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Abstract

We present a graph-based new amortization scheme for multicast streams authentication

that achieves stronger resistance against packet loss and reduces the overhead in the same

time. The hash chains of the existing amortization schemes have no systematic way to

construct them, the construction had been determined by simulation. These schemes lack the

theoretical model that helps in determining the values of the parameters and measuring the

efficiency metrics of the authentication schemes. The proposed scheme in this paper consists of

multiple connected chains, each chain connects some packets together. The parameters values

of the hash chain of our scheme is determined in advance and the hash chain is constructed

systematically. We also introduce mathematical tools that help in measuring the efficiency

metrics such the authentication probability, the loss resistance and the overhead. The number

of chains in our model plays the main role in the efficiency of our scheme in terms of loss

resistance and overhead. High authentication probability can be achieved by increasing the

number of hashes that are appended to the signature packet and by increasing the number

of packets that contain the hash of a previous packet.

Key Words: Internet security, multicast stream authentication, hash chain graph, signature

amortization, authentication probability

1 Introduction

Multicast is an efficient way of transmitting information, since a single copy of packets is sent by

a sender and delivered to every receiver within the multicast group via multicast-enabled routers.

A stream is defined as a very long or infinite sequence of bits that the sender sends to the receivers

who must consume the data it receive at the input rate. Some examples of multicast streams



include TV and radio broadcasts, stock quotes, videoconferencing, software update and online

gaming. Security is a challenge issue due to the large number of sent packets and receivers, packet

loss, delay and overhead. Signing each packet in the stream to authenticate it results in a great

computation and communication overhead on both the sender and receivers, even if fast signing

algorithms are sued [Rohatgi, 1999], [Wong et al., 1999].

The practical and efficient alternative that reduces the overhead is to amortize a single signature

over a group of packets, the schemes that use such an alternative are known as amortization schemes

or hash chained schemes. Several amortization schemes [Gennaro et al., 1997], [Perrig et al., 2000],

[Golle et al., 2001] have been introduced as a solution for authenticating multicast streams to

reduce the high cost of sign-each schemes. In amortization schemes, a stream is divided into

blocks; each block consists of some packets. A single packet in the block, usually the first or the

last one, is digitally signed using any signing algorithm. The hash value of each packet of the

remaining packets of a block is computed using any hashing function. The packets of a block are

linked together through multiple links using concatenation function to achieve robustness against

packet loss forming what is known as hash chains. Hashes of some packets are appended to a

signature packet before it is signed so that the receivers can verify the received packets.

The Efficient Multi-chained Stream Signature (EMSS) [Gennaro et al., 1997] and Augmented

Chain (AC) [Golle et al., 2001] amortization schemes append the hash of a packet to several

other packets in order to increase robustness against packet loss and achieve higher authentication

probability which is defined as the conditional probability that a packet is verified. EMSS and AC

also solved the weak robustness against packet loss of Gennaro and Rohatgi’s scheme [Gennaro et

al., 1997]. But this solution increases the overhead and is chosen randomly, there is no systematic

way that tells what and how many packets should contain the has value of other packets. The

best construction had determined by simulation. The solution of multicast stream authentication

using signature amortization schemes is an efficient one in terms of overhead [Lysyanskaya et al.,

2004], [Christophe, 2005]. However, how to construct the hash chains remains an open problem

[Chan, 2003].

To our knowledge, there is no amortization scheme that achieves stronger resistance against

loss and reduces the overhead in the same time, so such scheme is necessary. Also the parameters

values of the hash chain should be easily determined to build the best construction that achieves

the desired performance, that is, achieve a successful authentication with low overhead despite

the presence of loss. Also the hash chain topology of the existing schemes and being unable to

determine the values of the parameters of the hash chains in advance make it hard to derive an

exact formula to characterize the efficiency metrics such as the authentication probability of such

scheme.
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In this paper we introduce a graph-based new hash chain construction for amortization schemes

that achieves stronger resistance against packet loss and reduces the overhead in the same time.

The Multiple Connected Chains (MC) model consists of multiple chains connected to each other

and each chain connects some packets together [Abuein et al., 2004a, 2004b, 2005a, 2005b]. The

number of packets that contain the hash of a previous packet is not changed as the packet loss

increases, instead the number of chains is changed and it plays the main role in the efficiency of

MC model. Increasing the number of chains of MC model achieves stronger resistance against loss

and reduces the overhead in the same time.

The parameters of MC model can be easily determined in advance, which helps in measuring

its efficiency metrics such as authentication probability. In this paper we derive the authentication

probability of MC model using binomial model and 2-state Markov model, also known as Gilbert

model. Burst packet loss is best characterized using Gilbert model as reported by [Sanneck et al.,

2000] and [Jiang et al., 2000].

This paper is organized as follows: Section 2 introduces the MC model. In Section 3 we analyze

the efficiency of our scheme in terms of overhead and in Section 4 in terms of loss resistance. The

authentication probability of our scheme is derived and analyzed in Section 5. In Section 6 we

show the required buffer and delay for both the sender and receiver. In Section 7 we evaluate the

performance of our scheme and in Section 8 we present previous works on stream authentication

schemes. In Section 9 we give the conclusion of our study.

2 Multiple Connected Chains Model

Table 1 shows the notation used in this paper. A packet Pi is defined as a message Mi a sender

sends to receivers along with additional authentication information. We introduce a Multiple

Connected Chains (MC) model for multicast stream authentication using signature amortization

that achieves stronger resistance against packet loss and reduces the overhead in the same time.

Our model using amortization schemes divides a stream of N messages into blocks, where each

block consists of some messages. A sender appends the hash H(Pi) of a packet Pi to specific other

packets to achieve robustness against packet loss. For each block the sender then concatenate

hashes of specific packets together and signs them using his digital key. The signed packet is called

a signature packet Psig. The sender sends a signature packet at the end of each block. Appending

hashes to other packets and to the signature packets enable the receivers to authenticate the

received packets.

The hash H(Pi) of each packet Pi in MC model is appended to ν other packets as Pi+1 and

Pi+jc, where j = 1, 2, · · · , ν − 1. For example, when ν = 3, H(Pi) is appended to Pi+1, Pi+c and
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Table 1: Notation

symbol representation
N the number of messages in the stream
c the number of chains in MC model
k the number of slices in a block
ν the number of packets that contain the hash of Pi

µ the number of hashes appended to the signature
ji The number of the packet that has its hash appended to a signature

packet, where 1 ≤ i ≤ µ

s the signature size (RSA is 128 bytes)
h the hash size (SHA-512 is 64 bytes)
δ the communication overhead per packet in bytes
γ the number of signature packets
` the loss resistance

Pi

Pi+c Pi+2c

Pi+1

Mi Mi+c Mi+2c

Mi+1

H(Pi-1)
H(Pi-c)
H(Pi-2c)

H(Pi+c-1)
H(Pi)
H(Pi-c)

H(Pi+2c-1)
H(Pi+c)
H(Pi)

H(Pi)
H(Pi+1-c)
H(Pi+1-2c)

H(Pi-(ν-1)c) H(Pi-(ν-2)c)

H(Pi+1-(ν-1)c)

H(Pi-(ν-3)c)

Pi+(ν-1)c

Mi+(ν−1)c

H(Pi+(ν-1)c-1)
H(Pi+(ν-2)c)

H(Pi)

H(Pi+(ν-3)c)

Figure 1: Appending hashes to other packets in MC model.

Pi+2c. Let A(c, ν) denote a set of the packets that contain H(Pi), then:

A(c, ν) = {Pi+1, Pi+c, Pi+2c, · · · , Pi+(ν−1)c} (1)

Figure 1 shows the appended hashes to each packet according to MC, when ν = 3. So as to

construct MC model and be robust against packet loss, we need the value of ν as ν ≥ 2.

For each block µ hashes are concatenated together and signed using the sender’s digital key.

Let Pj1 be the first packet that has its hash appended to Psig and Pjµ
be the last one. Then the

set of the packets that have their µ hashes appended to Psig is:

E(µ) = {Pj1, Pj2, · · · , Pjµ
} (2)

where j1 < j2 · · · < jµ.
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Figure 2: A construction of MC model for c = 8, k = 4 and ν = 3.

MC model consists of c chains, where each chain consists of some packets. The block size

of MC model is ck packets, where k represents the number of slices. The group of the first

c packets {P1, P2, · · · , Pc} is the first slice in MC model, the group of the second c packets

{Pc+1, Pc+2, · · · , P2c} is the second slice, and so on.

Figure 2 depicts a construction of MC model for c = 8, k = 4 and ν = 3. the sender computes

the hash of the first message M1 without appending additional information to it since there are

no messages preceding it, then sends P1, so P1 = M1. The sender constructs Pi by concatenating

the hash H(Pi−1) with every message Mi, then computes H(Pi) and sends Pi, where 2 ≤ i ≤ c.

While he constructs Pi by concatenating the hashes H(Pi−1) and H(Pi−c) with every message Mi,

then computes H(Pi) and sends Pi, where c + 1 ≤ i ≤ 2c. Every packet Pi is constructed by

concatenating the hashes H(Pi−1), H(Pi−c) and H(Pi−2c) with every message Mi, then computes

H(Pi) and sends Pi, where 2c + 1 ≤ i ≤ N .

The sender then concatenates the µ hashes H(Pj1), H(Pj2), · · ·, H(Pjµ
) together and signs

them to construct the signature packet Psig1
, then sends Psig1

. The sender experiences a single

packet delay since the necessary data for computing the hash value of any packet and the signature

packet depend on other hash values that are already computed.

The following steps describes the authentication procedure the sender performs on each block

according to MC model:

1. P1 := M1,

2. Compute H(P1), send P1,

3. Pi := (H(Pi−1)||H(Pi−c)||H(Pi−2c)|| · · · ||H(Pi−(ν−1)c)||Mi), where 2 ≤ i ≤ ck,
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4. Compute H(Pi), where 2 ≤ i ≤ ck, send P1,

5. Psig := SA(K, H(Pj1)||H(Pj2)|| · · · ||H(Pjµ
)),

6. Send Psig

where := denotes computation, || denotes concatenation, SA represents the signing algorithm and

K represents the digital key.

The receiver performs the verification steps in an opposite manner, that is, verifies the signature

packet first, retrieve H(Pj1), H(Pj2), · · · , H(Pjµ
). If the signature packet is secure then the hashes

appended to it are considered secure too. When receiving the remaining packets of the block,

the receiver computes the hash value of each packet starting from the last packet in the block,

compares the computed value to the retrieved one, if both are equal then that packet is considered

secure. After verifying the first packet the receiver starts using the received packets.

3 Overhead

The computation overhead is the number of additional information such as hashes and digital

signatures that the sender computes so as to authenticate the packets. According to our scheme

the sender computes N hash values for a stream of N messages and a single signature packet for

each block.

While the communication overhead means the total size of added information to the packets to

authenticate it. The overhead is an important metric to measure the efficiency of the authentication

schemes. In this section we show how to measure the communication overhead per packet according

to our scheme, the parameters that affect the overhead and how to choose the values of these

parameters.

Since each packet Pi in MC model contains hashes of previous packets, P1 contains no additional

hashes. While each of the remaining packets of the first slice {P2, P3, · · · , Pc} contains only a

single hash, that is, there are c − 1 hashes in the first slice. Each packet of the second slice

{Pc+1, Pc+2, · · · , P2c} contains 2 hashes, so there are 2c hashes in the second slice. Each packet of

the ith slice contains i hashes, where i ≤ ν except for P1, so there are c−1+2c+3c+· · ·+νc hashes

in the first ν slices; that is, ( ν2+ν
2

)c−1. Each packet of the remaining packets {Pνc+1, Pνc+2, · · · , PN}

contains ν hashes, so there are ν(N−νc) hashes in the packets {Pνc+1, Pνc+2, · · · , PN}. Accordingly,

the total number of hashes β that are appended to the packets of a a stream of size N messages

is computed as:

β = νN + (
ν − ν2

2
)c − 1 (3)
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Definition 1 The communication overhead per packet δ in bytes is the total size of the hashes

that are appended to the whole packets and the total size of the signature packets divided by N , so:

δ =
hβ + sγ

N
(4)

2

Multiplying the hash value h by β gives the total size of all hashes that are appended to the

whole packets, while multiplying the size of a signature packet s by the total number of signature

packets γ = dN
kc
e gives the total size of signature packets. Solving Equation (4) accordingly, gives

the following:

δ =
h

N
((

ν − ν2

2
)c − 1) + hν +

s

N

⌈

N

ck

⌉

(5)

The stream size N is assumed to be known in advance for Equations (3), 4 and (5). In the case

N is unknown or infinite, the following equation is given:

lim
N→∞

δ = lim
N→∞

{

h

N
((

ν − ν2

2
)c − 1) + hν +

s

N

⌈

N

ck

⌉

}

= hν +
s

ck
(6)

The overhead per packet δ decreases as the block size ck increases as Equation (5) shows. This

can be achieved by increasing the number of chains c, the number of slices k or both. Figure 3

depicts δ in terms of k for different streams when c = 16, ν = 3, s = 128 bytes and h = 64 bytes.

While the decrease of δ in terms of c is depicted in Figure 4 when k = 3.

We showed how to measure the overhead per packet according to MC model, now we show how

to determine the values of the parameters ν, µ and the set E(µ). There are two kinds of packet loss

the scheme need to resist, random and burst packet losses. The values of ν and µ must be chosen

so as to resist both losses. According to the expected loss ratio τ , the sender can choose the value

of ν so as to guarantee the receive of at least one packet of A(c, ν) with the desired probability

ϕ, which is equal to 1 − τ ν. So as to resist longer burst loss we increase the value of c instead of

increasing ν and µ so as to reduce the overhead as will be shown in Section 4.

The appropriate value of µ can be chosen in the same manner ν have been chosen. While

we choose the packets of E(µ) such that the distance in number of packets between Pj1 and Pjµ

is greater than the length of the expected burst b so as to guarantee that at least one packet is

received. Accordingly, choosing jµ − j1 ≥ b guarantees achieving that goal wherever the burst

occurs. The reason to choose the packets of E(µ) in terms of b is that Internet packet loss is burst
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Figure 3: Overhead per packet in terms of number of slices k for different streams when c = 16,
ν = 2, s = 128 and h = 64.

in nature, and if a packet Pi is lost, packet Pi+1 is likely to be lost [Sanneck et al., 2000], [Jiang et

al., 200], [Yajnik et al., 1996].

4 Loss Resistance and Number of Chains

Loss resistance ` is the maximum number of lost packets the scheme can sustain and still able

to authenticate the received packets. Loss resistance is another important metric to measure the

efficiency of the authentication scheme. The stronger resistance against packet loss is achieved,

the more efficient the scheme is. In this section we show how to measure the loss resistance ` that

our scheme can achieve and how to choose the appropriate value of the parameter c that has the

great influence of our scheme.

Packet Pi+(ν−1)c is the farthest packet that contains the hash H(Pi) of a packet Pi according

to MC model. So loss resistance is equal to the number of packets between Pi and Pi+(ν−1)c,

accordingly:

` = (ν − 1)c − 1 (7)

Equation (7) shows that stronger loss resistance ` is achieved by increasing c, which reduces the

overhead δ in the same time.

The number of chains c, plays the main role in the efficiency of our model in terms of overhead

and loss resistance. We choose the appropriate value of c in terms of the length of the expected

burst loss b. The scheme must resist the expected b; otherwise, the authentication of the received
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Figure 4: Overhead per packet in terms of number of chains c for different streams when k = 3,
ν = 2, s = 128 and h = 64.

packets that lies before the start of the burst becomes impossible. Accordingly, (ν − 1)c − 1 ≥ b,

that is:

c ≥

⌈

b + 1

ν − 1

⌉

(8)

5 Authentication Probability

The authentication probability is an important metric to measure the efficiency of the authen-

tication scheme. In this section we derive the authentication probability of our scheme using

binomial and 2-state Markov model and analyze the authentication probability in terms of several

parameters.

According to MC model, packet Pi is authenticated if at least one packet of E(µ) and at least

one packet of A(c, ν) are received, in addition to signature packet Psig. Note that for Pi to be

authenticated, all the whole packets of E(µ), A(c, ν) or both cannot be lost.

For the purpose of deriving the authentication probability of Pi, we assume the followings:

• the derivation applies to a single block.

• packets Pi and Psig1
are received.

• i+(ν−1)c ≤ j1. This means that the farthest packet that contains the hash of Pi lies before

the first packet of those that have hashes appended to Psig.
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Figure 5: 2-state Markov model for burst packet loss.

Let Pr{Pi} denote the authentication probability of packet Pi when Pi is received, then Pr{Pi} is

expressed as:

Pr{Pi} = Pr{Pi is verifiable | Pi is received } (9)

5.1 Authentication Probability Using Binomial Model

In binomial model, let τ denote the packet loss ratio. According to MC model, a packet Pi can

not be authenticated when all the packets of E(µ) or all the packets of A(c, ν) or both are lost.

This includes the following cases: first, when all A(c, ν) are lost and E(µ) is the combination of

lost and receive. The second case is when all E(µ) are lost and A(c, ν) is the combination of lost

and receive, while the last case is when all of A(c, ν) and all of E(µ) are lost.

The probability that all the packets of A(c, ν) are lost is τ ν, the probability that all the packets

of E(µ) are lost is τµ and the probability that all the packets of A(c, ν) and all the packets of E(µ)

are lost is τ ν+µ. Accordingly, the following Lemma gives the authentication probability Pr{Pi}

based on binomial model.

Lemma 1 Based on binomial model, the authentication probability of the packet Pi in a block of

MC model is given as follows, when i + (ν − 1)c ≤ j1:

Pr{Pi} = 1 − τ ν − τµ + τ ν+µ. (10)

Proof: The probability of the first case of those that can not authenticate Pi is τ ν(1 − τµ),

the probability of the second case is τµ(1 − τ ν), while the probability of the last case is τ ντµ.

Excluding the probabilities of these three cases gives the authentication probability: Pr{Pi} =

1 − (τ ν(1 − τµ) − τµ(1 − τ ν) − τ ντµ). Solving the last formula gives the desired result, Pr{Pi}. 2

To achieve high authentication probability Pr{Pi} of our scheme using binomial model the

values of ν and µ should be increased as the expected loss ration τ increases. Figure 6 shows the

required value of ν in terms of τ so as to always guarantee that at least one packet of ν is received

with different probabilities ϕ, 90%, 95%, 97% and 99%. The required value of ν increases as the

desired ϕ or the expected τ increase.
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Figure 6: Required value of ν in terms of τ to achieve the desired ϕ.

Figure 7 depicts the authentication probability Pr{Pi} in terms of ν for different values of µ

when the loss ratio τ = 5%. The required values of ν and µ increases as τ increases so as to achieve

higher authentication probability.

5.2 Authentication Probability Using 2-State Markov Model

The burst packet loss is well characterized using 2-state Markov model [Sanneck et al., 2000],

[Jiang et al., 200]. Figure 5 shows the 2-state Markov model where r represents the probability

that the next packet is lost, provided the previous one has arrived. q is the transition probability

from loss state to received state, and it is opposite to r. The transition matrix P of the 2-state

Markov model is expressed as:

P =

[

p00 p01

p10 p11

]

=

[

1 − r r

q 1 − q

]

(11)

where pij is the transition probability from state i to state j. The n step transition matrix P (n) of

the 2-state Markov model is as follows:

P (n) =

[

p
(n)
00 p

(n)
01

p
(n)
10 p

(n)
11

]

(12)

where p
(n)
ij is the n step transition probability from state i to state j.

According to 2-state Markov model depicted in Figure 5, receive and loss states are denoted 0

and 1, respectively. Table 2 shows the combination of the transition states when ν = 2, µ = 2 and

the transition probabilities that authenticate Pi, where Prec means the receive probability.
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when τ is 5%.

Note that packet Pi is always assumed to be received. While all the whole packets of A(c, ν) or

E(µ) can not be lost. As an example, the first case 00101 of Table 2 means that packets Pi, Pi+1

and Pj1 are received while packets Pi+c and Pj2 are lost. There is only one step from packet Pi

to Pi+1, there are (c − 1) steps from Pi+1 to Pi+c, there are (j1 − i − c) steps from Pi+c to Pj1

and (j2 − j1) steps from Pj1 to Pj2. So the transition probability of the first case of Table 2 is

p00p
(c−1)
01 p

(j1−i−c)
10 p

(j2−j1)
01 .

Based on 2-state Markov model, the number of cases m that authenticate Pi is:

m = (2ν − 1) × (2µ − 1) (13)

Since packet Pi is assumed to be received, its authentication probability Pr{Pi} is the total of

the transition probabilities. The first transition state starts from 0 since Pi is received, to either 0 or

1; that is, Pi+1 is either received or lost, where the value of g1 is either 0 or 1. The second transition

state goes from state g1 to either 0 or 1; that is, Pi+c is either received or lost. The remaining

transition states go from g2 to g3, then from g3 to g4, · · ·, until gν, where gl, l = 1, 2, · · · , ν, is either

0 or 1.

The next transition state goes from gν to either 0 or 1, which means Pj1 is either received or lost.

The next transition state goes from h1 to h2; that is, Pj2 is either received or lost. The remaining

transition states go from h2 to h3, then from h3 to h4, · · ·, until hµ, where hl, l = 1, 2, · · · , µ, is

either 0 or 1.

Theorem 1 Based on 2-state Markov model the authentication probability of the ith packet Pi in
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Table 2: Transition states and probabilities of Pi when ν = 2 and µ = 2.

A(c, ν) E( µ )
Pi Pi+1 Pi+c Pj1 Pj2 Prec

0 0 1 0 1 p00p
(c−1)
01 p

(j1−i−c)
10 p

(j2−j1)
01

0 1 0 0 1 p01p
(c−1)
10 p

(j1−i−c)
00 p

(j2−j1)
01

0 0 1 1 0 p00p
(c−1)
01 p

(j1−i−c)
11 p

(j2−j1)
10

0 1 0 1 0 p01p
(c−1)
10 p

(j1−i−c)
01 p

(j2−j1)
10

0 0 1 0 0 p00p
(c−1)
01 p

(j1−i−c)
10 p

(j2−j1)
00

0 1 0 0 0 p01p
(c−1)
10 p

(j1−i−c)
00 p

(j2−j1)
00

0 0 0 0 1 p00p
(c−1)
00 p

(j1−i−c)
00 p

(j2−j1)
01

0 0 0 1 0 p00p
(c−1)
00 p

(j1−i−c)
01 p

(j2−j1)
10

0 0 0 0 0 p00p
(c−1)
00 p

(j1−i−c)
00 p

(j2−j1)
00

a block of MC is given as follows, when i + (ν − 1)c ≤ j1:

Pr{Pi} =
∑

g,h







[

p0g1
p(c−1)

g1g2

ν−1
∏

l=2

(p(c)
glgl+1

)

]



p
(j1−i−(ν−1)c)
gνh1

µ−1
∏

l=1

(p
(jl+1−jl)
hlhl+1

)











(14)

where gl ∈ {0, 1}, l = 1, 2, · · · , ν, g = (g1, g2, · · · , gν) 6= (1, 1, · · · , 1). Also hl ∈ {0, 1}, l =

1, 2, · · · , µ, h = (h1, h2, · · · , hµ) 6= (1, 1, · · · , 1).

Proof: Since Pi is received, there is a single transition state from Pi to Pi+1, so the transition

probability is denoted p0g1
. There are (c− 1) transition states from Pi+1 to Pi+c, so the transition

probability is denoted p(c−1)
g1g2

. On the other hand, there are c transition states between every

two adjacent packets of A(c, ν) − {Pi+1}, so we have transition probability
∏ν−1

l=2 (p(c)
glgl+1

), and in

total we have transition probability p0g1
p(c−1)

g1g2

∏ν−1
l=2 (p(c)

glgl+1
). Also a signature packet is assumed

to be received and µ hashes of previous packets are appended to it. Since i + (ν − 1)c ≤ j1, we

have (j1 − i − (ν − 1)c) transition states from Pi+(ν−1)c to Pj1, and the transition probability is

denoted p
(j1−i−(ν−1)c)
gνh1

. There are (j2−j1) transition states from Pj1 to Pj2, · · · , (jµ−jµ−1) transition

states from Pjµ−1
to Pjµ

, so we have transition probability
∏µ−1

l=1 (p
(jl+1−jl)
hlhl+1

). The total of the whole

transition probabilities gives the desired result. 2

The authentication probability Pr{Pi} of Theorem 1 is applied for a single block of MC model,

while Pr{Pi} can be applied for any block of MC model, which is given as follows:

Corollary 1 When any signature packet Psigu
is received, where 1 ≤ u ≤ γ and i+(ν−1)c ≤ j1 <

j2 · · · < jµ < uck, based on 2-state Markov model the authentication probability of the ith packet

Pi is given as follows:

Pr{Pi} =
∑

g,h







[

p0g1
p(c−1)

g1g2

ν−1
∏

l=2

(p(c)
glgl+1

)

]



p
(j1−i−(ν−1)c)
gνh1

µ−1
∏

l=1

(p
(jl+1−jl)
hlhl+1

)











(15)
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Figure 8: Authentication probability using 2-state Markov model in terms of µ, when c = 8, k = 5,
r = 0.1 and q = 0.8.

where gl ∈ {0, 1}, l = 1, 2, · · · , ν, g = (g1, g2, · · · , gν) 6= (1, 1, · · · , 1). Also hl ∈ {0, 1}, l =

1, 2, · · · , µ, h = (h1, h2, · · · , hµ) 6= (1, 1, · · · , 1).

Proof: Similar to that of Theorem 1 2.

We show the effect of the parameters ν, µ, c and the two probabilities r and q of Markov model

over the authentication probability Pr{Pi} of our scheme using 2-state Markov model. The values

of these parameters are chosen as follow:

• 1 ≤ ν ≤ 3, the number of packets containing the hash of a packet Pi,

• 2 ≤ µ ≤ 4, the number of hashes appended to a signature packet,

• 2 ≤ c ≤ 32, the number of chains in MC model,

• 0.1 ≤ q ≤ 0.9, the transition probability from loss to receive,

• r = 0.001, 0.01, 0.1, the transition probability from receive to loss.

Figure 8 depicts the authentication probability in terms of µ for different values of ν when

c = 8, k = 5, r = 0.1 and q = 0.8, where the authentication probability increases when µ

increases for all values of ν. The more hashes are appended to the signature packet, the higher the

authentication probability is achieved. Figure 8 also shows that higher authentication probability

is achieved when more packets contain the hash of Pi.

The authentication probability increases as the transition probability q increases for all values

of µ as Figure 9 depicts. Also the authentication probability decreases as the transition probability
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Figure 9: Authentication probability using 2-state Markov model in terms of q, when ν = 2, c = 8,
k = 5 and r = 0.1.

r increases for all values of µ as Figure 10 shows. Increasing the transition probability q achieves

higher authentication probability since more packets are received. The transition probability r is

opposite to q; that is, increasing r achieves lower authentication probability since more packets are

lost.

Figure 11 depicts the authentication probability in terms of number of chains c. The greater

the value of c, the greater µ can be chosen, this in turn will increase the authentication probability.

Figure 11 is depicted using larger values for µ as c increases; that is, when c = 4, the value of

µ = 2 while when c = 8, the value of µ = 4 and so on.

5.3 Loss Probability using 2-state Markov Model

In this section we derive the loss probability of E(µ) using 2-state Markov model. The loss

probability here means the probability that all the whole packets of E(µ) are lost. Let ρ1 be

the loss probability of the packets of E(µ) that belong to any block of MC. According to 2-state

Markov model there are (j2 − j1) transition states from Pj1 to Pj2 and when these two packets are

lost, its transition probability is denoted p
(j2−j1)
11 , while there are (j3 − j2) transition states from

Pj2 to Pj2, · · ·, (jµ − jµ−1) transition states from Pjµ−1
to Pjµ

, so ρ1 is given as:

ρ1 =
µ−1
∏

i=1

(p
(ji+1−ji)
11 ). (16)

If the number of transition states between Pji
and Pji+1

is increased, the loss probability ρ1 of

the packets of E(µ) becomes lower. That can be achieved by choosing Pji
far from Pji+1

, where

1 ≤ i ≤ µ − 1.
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Figure 10: Authentication probability using 2-state Markov model in terms of r, when ν = 2,
c = 8, k = 5 and q = 0.8.

On the other hand, the loss probability of E(µ) against burst loss can also be discussed using

2-state Markov model, where the loss probability here means the probability that all the whole

packets of E(µ) are lost as a consequence of burst loss. Let ρ2 be the loss probability of E(µ)

as a consequence of burst loss, where E(µ) belongs to any block of MC. The condition for the

burst length b that results in loosing all the whole packets of E(µ) is given as jµ − j1 < b. There

is one transition state to the start of the burst of length b from the packet that preceeds it and

its transition probability is denoted as p01. There are (b − 1) transition states from the start of

the burst of length b to its end and the transition probability is denoted as p
(b−1)
11 . There is one

transition state from the end of the burst of length b to the packet that follows and its transition

probability is denoted as p10. According to 2-state Markov model, ρ2 is given as follows:

ρ2 = r · (1 − q)b−1 · q. (17)

So as to reduce the loss probability ρ2 of E(µ) as a consequence of burst loss of length b, the

number of transition states between Pj1 and Pjµ
should be more than (b−1). That can be achieved

by choosing jµ − j1 ≥ b, which guarantees that at least one packet of E(µ) is received wherever

the burst of length b occurs.

6 Buffer Capacity and Delay

The sender and receivers delays in number of packets as well as the buffers capacities are important

metrics to measure the efficiency of the authentication scheme specially in real time streaming,

253



0.88

0.9

0.92

0.94

0.96

0.98

1

5 10 15 20 25 30

a
u

th
e

n
tic

a
tio

n
 p

ro
b

a
b

ili
ty

number of chains (c)

maximum mu

Figure 11: Authentication probability using 2-state Markov model in terms of c, when ν = 2,
k = 5 r = 0.1 and q = 0.8.

where the receivers usually do not buffer large amounts of unconsumed data. In this section we

show the effect of MC model on the delays and buffers capacities for both the sender and the

receivers.

6.1 Sender’s Buffer and Delay

Since the signature packet is sent at the end of the block of MC model, the sender experiences

a single packet delay. The sender does not need to keep the packets in the buffer, instead he

keeps the hash values of some packets that are necessary to compute the hash values of succeeding

packets and the signature packets. Accordingly, the requested buffer size is equal to the scope of a

packet Pi in addition to µ hashes that are necessary to compute the signature packet. The scope

of a packet Pi is defined as the maximum length from a packet Pi to the other packet Pj that

contains H(Pi), where j > i. In our model the hash of Pi is appended to Pi+(ν−1)c at most, so the

scope of Pi is (ν − 1)c + 1. Accordingly, the sender’s buffer size α is given as:

α = (ν − 1)c + µ + 1 (18)

This equation shows that the sender’s buffer capacity increases as c increases.

6.2 Receiver’s Buffer and Delay

The necessary buffer size and delay for a receiver to authenticate the received packets depends on

where a burst loss occurs, its length and the block size of the authentication scheme. If a burst

loss includes a signature packet, the necessary buffer size and delay are increased.
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Let bi, i = 1, 2, · · · , n, denote the length of the burst loss i, where n is the number of bursts.

Also, let θ and α1 denote the number of consecutive signatures loss and the number of packets a

receiver needs to hold in the buffer. Then, α1 is equal to receiver’s delay.

If two consecutive signature packets Psigj−1
and Psigj

are received, where 1 < j ≤ γ, the

number of packets a receiver must wait for until he is able to authenticate the received packets is

α1 = kc−
∑n

i=1 bi. The reason is that there are kc packets preceding a signature one and the total

number of lost packets is subtracted.

When Psigj
is received, provided that all the signatures (Psigj−θ

, · · · , Psigj−1
) are lost, the delay

that a receiver must wait for is equal to his buffer capacity and is given as:

α1 = (θ + 1)ck −
n

∑

i=1

bi (19)

Equation (19) holds whether the receivers have different packet losses and different buffer capacities

or the same. Also it shows that α1 increases linearly as ck and θ increase.

7 Evaluation

In this section we apply our scheme to the two case studies proposed by the authors of the EMSS

[Perrig, et al., 2000] and compare our scheme in terms of hash chain construction, loss resistance,

authentication probability and sender’s delay with previously proposed schemes, AC [Golle et al.,

2001] and Signature Amortization using Information Dispersal Algorithm (SAIDA) [Park et al.,

2003].

7.1 Case Studies

The first case study proposed by the authors of EMSS is as follows:

A municipality broadcasts data over the Internet of its traffic sensors that are distributed over

streets. The requirements of such a system are:

• The data rate of the stream is about 8 Kbps, about 20 packets of 64 bytes each are set every

second.

• The packet drop rate is at most 5%, where the average length of burst drops is 5 packets.

• The verification delay should be less than 10 seconds.

To construct MC model, we choose ν = 2, so that at least one packet of A(c, ν) arrives with

probability equal to 1 − 0.052 = 0.9975. The value of µ is also chosen as 2, while the number

of chains is chosen as c = 20 and the number of slices k = 10. Being able to determine these
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parameters we can measure the overhead per packet δ from Equation (5) and the authentication

probability Pr{Pi} from Equation (14). Considering the number of packets in a stream N = 10000,

the hash type is SHA − 512 and sending the signature of type RSA − 1024 twice in each packet,

then δ ∼= 129.15 and Pr{Pi} = 0.9971. Using the same hash value the EMSS is using in their case

studies, which is 10 bytes, then δ ∼= 21.26. While the overhead of EMSS in the first case study is

22 bytes and verification probability is 98.7%. Using the same hash value that EMSS used in this

case study, our scheme achieves higher authentication probability with less overhead.

The second case study is a real-time video broadcasting with the following requirements:

• The data rate of the stream is about 2 Mbps, about 512 packets of 512 bytes each are set

every second.

• Some receivers experience packet drop rates up to 60%, where the average length of burst

drops is 10 packets.

• The verification delay should be less than 1 seconds.

Choosing ν = 3, then at least one packet of A(c, ν) arrives with probability equal to 1− 0.63 =

0.784. The value of µ is chosen as 4, while the number of chains remains c = 20 and the number

of slices k = 10. Considering the number of packets in a stream N = 10000, the hash type is

SHA − 512 and sending the signature of type RSA − 1024 twice in each block, then δ ∼= 192.89

and Pr{Pi} = 0.9763. Using the same hash value the EMSS is using in their case studies, which

is 10 bytes, then δ ∼= 31.22. While the overhead of EMSS in the second case study is 55 bytes and

verification probability is 97%. When the loss rate and burst loss increase and using the same hash

value that EMSS uses in this case study, our scheme achieves higher authentication probability

and lower overhead.

7.2 Hash Chain Construction

The EMSS and AC schemes do not specify how many hashes nor what packets should have hashes

appended to the signature packet. EMSS determines the best case of the chain to achieve strong

resistance against packet loss by simulation.

AC does not give a clear method to determine the number of packets to be inserted between

every two packets of the original chain.

Instead of appending the hash values of each packet to other packets, SAIDA encodes the hash

values and appends the n encoded segments to n packets of a block. A receiver needs at least m

packets among the n sent packets to be able to reconstruct the authentication data for the whole
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received packets of a block. Although the communication overhead is reduced, the computation

resources are high. SAIDA uses the same technique to encode the signature packets.

Our model consists of multiple connected chains and clearly specifies ν, the number of packets

that contain the hash of pi in terms of number of chains c. Also our solution specifies what packets

should have hashes µ appended to a signature packet and how to choose them. The value of the

number of chains c is determined in terms of expected burst length. Being able to determine the

values of the parameters (ν, µ, c) and construct the hash chain achieve an efficient performance.

7.3 Loss Resistance

Loss resistance achieved by an EMSS depends on the way that the hash of a packet is appended

to other packets. In the case of the scheme “5− 11− 17− 24− 36− 39”, that is, the hash of Pi is

appended to Pi+5, Pi+11, Pi+17, Pi+24, Pi+36, and Pi+39, an EMSS achieves loss resistance equal to

i+39− i−1 = 38 packets. For EMSS to increase loss resistance the hash of Pi should be appended

to more packets, which in turn increases the overhead.

The AC achieves loss resistance equal to p(a− 1), where a represents the strength of the chain,

and p represents the sender buffer size in the AC scheme. When an augmented chain Ca,p = C3,6,

the loss resistance is equal 12 packets, where p packets are inserted between every two packets of

the original chain Ca. The way AC can increase the resistance against packet loss is by increasing

p or a, which means to append more hashes to other packets that in turn increases the overhead.

SAIDA achieves loss resistance equal to n − m, where n is the number of packets in a block

and m is the minimum needed number of packets to reconstruct the authentication information of

the received packets. SAIDA achieves stronger loss resistance by adjusting n and m keeping the

space overhead fixed, but computation resources are still high.

Our scheme on the other hand, achieves loss resistance equal to ` = (ν − 1)c − 1 as given by

equation (7). Note that ` does not depend on the number of hashes appended to each packet and

requires no extra computation resources, rather it depends on the number of chains c. Stronger

resistance against loss is achieved by increasing c, which reduces the overhead. The major advan-

tage of our scheme over those previously proposed is achieving stronger resistance against loss and

reducing the overhead in the same time.

7.4 Authentication Probability

A recurrence authentication probability formula for EMSS and AC had been derived in case of

independent packet loss. The authentication probability of EMSS and AC depend on two factors,

the number of hashes appended to a signature packet and the number of packets contain the
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hash of a packet Pi. Increasing these two factors achieves higher authentication probability, which

increases the overhead.

The authentication probability of SAIDA depends on the block size. Increasing the block size

achieves higher authentication probability.

The authentication probability of our scheme had been derived using 2-state Markov model and

it depends on ν, µ and c. Increasing ν and µ achieve higher authentication probability, also increas-

ing c makes it possible to choose more values of µ, which in turn achieves higher authentication

probability and reduces the overhead in the same time.

7.5 Sender’s Delay

The delay on a sender using EMSS scheme is equal to one packet since the signature packet is

the last one of a block and depends on previously computed hashes. The sender experiences a

delay equal to p packets using AC scheme, where p represents the sender buffer size in AC scheme.

Using SAIDA, the sender experiences a delay equal to n packets, where n represents the number

of packets in a block. Our scheme, on the other hand, using MC model signs the last packet of a

block. Therefore, the sender experiences a delay of a single packet.

8 Related Works

Digital signature achieves non-repudiation and authenticity for the received messages. Relying on

digital signature, several schemes have been introduced to authenticate multicast streams. The

schemes that sign each packet separately are impractical due to high computation and commu-

nication overhead and delay on both sender and receivers [Rohatgi, 1999], even if faster signing

algorithms are used [Wong, 1999].

The alternative is to use Message Authentication Codes (MAC), such as TESLA introduced by

[Perrig et al., 2000]. TESLA requires time synchronization between the sender and the receivers,

which might not be feasible in large multicast groups.

Another alternative schemes is to divide the stream into many blocks, sign a single packet in

each block and link the rest of the packets in the block to the signed one using multiple hashes

links, such as Authentication Tree [Wong, 1999], EMSS [Perrig et al., 2000] and AC [Golle et al.,

2001] schemes. These schemes are known as signature amortization, which its security is proved

by [Gennaro et al., 1997].

The Authentication Tree computes the hash of each packet in a block to form the leaf nodes of

a tree. The parent nodes are computed as the hashes of their children. A signature is computed

as the root. Since each packet contains a signature with the authentication information so as to
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be individually verifiable, that requires high amount of overhead.

EMSS overcomes weak loss resistance of the schemes introduced by the authors of [Gennaro et

al., 1997], by storing the hash of each packet in multiple locations and appending multiple hashes

to the signature packet. This method according to [Chan, 2003] and [Miner et al., 2001], increases

the overhead. The EMSS determines the block size and the number of hashes to append to each

packet by experiments. It also chooses the location of these hashes randomly.

The AC scheme was introduced to achieve stronger burst loss resistance by using a similar

strategy to that of the EMSS, but the locations of the appended hashes are deterministic. The

AC does not include a means of choosing the number of packets to be inserted between each pair

of the original chain. More details about the AC analysis is found in [Alain et al., 2002], where it

is applied to two case studies and compared to the EMSS.

The authors of [Chan, 2003] and [Miner et al., 2001] give an analysis of hash chains based on

graph theory. They show that to increase the authentication probability, the number of paths from

any packet to the signature one should be increased.

In Piggybacking scheme [Miner et al., 2001], a group of n packets are partitioned into r equal-

sized subgroups called classes S. These classes have different priorities. The first packet in the

highest priority class is signed. The main aim of Piggybacking is to resists multiple bursts xi of

size at most b.

To reduce the overhead of amortization schemes, SAIDA [Park et al., 2003] uses erasure codes

to achieve that goal. The computation resources, on the receivers, of the Forward Error Correction

(FEC) in SAIDA is high comparing to that of hashes in other amortization schemes [Cucinotta et

al., 2003]. The fast computation and communication cost of the hashes [Wong, 1999], [Perrig et

al., 2003], [Stallings, 2003] makes amortization schemes widely adopted.

9 Conclusion

We introduced a multiple connected chains MC model for signature amortization to authenticate

multicast streams and showed how to determine the values of the parameters of our scheme that

influence the performance of the authentication scheme. We also showed how to measure the

efficiency metrics such as the authentication probability, the loss resistance, the overhead and the

sender and the receivers buffer capacities and delays. The loss probabilities of the packets that have

their hashes appended to the signature packet have been introduced. Being able to determine the

values of the parameters made it possible to construct the best construction of our model in advance

that achieves the desired performance. Our scheme achieves higher authentication probability by

increasing the number of appended hashes to other packets and to the signature packet. Our
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scheme achieves stronger loss resistance against burst packet loss and reduces the overhead in the

same time by increasing the number of chains of MC model.

As future works, we will discuss the optimal values of ν, µ, c and k. More derivation and

analysis of the authentication probability of our scheme still necessary. It is also interesting to

achieve empirical study to compare the theoretical results to the experimental ones. Compare the

performance of our scheme with that of other schemes is our next research attempt.
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