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Abstract. Let G = (V, E) be a simple graph and k be a fixed positive integer. A vertex w is
said to be a k-neighbourhood cover of an edge (u,v) if d(u,w) < k and d(v,w) < k. Aset C CV
is called a k-neighbourhood-covering set if every edge in E is k-neighbourhood covered by some
vertices of C. The minimum k-neighbourhood covering problem is to find a set C C V such
that cardinality of C' is minimum among all k-neighbourhood covering sets. This problem is
NP-complete for general graphs also it remains NP-complete for chordal graphs. An O(n) time
algorithm is designed to solve minimum 2-neighbourhood-covering problem on a circular-arc
graph. A data structure called interval tree is used to solve this problem.
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1 Introduction

A graph G = (V, E) is called an intersection graph for a finite family F of a non empty set if
there is a one-to-one correspondence between F and V such that two sets in F have non empty
intersection if and only if their corresponding vertices in V are adjacent to each other. F is
called an intersection model of G and G is called the intersection graph of F. If F is a family
of arcs around a circle, then G is called a circular-arc graph. If F is a family of line segments
on real line, then G is called an interval graph. V is the set of all vertices and E is the set of all
edges of the graph G.

Circular-arc graph is a general form of interval graph [4, 9] and it is one of the most useful
discrete mathematical structure for modelling problems arising in the real world. It has many
applications in genetics, traffic control, cyclic scheduling and computer compiler design.

Turker [14] has proposed O(n?) time algorithm for recognizing a circular-arc graph and con-
structing in the affirmative case, a circular arc model. Hsu [5] has designed an O(nm) time
algorithm for this problem. Eschen and Spinrad [3] have presented an O(n?) time algorithm for
recognizing a circular-arc graph.

! This work has been done as a part of the project sponsored to the second author by Department of Science and
Technology, India, under grant No. SR/FTP/ETA-008/2002.



In a graph G = (V, E), the length of a path is the number of edges in the path. The distance
d(x,y) from the vertex x to the vertex y is the minimum length of a path from z to y, and if
there is no path from z to y then d(z,y) = cc.

A vertex x k-dominates another vertex y if d(x,y) < k. A vertex z k-neighbourhood-covers
(k-NC) an edge (z,y) if d(z,2z) < k and d(y,z) < k i.e., the vertex z k-dominates both the
vertices x and y. Conversely, if d(x,z) < k and d(y, z) < k then the edge (z,y) is said to be
k-neighbourhood covered by the vertex z. A set of vertices C' C V is a k-NC set if every edge
in E is k-NC by some vertex in C. The k-NC number p(G, k) is the minimum cardinality of all
k-NC set.

The k-neighbourhood-covering (k-NC) problem is a variant of the domination problem. Dom-
ination is a natural model for location problems in operations research, networking etc.

The graphs, considered in this paper are simple i.e., finite, undirected and having no self-loop
or parallel edges. For k = 1, Lehel et al. [7] have presented a linear time algorithm for computing
p(G, 1) for an interval graph G. Chang et al. [1] and Hwang et al. [6], have presented linear time
algorithms for computing p(G, 1) for a strongly chordal graph G provided that strong elimination
ordering is known. Hwang et al. [6] have also proved that (k-NC) problem is NP-complete for
chordal graphs. In [8], Mondal et al. have designed an optimal algorithm for finding 2-NC set
on interval graphs, and their algorithm take O(n) time.

In this paper, an O(n) time algorithm is designed to solve minimum 2-neighbourhood-covering
problem on circular-arc graphs. A data structure called interval tree (IT) [10, 11] is used to
solve this problem.

2 Definition and Preliminaries

Let A = {A1, Ag,..., Ap} be the circular arc family of circular-arc graph G = (V, E). The
family of circular arcs are located around a circle C. While going in a clockwise direction, the
point at which we first encounter an arc will be called the starting point of the arc. Similarly,
the point at which we leave an arc will be called the finishing point of that arc. Every arc
can be represented by their two endpoints e.g., A; can be represented as [s;, f;], where s; is the
starting point and f; is the finishing point of the arc A; on the circle C. Each endpoint of an
arc is assigned to a positive integer called a coordinate. A ray is a straight line from the centre
of C passing through any coordinate. A path of a graph GG is an alternating sequence of distinct
vertices and edges, beginning and ending with vertices. The length of a path is the number of
edges in the path. A path from vertex ¢ to j is a shortest path if there is no other path from 7
to j with lower length. The shortest distance (i.e., the length of the shortest path) between the
vertices ¢ and j is denoted by d(i, j).

We cousider a ray through starting point of any arc. Then, consider the arcs which are
intersected by the ray. Find out the arc which has right most finishing point among the arcs
which are intersected by the ray. We label this arc by n , then start anticlockwise traversal from
the finishing point of the arc which is labelled n. We label (n— 1) to the arc with next successive
finishing point. In this process, we label all the remaining arcs.

Without loss of generality, we assume the following :

1. An arc containg both its end points and that no two arcs share a common end point.
2. The graph G is connected and the list of sorted endpoints are given.

3. No single arc in A cover the entire circle C.



Figure 1: Example of a circular-arc graph and its circular arc representation

4. Arcs and vertices of a circular-arc graph are same thing.

5. The endpoints of the arcs in A are sorted according to the order in which they are visited
during the anticlockwise traversal along circle by starting at an arbitrary arc called A,.

6. The arcs are sorted in decreasing values of f;’s i.e., f; < f; for ¢ < j.
7. Ui A; = C (otherwise, the problem becomes one on interval graph).

The family of arcs A is said to be canonical if
(i) s;’s and f;’s for all i = 1,2,... n are distinct integers between 1 to 2n and
(ii) point 2n is the finishing end point of the arc A,.

If A is not canonical, using sorting one can construct a canonical family of arcs using O(n logn)
time.

3 Representation of a Circular-arc Graph as Interval Graph

The 2-neighbourhood covering problem on circular-arc graph is solved by converting it to an
appropriate interval graph. The main reason for this conversion is that the interval graph can
be easily take up with its good data structure interval tree. Pal and Bhattachajee [10] have
developed the data structure interval tree and Pal et al. have several problems on interval
graphs and also on circular-arc graphs [10, 11, 12, 13]. Thus to solve the problem we first
transfer the family of arcs to an equivalent family of intervals on a real line.

Let A be the set of arcs of the circular-arc graph and I be the set of intervals on the real
line. First, we consider a ray through the finishing point of the arc A, i.e., f,. We consider
the arc A, as an interval I,,, where finishing endpoint of A, is right endpoint of I, and starting
endpoint of A, is left endpoint of I,. Similarly, we transfer all arcs A;,¢ = 1,2,...,n — 1 of
the circular-arc graph G to the interval I; of the interval graph. Also we add one more interval
corresponding to arc A, and we label this interval as 0. The left endpoint of the interval Iy is
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Figure 2: The family of intervals corresponding to the family of arcs of Figure 1

less than the left endpoint of the interval I7 and the right endpoint of Ij is greater than the left
endpoint of the interval I7.

We define the interval graph corresponding to the circular-arc graph G as G' = (V/, E'). In
G’, there is one more vertex corresponding to the interval Iy. So, we define the vertex set of
interval graph as V' which is equal to V' [J{0}.

The interval representation of the graph of Figure 1 is given in Figure 2.

Interval tree is used as a data structure to develop the algorithm to solve the 2-NC problem.
Thus, a brief introduction is given below, details available in [10].

4 Properties of Interval tree

In this section, we make use of particular characterization of interval graph that was mentioned
in [2]. Here the interval graph is G’ = (V’, E') and there is a linear order ’<’ on the set of
vertices V.

Lemma 1 If the vertices u,v,w € V' are such that u < v < w in the <’ ordering and u is
adjacent to w, then v is also adjacent to w. But v is not necessarily adjacent to u.

Such an ordering of vertices is said to be wmbrella free. In particular, if the graph is given as
a collection of intervals, the ordering of interval right bound positions satisfies this property.

For each vertex v € V' let H(v) be the highest numbered adjacent vertex of v. If there is no
vertex adjacent to v and greater than v then H(v) is assumed to be v. In other words

H(v) = maz{u: (u,v) € ', u > v}.
The array H(v),v € V’ satisfies the following important result.
Lemma 2 [10] If u,v € V' and u < v then H(u) < H(v).

For an interval graph G’ = (V' E’), the interval tree (IT) with root n be defined as T(G') =
(V' E")y where E" = {(u,v) :u € V' and v = H(u),u # n}.

In [10], it is proved that for a connected interval graph there exists a unique interval tree.

The interval tree T(G’) of the interval graph of Figure 2 is shown in Figure 3.

Since the tree T(G') is built from the vertex set V' and the edge set E” C E', T(G') is a
spanning tree of G’. Let Ny be the set of vertices which are at a distance k from the vertex n
in IT. Thus Ny = {u: d(u,n) =k} and Ny is the singleton set {n}.

For each vertex u of IT, we define level of u to be the distance of u from the vertex n in the
tree IT i.e., level(u) = d(u,n). If u € N then d(u,n) = k and the vertex u is at level k of IT.
Thus the vertices at level k of IT are the vertices of Ny.
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Figure 3: Interval tree of the interval graph of Figure 2
The property that the vertices at any level of IT are the consecutive integers, is proved in [10]
as the following lemma.

Lemma 3 [10] The vertices of Ny, are consecutive integers and if v is equal to min{u : uw € Ny},
then max{u: uw € Niy1} is equal to v — 1.

The following result is also proved in [10].
Lemma 4 If level(u) < level(v) then u > v.

If the level of a vertex v of IT is k then it should be adjacent only to the vertices at levels
k—1, k and k+ 1 in G’. This observation is proved in [10] as following lemma.

Lemma 5 If u,v € V' and |level(v) — level(u)| > 1 then (u,v) ¢ E'.

The distance d(u,v) between any two vertices u and v of same level is either 1 or 2, which is
proved in [10] as follows.

Lemma 6 [10] For u,v € V' if level(v) = level(u) then

)1, (wv)eF
d(u,v) = { 2,  otherwise.



Let the notation v — v be used to indicate, that there is a path from u to v of the length one.

The path in I'T from the vertex 0 to the root n is called main path. Throughout the paper,
we denote the vertex at level [ on the main path by u; for all /. From the definition of IT and
its level it is obvious that level(0) is equal to the height (h') of the tree IT.

5 2-Neighbourhood-Covering Set

Let C be the minimum 2-neighbourhood-covering (2-NC) set of the given circular-arc graph G.
We construct a IT rooted at n and denote it by Ty. Then we find four vertices uj, u3, u3, uj
at levels 1, 2, 3, 4 on the main path of 7). Then we represent four interval graph representa-
tions from the circular-arc graph G, where last vertices of the interval graphs are uj, u3, u3, u}
respectively. From four interval graphs we construct four interval trees 17", 75,75, T;. Then we
find 2-neighbourhood-covering sets C7, C3, C3, C} from each of the interval trees 17,15, T3, ).
Then we identify the set which has minimum cardinality among the sets C7,C5,C5,Cy. This
minimum cardinality set is the 2-NC set of the circular-arc graph G.

First we represent the graph G7. In G7, the vertex uj is taken as the last vertex n. Let I*
be the set of intervals of the graph Gi. First, we consider the arc A,y corresponding to the
vertex uj as the interval I7, where finishing point of A,+ is the right endpoint of the interval
I; also the starting point of A,r is the left endpoint of the interval I7. Then we transfer the
next consecutive arc in anticlockwise direction of the arc Aui‘ as the interval I *n_l). Similarly,
we transfer all other arcs of the circular-arc graph to the intervals of the set I*. Also, we add
one more interval Ij corresponding to the arc A,r, where the left endpoint of Ij is less than the
left endpoint of I} and right endpoint of I is greater than the left endpoint of I}. Similarly, we
construct the interval graphs G35, G3%, GJ.

From the interval graph G} we can get an interval tree T} rooted at uj. From the tree T we
find a 2-NC set C of the circular-arc graph G. But the name of vertex of the tree is different
from the original name of the circular-arc graph . So we consider a number p; such that
pi = (n—u)) for all i = 1,2,3,4. If the name of any vertex v of the set C is greater than p?
then we subtract p; from v i.e., we take v as v — p}. Also if the name of any vertex v of the set
C7 is less or equal to p; then we add (n — p}) with v i.e., we take v as v + (n — p}). After that
we get the original name of the vertices of the circular-arc graph.

Here we introduce some notations which are used throughout the remaining part of the paper.

parent if H(u) = v then the parent(u) = v in IT.

gparent if parent(parent(u)) = v then gparent(u) = v.

l an integer representing the level number at any stage.

uy represent the vertex on the main path at level [.

X the set of vertices at level [ of IT which are greater than u; i.e.,

X;={v: v>wu and v e N}
Y; the set of vertices at level [ of IT which are less than u i.e.,
Vi={v: v<u and v e N;}.
wy the least vertex of the set Y] i.e.,
w; =min{v: v €Y}

If d(uf,z) < 2 and d(uf,y) < 2 for any vertex u}, then the edge (z,y) € E is 2NC by u;.



It may be noted that X;NY; = ® and N; = X;JY; U{w;}. As the vertices of N; are consec-
utive integers, the vertices of X; and Y; are also consecutive integers.

Lemma 7 The root uj of the tree T)" is a possible first member of C.

?

Proof: If the graph is a circular-arc graph then each vertex u; of the main path is 2NC by
some edges (x,y) where x € Ni_1|UN;_2, y € Ni_1|JN;_2 and some edges by (z',y’) where
&' € Niw1 UNig2, y' € Nt U Nigo.

The vertex ug is 2NC' by all the edges (z,y) where x € N1 |J N2, y € N1 U N2. Also, we know
uj is the same vertex of the vertex uj. u; is 2NC by all the edges (x,y), where z € N;_; and
Yi_1. Also, uf is 2NC' by some the edges (z/,y'), where 2/ € Y, o UN;—1, ¥ € Yi_2UN;—1. So,
we can take any one vertex of the main path as the first member of the set C7'. So the vertex
ug is the possible first member of the set C7. O

If u} be selected as a member of 2NC' set at any stage then in the next stage either uj 5 or
uj,, is to be selected as a member of 2NC' set. The selection depends on some results which
are considered below.

Lemma 8 If v be any member of U?:O X the d(v,uf) <2

Proof: From the definition of X; it follows that u; < v for all v € X; and for all [. If v € X;
then level(v) = level(u]) and by Lemma 6, d(v,u;) < 2.

If vz be any vertex of X;,; (see Figure 4) then u; , < v2 < wuj. Since (uj,,,u;) € F
then by Lemma 1 (vo,u) € E. So, d(ve,u;) = 1. Let v; be any vertex of X;15. Then
up, o < v < wujy. Since (uj,,ufy;) € E then by Lemma 1 (v1,uf,;) € E. Therefore, distance of
the path vi — uj,, — uj is 2 i.e., d(vy,u]) = 2.

Thus d(v,u;) <2 for allv € U?:o X1 O

Lemma 9 Ift be any member of sz':o Y then either d(t,uf) <2 or d(t,uf 5) <2

Proof: To proved this lemma consider the IT of Figure 4. Let £; and t9 be any two vertices
of Y10 and Y)41 respectively. Let t3 be any vertex at level [ and t3 < ;. There are two cases
arise. Case I: t3 = v} and Case II: 3 # u;.

Case I: In this case d(to,u]) = 1 and d(t1,u]) = 2. Also, by Lemma 6, d(t,u}) < 2 for all
t € Y;. Therefore, d(t,u;) <2 forall t € U?:o Y.

Case II: Without loss of generality we assume that parent(t;) = t2 and parent(ts) = ts.
Since parent(ti) = ta i.e., H(t1) = t2 < ujy, (t1,uj ) ¢ E. Similarly, H(t2) = t3 < u] implies
(t2,uf) ¢ E. Thus the distance of the path to — t3 — u] is 2 and the distance of the path
tp — ta — uj, — uy is 3. So, d(uj,t2) = 2 and d(t1,u;) = 3.

Now, ujf s < t1 < uj, < t2, (y 35U y) € E and (t1,t2) € E implies (t1,uy,,) € F
and (t2,uj,,) € E. Thus d(t1,u] 3) < 2 and d(t2,uy,3) = 2. Hence, either d(¢,u;) < 2 or
d(t,uf 3) <2 for all t € Ui_g Y4 O

By Lemma 6 we have d(v,u; 5) < 2 for all v € N;y3. Combining the results of Lemma 8 and
Lemma 9 one can conclude the following result

Lemma 10 All edges (z,y) € E where x,y € U?:o Niyj are 2NC by either uj or uj, 5 or both.
Also from the Lemma 8 and Lemma 9 one may conclude another result which is stated below.

Corollary 1 If gparent(wiya) = uj then the edge (x,y) where x, y € U_?:o Nt is 2NC by uj.

7
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Figure 4: A part of I'T

Lemma 11 If gparent(wiy2) # uj then uf,, can not be the next member of uj.

Proof: The condition gparent(wy2) # u; implies that the IT has a branch on the left of the
main path (see Figure 5).

In this case, gparent(wy2) < uf, i.e., parent(parent(wyy2)) = H(parent(wiy2)) < uf. So,
(parent(wi42),u}) € E. Since, gparent(uf, ) < gparent(wiy2) < uj and (gparent(uj,s),uj) €
E then by Lemma 1 (gparent(w;y2),u;) € E. Therefore, the distance of the path parent(w;2) —
gparent(wiye) — uf is 2. ie., d(parent(w;i2),u;) = 2 and the distance of the path w1 o —
parent(wyy2) — gparent(wyy2) — uf is 3. i.e., d(wii2,u)) = 3. Thus the edge (w2, parent(wi;2))
is not 2NC' by the vertex ;.

Also uj 3 < wiyo < parent(uf s), so d(wiiz,uf,3) < 3. If the vertex wyyo and uj 5 are
adjacent then the distance of the path parent(w;i2) — wite — uj 3 — uj,, is 3. Therefore
the edge (w2, parent(w;.2)) is not 2NC by the vertex u;,,. Hence uj,_, can not be the next
member of u;. O

Lemma 12 If gparent(wiy2) = uj and X3 = ¢ then uj,_, be a possible next member of uj.

Proof: To prove this lemma, we consider the IT of Figure 6. The relation gparent(wy2) = uf
implies that d(u;,v) < 2 for all v € U?:o Nji; (by Corollary 1). So the edge (z,y) where
€ Nyt UNiy2, y € Nyt U N2 is 2NC by uy.

As Xji3 = ¢, v < uy g, for all v € Nygs, ie, ujyy < v < uj,s, for all v € Niy3. Again
(uf s, uit,) € E, so by Lemma 1, (v,uj,) € E. Thus, d(v,u]_,) < 2 for all v € Ni;3. Also,
d(v,uj, ) < 2 forall v € Niyy4. So the edge (z,y), * € NipzaUNyypq and y € Nipz U Nyyq is 2NC
by uj, ,. Hence the vertex uj, , may be selected as the next member of u;. |

From the above lemma it follows that if X;;3 = ¢ then one can select u, , as the next member
of uj. But, if X;13 # ¢ then the condition for selection of uj,, as a next member of u; are
discussed below.

Lemma 13 If gparent(wiy2) = uj and if (u}, 5,v) ¢ E for least one v € Xj13 where Xiy3 # ¢
then uj, , can not be the next member of uj.
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Proof: We refer the Figure 7 to prove this lemma. The relation gparent(wii2) = u; implies
that d(uj,v) < 2forallv e U?:O Nj41 (by Corollary 1). So all edges (x,y), © € Nj12J Nj41 and
Yy € Nix1 UNip2 is 2NC by uf. Now, parent(uf,,) = uj, 3 = H(uj, ) and v > uf 5, v € X413
so (uj,4,v) ¢ E. Therefore, the distance of the shortest path uj,, — uj, 3 — parent(v) — v is
3 ie., d(uj4,v) = 3. Thus the edge (v,parent(v)), v € X;43 is not 2NC by u;, 4. Therefore,
uj, 4 can not be the next member of the vertex u;. O

Lemma 14 If gparent(wi12) = uj and if (uj 3,v) € E for all v € X;y3 but parent(v) #
parent(u;, 3) for at least one v € Xjy3 then uj,, can not be the next member of uj.

Proof: Let v be a vertex of X3 such that parent(v) # parent(u; ). In this case, distance of
the path uj — uj, | — parent(v) is 2 i.e., d(u],parent(v)) = 2. Also the distance of the path
uj — uj — parent(v) — v is 3 i.e., d(uj,v) = 3. So the edge (parent(v),v) is not 2NC by uj
(see Figure 7).

Now, if (uj 5,v) € E then d(uf_,,v) = 2 but H(uj,3) = parent(uj_3) < parent(v), so
(uj 3, parent(v)) ¢ E. Hence the distance of the shortest path uy, , — w5 — v — parent(v)
is 3 i.e., d(uj_,, parent(v)) = 3. Therefore the edge (v, parent(v)) is not 2NC by uj, ,. Hence
uj, 4 can not be the next member of u]. O

Lemma 15 If gparent(wiy2) = uj and (uj 5,u) € E for all u € X; 3UYi42, (v,t) € E for at
least one v € X33 and t € Yo and parent(v) = parent(uj_3) for all v € X;. 3 then uj , is a
possible next member of uj.

Proof: Let z € Njj2 U N3 and y € Nyypo U Niyg. The distance of the path vy, — uj 3 — @
is 2 and the distance of the path u;, , — uj 3 — yis 2. If (uz“+3,u) € E for all u € Xi13 Y40
then the edge (z,y) is 2NC by uy, 4. Also d(parent(uj,s), v}, ) = 2 and d(uj 4, v) = 2. Also
the edge d(parent(uf,3),v), v € X413 is 2NC by uf,,. Again, d(uj, ,,t) = 2 and d(u; 4, 1) <2,
so the edge (t,t'), t € Yoo, t' € Y13 is 2NC by uj,,. O
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Lemma 16 If gparent(w;y2) = uj and (uj_3,v) € E and parent(v) = parenr(uj ) for all
v € Xiys, (v,t) € E forallv € Xip3 and t € Yo and (uf 5,t) ¢ E for at least one t € Y o
then uj, , can not be the next member of uj.

Proof: Since (uj _3,v) € E, v € Xjy3, there is a path uj,, — uf 3 — v from the vertex
u},, to v and hence d(uj_,,v) = 2. But, the shortest path from u; , to t is uj,, — uj 3 —
parent(uj, ;) — t. So, d(uj,4,t) = 3. Therefore the edge (v,t), v € Xj13, t € Y4 is not 2NC
by uj,,. Also, the edge (t,v) is not 2NC' by u;. Hence, u;_, can not be next member of u;. O

Lemma 17 If gparent(wiy2) = uf for allv € Xi13, (uj 3, v) € E and parent(v) = parenr(uj, )
and (v,t) ¢ E for allv € Xiy3 and t € Y2 then uj 4 is a possible next member of uj.

Proof: We refer Figure 7 to prove this lemma. Since (uj, 5,v) € E for all v € X;;3 and
d(v,uj,4) < 2 then the edge (vi,v2), v1, v2 € Xyy3 is 2NC by uj,,. Let u € Yjy3. Since
u < uj 3 and (uj, 4, uj3) € E, therefore, (u,u; 5) € E. Also, u < uj, 3 <t, t& Yy and if
(u,t) € E and for this £, d(uj_4,t) = 2. Hence (u,t) is 2NC by uj 4 and by Corollary 1 u; 4
may be the next member of u;. O

Lemma 18 If X;,3 = ¢ and Y0 = ¢ then uj,, is a possible next member of u; .

Proof: For this case, a possible IT is shown in the Figure 8. Let ¢t € Y13 and t; € Yj44. As
uy, g <t <ujsand (uj,uf,3) € Ethen (¢,u; 3) € E and hence d(t,u; ) < 2.

Also d(t1,uf,,) <2 (by the Lemma 6). Thus the edge (t,%1), if any, is 2NC by v, ,. And by
Corollary 1, the lemma follows. |

Lemma 19 If Y12 = ¢ and (uj,3,v) ¢ E for at least one v € X4 3 then uj, can not be the
possible next member of uj.

Proof: We refer Figure 9 to prove this lemma. If (uj, 3,v) ¢ E for at least one v € Xj;3 then
the shortest path from uy, _, to v is uj,, — uj 5 — parent(uj, ;) — v. Therefore, d(uj, 4, v) = 3.
Hence the edge (u,v), v € Xy, v € Xjq3 is not 2NC by u;,,. Thus u},, can not be the
possible next member of v;. O
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Lemma 20 If Y12 = ¢ and (uj,3,v) € E for all v € X1 3 and parent(v) # parent(uf ;) for
at least one v € X3 then uj , can not be the possible next member of u; .

Proof: Without loss of generality, we assume that (u}, 5, v2) € E and parent(ve) # parent(uj, 3),
vy € Xiy3 (see Figure 9). Since, parent(vs) # parent(uf,s), (uf 3, parent(ve)) ¢ E as parent(u;, 5)
= H(uj,3) < parent(vz). In this case, the path from uj , to parent(v) is uj,, — uj 3 — v2 —
parent(vy).

Therefore, d(u;, 4, parent(v2)) = 3 and d(uj, 4, v2) = 2. Hence the edge (vo, parent(vs)) is not
2NC' by the vertex uy, 4. Thus, uj,, can not be the possible next member of u;. |

Lemma 21 If Y12 = ¢ and d(uj,3,v) € E for all v € Xyy3 and parent(v) = parent(uj_s) for
all v € X3 then uj, may be the possible next member of uj .

Proof: Tor this case, a possible IT is shown in Figure 10. Since, d(u;, 5, v) € E for all v € X;;3
and d(uj,v) = 2 as uj 4 — uj 3 — v. Also, d(uj,,,t) < 2 for all t € Yj;3. Again, Y, = ¢
and parent(v) = parent(uj, ) for all v € Xj 3, so the edge (parent(u}, 3),u), u € Niy3is 2NC

by w4
If d{u}, 4,u1) < 2 and d(uj, 4,v) = 2 where v € X;;3, u1 € X4, then the edge (v,u,) is also
2NC' by the vertex ujy, ,. Hence, u;, , may be the possible next member of u;. |

Lemma 22 The set C is 2-neighbourhood covering set of the circular-arc graph G, where C' =
C7 fori=1,2,3,4 and |C7| =min {|CT], |C3], |C5], |CEl}-

Proof: Let uj is the first vertex of the set C}. The next vertex of the C7 is either uj, 5 or uj, 4.
In CF, let the distance between two consecutive vertices be 4 i.e., the vertices of the set C] are
uj, ui, ug, ujs etc. Also in Cf let the distance between two consecutive vertices be 3 i.e., the
vertices of the set C are uj, us, uj,, ujs etc. Now, uj is a member in both sets the 'y and
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C}. From the above lemmas we observed that after the vertex ujs, both the sets C} and Cj
are same. Let uj be the last vertex of the sets C} and Cf and let u} = parent(u}). The edge
(uf,u3) is 2NC by the vertex uj and the edge (u3,u}) is 2NC by the vertex uj. So, there are
same number of vertices in both the sets C7 and C}. Therefore, in this case the cardinality of
C7 and Cj are same.

Let there exist a vertex v at level 3 adjacent with only u3. Then the distance of the path
v — u; — u] — uj is 3. Also the distance of the path v — w5 — uj — wuj is 3. So, the edge
(v,u%) is not 2NC' by neither the vertex uj, nor the vertex uj. For the edge (v,u5) any one of
the vertices u7, u3, u3 must be a member of the set Cj. In that case, the number of vertices of
the set C7 is less than the number of vertices of the set CJ, before uj3. So, the cardinality of
C is greater than the cardinality of the set C. Similarly, the cardinalities of C7, C3, C3, C}
may or may not be equal.

In C%, let the distance between two consecutive vertices be 4 i.e., the vertices of the set Cf
are ui, ug, ujs etc. Also in CF let the distance between two consecutive vertices be 3 i.e.,
the vertices of the set ('3 are u3, ug, ug etc. We know, u3 is the first vertex of set CF. The
distance of the path u5 — uj — uf is 2 and also the distance of the path u5 — u3 — uj — ug
is 3. Then the edge (u3,u3}) is not 2NC by the vertex uf. Similarly, the distance of the path
uy — u} — parent(u}) is 2 and the distance of the path uj — u5 — uj — parent(uj) is 3. So,
the edge (u3,u3) is not 2NC by the vertex parent(u}). For the edge (u3,u3) any one of the
vertices uj, us, u3, wy is a member of C¥. Let uj be the terminal vertex of the set C¥. So, from
the vertex u§ to the vertex there are same vertices in both the sets C's and C§. Also, there are
two vertices u3, ug in C3 before ug and there are two vertices uz, ug in Cg before ug. So the
cardinality of the set (3 is same as the cardinality of the set Cf.

Similarly, the cardinality of the set C where i = 5,6, ... A’ is same to any one of the cardinality
of the sets C}, C5, C3, Cj. Therefore the set C is the 2-neighbourhood covering set of the
circular-arc graph G. |
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6 Algorithm and its Complexity

In this section, we present an algorithm to find the 2-neighbourhood covering set of a. circular-arc
graph. The time complexity is also calculated here.

Here a procedure FINDNEXTC is formally presented in the following which computes the
level L of next vertex uj of C7, if the level [ of the current vertex u; is supplied.

Procedure FINDNEXTC(l, )

// This procedure computes the level L such that u} will be the next number of C} where as
uj is the currently selected vertex of C. The sets X;, Y; and the array u;,j =1,2,...,h, his
the height of the tree T*(G) are known globally. //

Initially L =1+3
If Yirs = & then
if X;y3=¢ then L =14 4 (Lemma 18)
elseif for all v € X3, parent(v) = parent(uf,3) and (uj,3,v) € E then
L =1+ 4; (Lemma 21)
endif ;
clse /] Yira # 6 //
if gparent(w;y2) = uj then
if X;43 = ¢ then L =1+ 4; (Lemmal2)
elseif for all v € X; 3, parent(v) = parent(uf,3), (uj,3,v)€ E and
if (v,t) € E for some v € Xj3, t € Y2 and
(uj,3,t) € E then L =1+ 4; (Lemma 15)
elseif (v,t) ¢ F for all v € Xj13 and t € Y49
then L =1+ 4; (Lemma 17)
endif ;
endif;
endif;
endif;
return L;
end FINDNEXTC

Now we present an algorithm to find C7, for all ¢« = 1,2, 3,4 from the interval trees 73", for
1=1,2,3,4.

Algorithm FOURTNC (T}(G))
Input: An interval tree T,*(G) and the vertex u}, i € {1,2,3,4}.
Output: The 2-neighbourhood-covering set C''.
Initially, C; = ¢ (null set), { = 0.
Step 1: Construct the interval tree T*(G).
Step 2: Compute the vertices on the main path of the tree T;*(G) and let them v, j=12,....h
h is the height of the tree T;"(G)
Step 3: Compute the set of X; and Y}, for each j =1,2,...,h.
Step 4: Cf = C"U{vi}. Set pf =n —u;.
Step 5: Repeat
Call FINDNEXTC(/, L); // Find level L for the next vertex of CF. //
I=1L;
if v/ > p then v = o] — pf

i .
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if vf < pf then v} = v + (n —p}).
Cf =G U{vr }-
Until {|h —1| < 3}.

end FOURTNC

After finding four sets Cy, C5, C3, CJ, the complete algorithm to find 2-neighbourhood
covering set is given below.

Algorithm CTWONC
Input: A family of circular arcs A of a circular-arc graph G.
Output: Minimum cardinality 2-neighbourhood-covering set C.
Step 1: Construct the interval tree T'(G) rooted at n.
Step 2: Compute the vertices on the main path of the tree T(G) and let them be u}, i =
1,2,..., A/, b/ is the height of the tree T(QG).
Step 3: Construct the four interval trees T7(G), T5(G), T5(G), T;(G), where uj, u3, uj, uj.
are respective roots.

Step 4: Compute four 2NC sets Cf, C5, C3, C; by Algorithm FOURTNC.
Step 5: Set C = C, where |C| =min {|C}]|, |C5|, |C5], |Ci|}-
end CTWONC

The vertices of T;"(G) are the vertices of G. The sets N;, j =1,2,... h are mutually exclusive
and the vertices of each N; are consecutive integers. Again, the sets X; and Y}, 7 =1,2,...,h
are also mutually exclusive, i.e., X; Xy = ¢, Y; Y, = ¢, for j # kand j, k=1,2,...,h and
XiNYe =&, j, k=1,2,...,h. Moreover, N;j = X; UY;U{u}}, j =1,2,...h. The vertices of
each X; and Y} are also consecutive integers. So only the lowest and highest numbered vertices
are sufficient to maintain the sets X;, Y;, N;, 7 = 1,2,...,h. So, we will store only lowest
and highest numbered vertices corresponding the sets X;, Y;, N; instead of all vertices. If any
set is empty then the lowest and highest numbered vertices may be taken as 0 and 0. It is
obvious that [|Jj_y N;| = n + 1. In the procedure FINDNEXTC, only the vertices of the set
Ny, Nii1, Npyo and Njag are considered to process then the total number of vertices of these
sets is ‘U?:o Nj4| and the subgraph induced by the vertices ‘U?:o Njii] is a part of the tree

T7(G). So the total number of edges in this portion is less than or equal to | U?:o Nj4i|. Hence
one can conclude the following result.

Lemma 23 The time complexity of the procedure FINDNEXTC(I, L) is O(] U?:o Njiu])-
In the following we compute the time complexity of Algorithm FOURTNC.

Theorem 1 The 2-neighbourhood covering set of any one of the interval graphs G} can be
computed in O(n) time.

Proof: For a given interval representation of an interval graph, the interval tree T;*(G) can be
constructed in O(n) time [10, 11]. Since the main path starting from the vertex 0 and ending
at the vertex n, all the vertices u}, j = 1,2,...,h on the main path can be identified in O(n)
time. By computing the level of each vertex one can compute the sets X; and Y;, j =1,2,...,h
in O(n) time. Step 3 of Algorithm FOURTNC can be computed in O(n) time. Each iteration
of repeat-until loop takes only O(] U:;?:O Nj4i|) time for a given [. The Algorithm FOURTNC
calls the procedure FINDNEXTC for |C¥| time and each time the value of [ is increased by

either 3 or 4. Also, if the vertices of the set U_:;?:O Ny or (U_:;?:O Nj1r) are consider to find the
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kth (K'th) member of C' then U?:o Ny and U?:o N;yp are disjoint. Therefore, Step 5 takes

O(] U?:o N;|) = O(n) time. Hence the time complexity of the Algorithm FOURTNC is O(n).
O

Lemma 24 The time complezity of Algorithm CTWONC is O(n).

Proof: For a given interval graph representation, the unique interval tree T(G) can be con-
structed in O(n) time. So, in algorithm CTWONC, Step 1 takes O(n) time. The vertices of
the main path of the tree T(G) can be identified in O(n) time. So, the Step 2 take O(n) time.
Also Step 3 takes O(n). For each interval tree T(G) the 2-NC set C can be computed in O(n)
time (Lemma 23). So, Step 4 takes O(n) time. Step 5 easily can be computed in O(n) time.
Hence the overall time complexity of Algorithm CTWONC is O(n). O
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