
AMO - Advanced Modeling and Optimization, Volume 8, Number 1, 2006

Adaptive Generation of t-ary Trees in Parallel 1

H. Ahrabian And A. Nowzari-Dalini

School of Mathematics, Statistics, and Computer Science,

University of Tehran, Tehran, Iran.

And

Institute for Studies in Theoretical Physics and Mathematics (I.P.M.),

Tehran, Iran.

E-mail: {ahrabian,nowzari}@ut.ac.ir

Abstract

In this paper, a new adaptive and cost-optimal parallel algorithm is presented for
generating t-ary tree sequences in reverse B-order. The algorithm generates t-ary
trees by z-sequences in lexicographical order. Computations run in an EREW SM
SIMD model. Prior to the discussion of the parallel algorithm a new sequential
generation algorithm with O(1) average time complexity is also given.

Keywords: t-ary Trees, Parallel Algorithm, B-order, z-Sequences, Recursion.

1 Introduction

Trees, especially t-ary trees have been extensively studied and many algorithms have been

given to generate all n nodes t-ary trees [2, 3, 6, 9, 11, 13, 14, 15, 18, 19]. In some of these

algorithms trees are represented by integer sequences and the corresponding sequences

are generated. Some of well-known encodings are p-sequences [5, 11], inversion table [8],

0-1 sequences [19]. Any generation algorithm imposes an ordering on the set of trees.

One of the well-known ordering on trees is B-order [19], and many integer sequences

corresponding to t-ary trees are generated in B-order [12, 14, 19].

Recently, in order to increase the speed of the generation, few parallel algorithms for

generation of t-ary trees have been published for various parallel models [4]. The advan-

tage of a parallel generating algorithm over an equivalent version is that t-ary trees may

be generated more efficiently with low cost. Well-known parallel generating algorithms

for t-ary trees are those of Stojmonovic and Akl [5], Vajonovszki and Phillips [16, 17], and

1This research was in part supported by a grant from I.P.M. (No. CS1384-4-07).

19



Kokosinski [10]. In the first of them [5], trees are represented by an inversion table and

the processor model is a linear array multiprocessor. The generated integer sequences

corresponding to the t-ary trees of n nodes in this algorithm are of length n and the

parallel algorithm is executed with n processors. In the second [16], trees are represented

by 0-1 sequences and the algorithm is run on a CREW shared memory multiprocessor.

Vajonovszki and Phillips [17] also presented a parallel generating algorithm for t-ary trees

represented by generalized p-sequences on a linear array model. The latter two algorithms

generate sequences of length tn with tn processors. Finally, Kokosinski [10] generated t-ary

trees of n nodes by 0-1 sequences in parallel with an associative model with n processors.

Adaptive Generation of t-ary Trees in Parallel

Adaptive Generation of t-ary Trees in Parallel In this paper, we present a parallel

generation algorithm for t-ary trees. Here, t-ary trees are represented with 0-1 sequences

and generated in lexicographical order such that the corresponding trees are in reverse

B-order. These 0-1 sequences are introduced by Zaks and are called z-sequences[19].

The computational model for our parallel algorithm is an EREW SM SIMD model. The

algorithm is adaptive and cost-optimal. A parallel algorithm is said to be adaptive if

it is capable of modifying its behavior according to the number of processors actually

available on the parallel computer being used. An algorithm is cost-optimal if the number

of processors it uses multiplied by its running time matches up to a constant factor, a

lower bound on the number of operations required to solve the problem sequentially. This

property can be further specified to the way in which the lower bound is defined [4].

Prior to the discussion of our adaptive parallel algorithm a new sequential generation

algorithm is also given. Consecutive sequences are generated, by this sequential algorithm,

in lexicographic order with O(n) time complexity in worst case and O(1) in constant

average time.

The paper is organized as follows. Section 2 introduces the definitions and notions that

is used further. In Section 3, we introduce a new sequential generation algorithm. The

parallel version of the this sequential generation algorithm is given in Section 4. Finally,

some concluding remarks are offered in Section 5.

2. Definitions

We assume the reader to be familiar with the definition of t-ary tree, extended t-ary tree,

internal node, leaf, subtree, sibling and descendent as given in [7]. The number of internal

nodes in a t-ary tree T is denoted by |T |. The number of t-ary trees with n internal nodes

is denoted by Cn,t and is known to have the following value: Cn,t = 1
(t−1)n+1

(
tn
n

)
.

In order to encode a t-ary tree T with n internal nodes, we label each internal node

with 1 and each leaf with 0, then we read these labels in preorder (recursively, visit

first root and then all the subtrees from left to right), we get a sequence with n 1’s and

(t−1)n+1 0’s. As the last visited node is always a leaf, we omit the corresponding 0 and

20



show this sequence by f(T ) = {xi}tn
1 = x. From x we build a sequence h(x) = {zi}n

1 = z

such that zi is position of ith 1 in x. See Figure 1 for an example. The sequence x has

t-dominating property if in each subsequence {xi}�
1(1 ≤ � ≤ tn) the accumulated numbers

of 1’s is at least ��/t�. Clearly, the number of 1’s in each prefix is at least equal to the

number of 0’s and the number of 0’s in each suffix is at least equal to the number of 1’s.

The dominating property for the corresponding z-sequence is defined as zi ≤ (i−1)×t+1

for i = 1, 2, · · · , n.

AMO - Advanced Modeling and Optimization, Vol. 8, No. 1, 2006

The following theorem establishes the relation between t-ary trees and integer se-

quences [19].

Theorem 1 The following sets are in 1-1 correspondence with one another,

1. all the t-ary trees with n internal nodes,

2. all the integer sequences {zi}n
1 such that 0 < z1 < z2 < · · · < zn and zi ≤ (i−1)×t+1

for i = 1, 2, · · · , n.

As it is mentioned, in order to design an algorithm for generating the set of trees, an

ordering is to be imposed, one of these ordering is B-order. This ordering is defined as

follows [19].

0

00 00

0 00 0 00

1

1

1

1

1

Figure 1. A 5-node 3-ary tree T , with encoding z = {1, 2, 3, 10, 12}.

21



Adaptive Generation of t-ary Trees in Parallel

Definition 1 Given two t-ary trees T and T ′, we say T < T ′ in B-order if

1. T is empty and T ′ is not empty, or

2. T is not empty, and for some i (1 ≤ i ≤ t), we have

a) Tj = T ′
j for j = 1, 2, · · · , i − 1, and

b) Ti < T ′
i .

The following theorem illustrates the relation of the orders between z-sequences and

t-ary trees [19].

Theorem 2 Let T and T ′ be two t-ary trees with n internal nodes, and let z and z′

sequences be defined as above. The following relations are equivalent:

1. T < T ′ in B-order,

2. z > z′.

Considering the above theorem, our both generation algorithms in sequential and paral-

lel, which are given in the next sections, produce the z-sequences in lexicographical order

such that their corresponding t-ary trees are in reverse B-order.

3. Sequential Generation

In this section, a new sequential generation algorithm with z-sequences is given. The

algorithm GenZ-Seq given in Figure 2 generates z-sequences corresponding to a t-ary

trees. The algorithm produces the tree sequences by incrementation. The generation

sequence starts with the sequence {1, 2, 3, · · · , n}. By each incrementation a new sequence

is generated. The last generated code by the algorithm is {1, 1t+1, 2t+1, 3t+1, · · · , (n−
1)t+1}. It is clear that any incrementation in this sequence (last code) would violate the

dominating property. With regard to the last code the nth element can be incremented

up to (n − 1)t, and consequently the (n − 1)th element incremented up to (n − 2)t, and

respectively the (n − i)th (0 ≤ i < n) element can be incremented up to (n − i − 1)t.

Clearly the value of the first one is always unaltered.

The algorithm has two underlying recursions and initially is called with Z =

{1, 2, 3, · · · , n}, k = N + 1, � = n − 1, and q = 1, where N = (n − 1) × t − n + 2

is the difference between nth element of last code with �, and is used to control the num-

ber of generation in each recursion call. Also, in this algorithm zi denotes the ith element

of the array Z.

The total required time for the generation of all the sequences is O(Cn,t), and easily

can be proved to be in constant average time O(1) per sequence [1]. It should be noted

22



Procedure GenZ-Seq (Z : Zseq; k, �, q : Integer ) ;

Begin

If ( k < N + 1 ) Then

zn−�+1 := zn−�+1 + 1 ;

WriteZseq ( Z ) ;

If ( k > 1 ) Then Begin

GenZ-Seq (Z, k − 1, 1, � ) ;

If ( � < k ) And ( � < q ) And (� < �k−1
t−1

� + 1 ) Then

GenZ-Seq (Z, k, � + 1, q ) ;

End ;

End ;

Figure 2. Sequential z-sequences generation algorithm.

that for obtaining a more efficiency, the parameter Z in the algorithm can be deleted and

assumed to be a global variable. In this case after each recursion call in the algorithm, a

decrementation should be performed on Z.

AMO - Advanced Modeling and Optimization, Vol. 8, No. 1, 2006

Also we can convert the recursive algorithm to an iterative algorithm such that the

algorithm generates the next sequence independently. In this case the time complexity

of the algorithm in the worst case for generating one sequence from another is O(n), and

consequently complexity of generation all Cn,t sequences would be equal to O(nCn,t).

4. Parallel Generation Algorithm

In this section, we present a parallel algorithm that generates z-sequences of the form

{z1, z2, · · · , zn} as defined in Section 3. Our algorithm is cost-optimal and adaptive and

is executed on an EREW SM SIMD model with d processors. As it is mentioned in the

Section 2, the generation sequence starts with the sequence {1, 2, 3, · · · , n} and the last

generated sequence is {1, 1t+1, 2t+1, · · · (n− 1)t+1}. The algorithm produces the next

possible generated codes by the incrementation in the initial sequence. Each element can

be incremented up to a specific value.

The algorithm uses three arrays Z, Y and W of length n, in shared memory. The ith

elements of these arrays are denoted by zi, yi and wi, respectively. These arrays are used

to store intermediate results, and are defined in the below.

1) Array Z is simply an output buffer where any new sequence generated is placed,

and initially is set to

zi = i , 1 ≤ i ≤ n.

23



2) Array Y holds the upperbound value incrementation of each element, and is set to

yi = (i − 1) × t + 2 , 1 ≤ i ≤ n.

3) Array W keeps status of elements in Z that have reached their limiting position:

wi =

⎧⎪⎨
⎪⎩

True if zi = yi,

False otherwise,

and initially wi (1 ≤ i ≤ n) is False.

Adaptive Generation of t-ary Trees in Parallel

Our parallel algorithm is given in Figure 3, and uses the processors p1, · · · , pd. The

arrays Z, Y and W are subdivided to d subsequences of length �n/d� and assigned to

each processor. As it is mentioned, the algorithm produce the next possible generated

code by incerementing the value of an element in the array Z. The position of this element

is equal to any i such that wi−1 = False and wi = True and its value be less than yi. For

any sequence a unique position will have this property, therefore only one of the processors

can obtain this position and keeps the index of this position in variable k and is broadcast

to all processors. Employing the variable k, the zk is incremented and the next sequence

is generated, and then array W is updated such that if zk is equal to yk then wk takes

True value, in other case it takes False. Then ParallelMove searches in parallel in W for

True values between two consecutive False values, if such values exist then they are set

to False values in parallel. This determines the position of next element for incrementing

and generating the sequence in the next step. The algorithm ParallelMove is illustrated

in Figure 4.

The time complexity of the algorithm depends on the existing loops. The main loop for

generating all the t-ary trees with n internal nodes is performed Cn,t times, and all the

parallel loops in the algorithm performed in O(n/d). The time complexity of BroadCast

and ParallelMove is O(log d). Thus, the time complexity of the algorithm for generating

a code from another in worst case is T (n) = O(n/d + log d).

Theorem 3 The presented Parallel-GenZ-Seq is cost-optimal and adaptive.

Proof. Since the algorithm employs d processors, therefore its cost is C(n) = O(n +

d log d). With respect to the discussion in previous section the time complexity of se-

quential generation algorithm in worst case is O(n) and therefore the parallel algorithm is

cost-optimal for d ≤ n/log n. Since the number of processors employed in the algorithm

is not a fixed number, therefore the adaptivity of algorithm is obvious. �

24



AMO - Advanced Modeling and Optimization, Vol. 8, No. 1, 2006

Procedure Parallel-GenZ-Seq ;

Var i, j, k : Integer ;

Begin

WriteZseq (Z) ; k := n ;

While (k > 1) Do Begin

BroadCast (k) ;

If (zk < yk) Then Begin

zk := zk + 1 ;

For i := 1 To d Do In Parallel

For j := (i − 1) × �n/d� + 1 To i × �n/d� Do

If (j > k) And (j ≤ n) Then

zj := zk + (j − k) ;

End ;

WriteZseq (Z) ; k := n ;

End ;

Else Begin

For i := 1 To d Do In Parallel

For j := (i − 1) × �n/d� + 1 To i × �n/d� Do

If (j ≤ n) Then Begin

If (zj = yj) Then

wj := True

Else

wj := False ;

End ;

End ;

ParallelMove (W ) ;

k := 1 ;

For i := 1 To d Do In Parallel

For j := (i − 1) × �n/d� + 1 To i × �n/d� Do

If (j > 1) And (j ≤ n) And (wj−1 = False) And (wj = True) Then

k := j ;

End ;

End ;

End ;

End ;

Figure 3. Parallel version of GenZ-Seq algorithm.

25



Adaptive Generation of t-ary Trees in Parallel

Procedure ParallelMove (var W : BooleanArray) ;

Var i, j : Integer ; V : BooleanArray ;

Begin

For i := 1 To d Do In Parallel

For j := i × �n/d� DownTo (i − 1) × �n/d� + 1 Do

If (j < n) And (wj = True) Then

wj := wj+1 ;

End ;

For i := 1 To d Do In Parallel

vi := v(i−1)×�n/d�+1 ;

End ;

For i := 1 To d Do In Parallel

For j := 0 To �log d� − 1 Do

If (i + 2j ≤ d) And (vi = True) Then

vi := vi+2j ;

End ;

For i := 2 To d Do In Parallel

If w(i−1)×�n/d� = True Then

w(i−1)×�n/d� := vi ;

End ;

For i := 1 To d Do In Parallel

For j := i × �n/d� DownTo (i − 1) × �n/d� + 1 Do

If (j < n) And (wj = True) Then

wj := wj+1 ;

End ;

End ;

Figure 4. Parallel move algorithm.

5. Conclusion

We have given a simple parallel algorithm for generating t-ary trees with n internal nodes

by z-sequences. The algorithm is the first parallel algorithm for generation of t-ary trees

in reverse B-order on an EREW SM SIMD model. As it is mentioned, the previous given

parallel algorithms for this purpose are designed on linear array, CREW SM SIMD and

associative memory model. Our model can support the cost-optimality of the algorithm

with different number of processors. The algorithm is adaptive and the number of pro-

cessors are variable and can be less than the number of internal nodes in a t-ary tree, and

produces z-sequences in lexicographical order.

26



AMO - Advanced Modeling and Optimization, Vol. 8, No. 1, 2006

References

[1] H. Ahrabian and A. Nowzari-Dalini, Generation of t-ary trees with Ballot sequences,

Intern. J. Comput. Math., 80 (2003), 1243–1249.

[2] H. Ahrabian and A. Nowzari-Dalini, Gray code algorithm for listing k-ary trees, Stud-

ies in Informatics and Control, 13 (2004), 243–251.

[3] H. Ahrabian and A. Nowzari-Dalini, On the generation of P-sequences, Adv. Modeling

Optim., 5 (2003), 27–38.

[4] S.G. Akl, The design and analysis of parallel algorithms, Prentice Hall, Englewood

Cliffs, 1989.

[5] S.G. Akl and I. Stojmenovic, Generating t-ary trees in parallel, Nordic J. Comput., 3

(1996), 63-71.

[6] M.C. Er, Efficient generation of k-ary trees in natural order, Comput. J., 35 (1992),

306-308.

[7] D. E. Knuth, The art of computer programming, Vol. 1: Fundemental algorithms, 2nd.

Ed., Addison-Wesley, Reading, 1973.

[8] G. Knott. A numbering system for binary trees. Comm. ACM, 20:113–115, 1977.

[9] J.F. Korsh, A-order generation of k-ary trees with 4k − 4 letter alphabet, J. Infom.

Optim. Sci., 16 (1995), 557-567.

[10] Z. Kokosinski, On parallel generation of t-ary trees in an associative model, Lecture

Notes in Computer Science, 2328 (2002), 228–235.

[11] J. Pllo, Generating trees with n nodes and m leaves, Intern. J. Comput. Math., 21

(1987), 133-144.

[12] J. Pallo and R. Racca, A note on generating binary tree in A-order and B-order,

Intern. J. Comput. Math., 18 (1985), 27-39.

[13] D. Roelants Van Baronaigien and F. Ruskey, Generating t-ary trees in A-order,

Inform. Process. Lett., 27 (1988), 205-213.

[14] F. Ruskey, Generating t-ary trees lexicographically, SIAM J. Comput., 7 (1978),

424-439.

[15] E. Trojanowski, Ranking and listing algorithm for k-ary trees, SIAM J. Comput., 7

(1978), 492-509.

27



[16] V. Vajnovszki and C. Phillips, Optimal parallel algorithm for generating k-ary trees,

in Proc. 12th International Conference on Computer and Applications, (ed. M. C.

Woodfill), ISCA, Raleigh, 1997, 201–204.

[17] V. Vajnovszki and C. Phillips, Systolic generation of k-ary trees, Parallel Process.

Lett., 9 (1999), 93-101 .

[18] Z. Yongjin and W. Jianfang, Generating k-ary trees in lexicographic order, Sci. Sin.,

23 (1980), 1219-1225.

[19] S. Zaks, Lexicographic generation of ordered tree, Theoret. Comput. Sci., 10 (1980),

63-82.

Adaptive Generation of t-ary Trees in Parallel

28


