 ) and αkj be any real number and Ti denotes the number of terms in the i-th 
constraints.                                                                                       
It is an constrained posynomial geometric programming problem with Degree of Difficulty (DD)=T0+{ 
T1 +T2 +……+Tn } - (m+1). 
Dual Programming (DP) problem is: 
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For a primal problem with m variables, T0+{ T1 +T2 +……+Tn } terms and n constraints, the dual 
problem consists of T0+{ T1 +T2 +……+Tn } variables and m+1 constraints. The relationship between 
these problems, the optimality has been shown ( Duffin et. al.(1967) )to satisfy 
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Taking logarithms in (4) &(5), and putting xj (=log tj) for j =1,2,...,n we shall get a system of linear 
equations of xj ( j =1,2,..,n ). We can easily find primal variables from the system of linear equations. 
In the next section we shall apply this method to the trip distribution model. 
 
3. Derivation of Entropy based Trip distribution model from maximum likelihood estimations: 
 
      Let pij represent the probability of a trip from zone i  to zone j. It is assumed that this probability takes 
the following form: 
      m......,1,2,......j  n,..,1,2,......i      )( === ijjiij cfsrp                             (6) 
where ri is a parameter representing the ability of zone i to generate trips; sj is a parameter representing 
the ability of zone j to attracts trips; f(cij) is a decreasing function of cij, the unit cost of travel between i 
and j; n , m are number of origins and destinations respectively. The problem is to estimate ri, sj and 
parameters associated with f(cij) based on a sample of observed trips. 
Let xij be the number of observed trips between zones i and j. Assuming that the pij ‘s are independent, the 
likelihood function given this set of observations is  
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According to the principle of maximum likelihood, the best estimates for the parameters of pij can be 
obtained by maximizing L subject to the constraint 
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Now we replace the probabilities pij in (7) by its representation as given in (6) and assume that the 

function f(cij) takes on the form ijce σ− the likelihood function can be rewritten as  
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By virtue of the maximization process, the quantities ijc
ji esr σ−  will be driven to the highest possible 

values. Then the equality constraint (8) can be replaced by the inequality constraint: 
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Case –1: 
Under change of variable y = eσ, the maximum likelihood formulation becomes: 

Minimize ∏∏
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The corresponding dual of the above geometric programs becomes 
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The optimal dual variables *
ijw equals to the estimated probability of a trip between zones i and j 

multiplied by the total number of trips, is therefore the estimated number of trips between the zones. By 
re-arrangement of terms, taking logarithm of (11) we can see that the objective function actually entropy 
function and constraint set can be re-written as follows: 
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i , the number of trips absorbed by zone j and the total cost of traveling for the sample respectively. 
Ignoring the constant term TT log  of the objective function, then the model becomes 
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subject to the same constraints and restrictions of (12). 
 
Case –II:  
When the parameter σ fixed value, then the maximum likelihood formulation becomes: 
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The corresponding dual of the above geometric programs becomes 
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The optimal dual variables *
ijw equals to the estimated probability of a trip between zones i and j 

multiplied by the total number of trips, is therefore the estimated number of trips between the zones. By 
re-arrangement of terms,  taking logarithm of (15) we can see that the this objective function actually 
entropy function and constraint set can be re-written as follows: 
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of trips absorbed by zone j respectively. 
 
4.   Single and Multi-objective entropy Trip distribution model: 
    
    (a) Single objective entropy Trip distribution model: 
 
Wilson, Webber (1970) pioneered the use of entropy models in the study of spatial interaction. Entropy 
models are commonly used to find the most probable numbers of pairings wij between locations i and j 
given the numbers Oi of origins in location i and Dj , of destination in location j, for all locations( i 
=1,2,..,n ; j =1,2,...,m). In equation form: 
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In addition to the Oi and Dj we know the cost of a transaction i to j, cij. We also add this information to the 
model in the form of the cost equation: 
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          where C∗ is a fitting parameter to be chosen according to the needs by the model maker.  
The corresponding entropy, which we want to maximize is: 
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    We want to find the matrix M= [wij] which has the greatest number γ(M) associated with it subject to 
constraints given above where γ(M) denotes the number of assignments leading to trip matrix M. We 
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Here wij’s and T are assumed to be sufficiently large. So by using Stirlings approximation formula, we 
get 
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Since T is given, maximizing ln γ(M) [=En(w)] is equivalent to maximizing entropy, as defined in the 
objective function (18). This is one of the reasons why the entropy optimization model is particularly 
suitable for the trip distribution problem.  
 
So mathematically the model becomes 
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      Where TTwEnTxEn log)(*)(1 −= .  The model (19) which is same as the model (13) ( Case-1). 
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(b) Multi-objective entropy Trip distribution model: 

    In real world, however all trip distribution models are not single objective( i.e not only entropy 
objective function ) Problems. We may have more than one objective function ( e.g. minimization of 
several penalties i.e. minimization of total cost amount, delivery time, deterioration amount of product 
etc.)) in transportation problem. Let Tc(w) be the total cost of a transaction i to j which we want to 
minimizes, given that the numbers Oi of origins in location i and Dj , of destination in location j, for all 
locations( i =1,2,..,n ; j =1,2,...,m).  So the Multi-objective entropy Trip distribution model can be stated 
as the following: 
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5. Basic concepts of Fuzzy Set and membership function: 
        Fuzzy sets first introduced by Zadeh in 1965 as a mathematical way of representing 
impreciseness or vagueness in everyday life. 
 
Fuzzy set:  A Fuzzy set Ã in a universe of discourse X is defined as the following set of pairs               
Ã={ (x,µÃ(x)): x ∈X }, Where µÃ : X → [ 0,1 ]  is a mapping called the membership function of the 
fuzzy set Ã and µÃ(x) is called the membership value or degree of membership of x ∈X in the fuzzy  
set Ã . The larger µÃ(x) is the stronger grade of membership form in Ã. 
Convex fuzzy set:  A fuzzy set Ã of the universe of discourse X is convex if and only if for all x1 , x2 in 
X ,µÃ ( λ x1 + (1 - λ ) x2 ) ≥ min (µÃ (x1 ), µÃ ( x2 )) when  0 ≤ λ ≤ 1. 
Normally fuzzy set: A fuzzy set Ã of  the universe of discourse X is called a normal fuzzy set implying 
that there exist at least one x ∈ X such that µÃ ( x ) = 1. 
Fuzzy number:     
A fuzzy number is a special case of a fuzzy set. Different definitions and properties of fuzzy numbers 
are encountered in the literature but they all agree on that a fuzzy number represents the conception of a 
set of   ′ real numbers close to a ' where ′a ' is the number being fuzzy field. A fuzzy number is a fuzzy 
set in the universe of discourse X that is both convex and normal. A fuzzy number Ã is a fuzzy set of 
the real line ℜ whose membership function µÃ(x) has the following characteristic with  -∞ < a1 < a2 < a3 
< a4 < ∞ 

where  µL(x) : [ a1 , a2 ]→ [ 0 , 1 ] is continuous and strictly increasing ; µR(x) : [ a3 , a4 ] → [ 0 , 1 ] is 
continuous and strictly decreasing. 
The general shape of a fuzzy number following the above definition is shown  in the next page (fig-1).                          
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                                                                    Fig.- 1: Fuzzy Number                                      

Any one example of fuzzy number (Triangular Fuzzy Number (TFN)) and Linear membership 
function:  
        Let F(ℜ) be a set of all triangular fuzzy numbers in real line ℜ. A triangular fuzzy number Ã ∈ 
F(ℜ) is a fuzzy number with the membership function µÃ  : ℜ → [0,1] parameterized by a triplet (a1, a2, 
a3) TFN. Where a1 and a3 denote the lower and upper limits of support of a fuzzy Ã: 
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The general shape of a TFN following the above definition is shown below (fig.-2).                          
                                              µÃ (x)                                        

  
         1   

                                                                           
 
 

                           
                                                O          a1                   a2                             a3            x           

   Fig. 2:  TFN 
  
6. Fuzzy programming approach to conversion Single Objective Non-linear problem from Multi-

Objective Non-Linear problem (MONLP) : 
A MONLP or a Vector Minimization Problem (VMP) may be taken in the following form: 
 Minimize  f(x)  =  [ f1(x), f2(x),…fk(x) ]T                                                                       (21) 
            subject to x εX  = { x εRn : gj (x)  ≤ or = or ≥  bj for j = 1, …, m  ;  x  ≥ 0 }. 

         and  li ≤ xi ≤ ui  (i=1,2,..,n). 

   Zimmermann (1978) showed that fuzzy programming technique could be used nicely to solve the 
multi-objective programming problem.  

To covert VMP (21) problem as a single objective, following steps are used: 

Step 1 : Solve the VMP (21) as a single objective non-linear programming problem using only one 
objective at a time and ignoring the others. These solutions are known as ideal solution. 

Step 2 : From the results of step 1, determine the corresponding values for every objective at each 
solution derived. With the values of all objectives at each ideal solution, pay-off matrix can be 
formulated as follows: 
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Here x1, x2, …, xk  are the ideal solutions of the objectives f1(x), f2(x), …, fk(x) respectively. So Ur  = 
max { fr(x1 ), fr (x2), …, fr(xk ) } 

                  and   Lr  = min { fr(x1 ), fr (x2), …, fr(xk ) } 

[Lr and Ur  be lower and upper bounds of the rth objective function fr(x) for r = 1,…,k]. 

Step 3: Using aspiration levels of each objective of the VMP (21), formulate (21) as follows: 

    Find x so as to satisfy  

 fr (x)  
~
≤   Lr   ( r  =  1, 2, …, k)                                             (22) 

 x∈X 

Here objective functions of (21) are considered as fuzzy constraints. This type of fuzzy constraints can 
be quantified by eliciting a corresponding membership function 

   µr(fr(x)) = 0              if fr(x) ≥ Ur 

                = dr(x)          if  Lr ≤ fr(x) ≤ Ur  (r =1,2,..,k)                                                         (23) 

                = 1               if   fr(x) ≤ Lr 

where dr(x) is a strictly monotonic decreasing function with respect to fr(x). Following figure-3 
illustrates the graph of the membership function µr (fr(x)) 
                  1.0   
 dr(x) 
 
    µr (fr(x)) 
 
    
                        O                                     Lr                                       Ur              fr (x) 

                  Fig.-3: Membership function for minimization problem 
  Having elicited the membership functions (as in (23)) µr(fr(x)) for r =1,2,..,k, a general aggregation 
function 
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µ = ( )))(()),.....,(()),(( 2211~ xfxZfxf kkD
µµµ  is introduced. So a fuzzy multi-objective decision 

making problem can be defined as     
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 Maximize  )(~ x
D

µ                                                                                                             (24) 

 subject to 

                          x∈X 
    Fuzzy decision (Bellman and Zadeh’s (1970)) based on convex operator, the problem (24) is reduced 
to 

 Maximize  ( ) ( )( )∑
=

=
k

r
rrD

xfx
1

'
~ µµ                                    (25) 

subject to  
                    x∈X 
                   0 ≤ ( )( ) 1≤xfrrµ   for  r  =  1, 2, …, k  . 
 

7. Fuzzy programming approach to conversion Single Objective Trip distribution problem from 
Multi-Objective Trip distribution problem: 

To convert (20), step-1of fuzzy programming technique is used.  After that, according to step-2, Pay-
off matrix is formulated as follows: 
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Now we find, the upper bounds TcU and
1EnU and the lower bounds TcL and

1EnL  where 

TcU = max{Tc(w1), Tc(w2)}and TcL = min{Tc(w1), Tc(w2)} 

and
1EnU = max {En1(w1),En1(w2)} and 

1EnL = min {En1(w1),En1(w2)}.  

So  TcL ≤ Tc(w)≤ TcU  and  
1EnL ≤ En1x) ≤

1EnU  For simplicity the linear membership functions 

)(TcTcµ  , )( 11
EnEn−µ  for the objective functions Tc(w) and En1(w) respectively are defined as 

follows:  
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According to step-3, having elicited the above membership functions crisp non-linear programming 
problem of (20) is formulated as follows: 
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Maximize  Z(w) = )()( 11
TcEn TcEn µµ +−                                                                              (26) 

subject to 
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The problem (26) can be written as  
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11

1
)(

0 1

EnEn

En

UL
wEnL

−
−

≤ , 1)( ≤
−

−

TcTc

Tc
LU

wTcU  

The problem (27) is equivalent to  

 Maximize ( ) ∑∑ ∑∑
= = = =
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1 1 1 1
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subject to the same constraints as in (27). 

where, 
TcTcEnEn LU

b
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i. e. of the problem  

Maximize ( ) ∑∑ ∑∑
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subject to the same constraints as in (27). Where ab=σ . The problem (29) which is equivalent to the 
problem (17) ( Case-II). 
 
8.   Conclusion 

In this paper we have analyzed two types of entropy trip distribution problem by using primal-dual 
geometric programming method. Here we deduce the formulation of trip distribution problem from 
maximum likelihood estimation of trip distribution and use fuzzy mathematical programming we are to 
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show multi-objective entropy trip distribution problem which is equivalent the said formulation of the 
trip distribution problem. In this paper we are also use the concept of multi-objective entropy trip 
distribution problem. Multi-objective entropy optimization method use in various fields of engineering 
and sciences. 
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