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Abstract

In this paper, we introduce a new approach to modeling technologies
in productivity analysis. The approach uses pairs of associated input
and output sets. It allows for different degrees of convexity in the
overall production possibility set. Using blocking and antiblocking
theory from combinatorial optimization, we also develop the dual
representation of the technology. We show how this modeling frame-
work contains the classical FDH and BCC models together with a
variety of new models, including FDH models with assurance regions
and models with diseconomies of scope (specialization gains). In all
cases, the resulting Farrell efficiency programs can be formulated as
linear programming problems.
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AMS mathematics subject classification: 91B02.

1 Introduction

The mathematical programming approach to efficiency evaluation, most no-
tably Data Envelopment Analysis (DEA), has proved useful in numerous
applications. Part of its success is due to the wide class of production
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structures that can be approximated using linear programming. The orig-
inal model by Banker, Charnes and Cooper [6], the so-called VRS model
makes a (minimal extrapolation) approximation of an arbitrary production
possibility set that is convex and satisfies free disposability of inputs and
outputs.

From a theoretical as well as an applied point of view, however, even the
convexity assumption can be questioned. In particular, convexity assumes
away (global) economies of scale and scope which are essential in many
microeconomic theories and which have been observed in many industries.

In this paper we introduce a new modeling approach, the so-called con-
vex pairs approach. A convex pair is defined by a convex input possibility
set and a convex output possibility set such that all input vectors in the
input set can produce all output vectors in the output set. We represent
the technology as a union of convex pairs.

This approach allows us to work with convexity around one or more
observations without assuming convexity across all observations in input
space, in output space or in the full production space. Thus, for example,
it allows us to introduce assurance regions and other dual information into
the FDH set-up by Tulkens [35], who fully dispenses with convexity, i.e. the
set-up operates only with free disposability, such that comparison is only
possible by domination. More generally, the new approach enables us to
model a spectrum of technologies ranging from the fully convex BCC tech-
nology to the non-convex FDH technology. Modelling using convex pairs
hereby extends previous attempts to dispense with convexity. In particular,
the convex projection approach of Petersen [27], Bogetoft [7], and Bogetoft,
Tama and Tind [11] all dispensed with the assumption of global convexity
while at the same time presuming convexity of input and output sets. The
convex pairs approach dispenses with the latter assumption by assuming
that the input sets and output sets may themselves be non-convex unions
of convex subsets.

Other attempts have been made to relax the standard convexity assump-
tion in DEA. Chang [15] and Post [28] have considered the cases where the
input isoquants or the output isoquants but not both are assumed con-
vex. Additional related work has been done by Kuosmanen [23] and [24]
in which convexity is replaced by so-called conditional convexity. Post [28]
considers a convex transformation of a non-convex possibility set by means
of so-called transconvex functions.

An advantage of the new approach here is that efficiency scores can still
be calculated using linear programming. Likewise, realloaction analyses can
be performed using linear programming. This is the case even though the
underlying production possibility set is no longer polyhedral convex. We
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demonstrate this using results from disjunctive programming.
Last but not least, dual representations can be developed using the

blocking and antiblocking theory by Fulkerson [20]. This is a nice dual-
ity theory that takes advantage of the fact that the sets belong to the
nonnegative orthant. The blocking and antiblocking theory gives partic-
ularly nice support to the creation of intersections and convex unions of
individual basic sets. These operations correspond to the most common
approaches to extend the production technology from indiviual basic sets
In the dual space, these operations are simply reversed. Hence, the mod-
elling and analysis can be done in the space that are most convenient to
work with. Moreover, variations in the dual sets lead to easily recognizable
variations in the primal space. Dispensing with positivity, for example, will
be equivalent to introducing weak free disposability instead of strong free
disposablity.

We commence in Section 2 with the basic building blocks, the pairs of
convex input and output sets. In Section 3 we discuss the use of convex pairs
in productivity modeling. In Section 4, we develop dual representations. We
also discuss the advantage of making convex unions in the primal space and
intersections in the dual space. LP formulations in primal as well as dual
spaces are provided in Section 5. Illustrating experiments are performed in
Section 6 and final remarks are given in Section 7.

2 Convex Pairs

The idea of the new approach is to model the production possibilities as a
union of pairs of convex input and output sets.

Consider a set N of units or pairs or subsets. N indexes the building
blocks we use to construct the technology. In an application, a unit could
be a decision making unit (DMU) or a group of decision making units.

For each i ∈ N let Li be a set of r dimensional input vectors x and let
Pi denote a set of s dimensional output vectors y. For the inputs we assume
that Li satisfies

(Li + R
r
+) ∩ R

r
+ = Li. (1)

This means that Li is nonnegative and satisfies free disposability in the
input space. Moreover Li is assumed to be convex.

Similarly for the outputs we assume that Pi satisfies

(Pi − R
s
+) ∩ R

s
+ = Pi. (2)

i.e. Pi is also nonnegative and satisfies free disposability in the output space.
Also Pi is additionally assumed to be convex.
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The input and output sets are associated as a pair (Li, Pi) (or equiva-
lently Li ×Pi) by the assumption that any input vector x ∈ Li can produce
any output vector y ∈ Pi.

Finally, consider the full technology T i.e. T = {(x, y) ∈ R
r+s
+ | x can

produce y}. In the convex pair approach we model T as the union of the
feasible pairs, i.e.

T = ∪i∈N (Li, Pi).

The convex pairs approach suggested here is formally defined by the set of
convex pairs, i.e. the set {(Li, Pi)|i ∈ N}, and the convention that the full
production set is the union of these sets, T = ∪i∈N (Li, Pi).

In the convex pairs approach we do not ignore the possibility of local
convexity. We do however dispense with convexity of the full production
set or the full input and output isoquants.

The main reasons for allowing convexity, if not globally then locally, are
that

Convex technologies play a significant role in large parts of micro-economic
theory and operations research, and there has been a long discussion of the
pros and cons of different types of more or restricted convexity in productiv-
ity analysis. Contributions to this discussion have already been mentioned
in the introduction.

The purpose of the present paper is not to discuss the alternative con-
vexity assumptions per se, but rather to present an approach that enrich
our ability to handle different types of restricted convexities. At the risk of
being sloppy, it suffices therefore to state some of the primary motivation
for and arguments against convexity.

The main reasons for allowing convexity, if not globally then locally,
includes:

• Convexity occurs naturally in some contexts. In particular, this may
be the case if several (linear) production processes are available and
the organization can freely decide how much time and other resources
to allocate among them. From a theoretical perspective, this corre-
sponds to a justification of convexity from a set of more elementary
and intuitive axioms, viz divisibility and additivity as in for example
Arrow and Hahn [4].

• Convexity provides a reasonable approximation in some contexts. In
particular, if the data available on a given DMU is an aggregation of
the processes used in different subunits or time intervals, convex com-
binations can approximate alternative but non-observed aggregations
as suggested above.
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• Convexity is sometimes an operationally convenient, but result wise
harmless assumption. Thus if we are interested in cost efficiency,
revenue efficiency or profit efficiency, we can often introduce convex
input requirement sets, output requirement set or full input-output
possibility sets without affecting the results. This presume of course
that prices are fixed (independent of quantities, cf. below).

On the other hand, there are numerous theoretical as well as practical
reasons for dispensing with global convexity assumption in productivity
analysis, e.g.

• Convexity requires divisibility (since a convex combination is basically
an addition of downscaled plans) which may not be possible, e.g. when
different investments are considered or set-up times and switching
costs are present. Farrell [19] early noted the problems of divisibility.

• Convexity assumes away economies of scale and scope (specialization)
which are experienced in many industries.

• Prices may depend on the quantities such that the introduction of
convexity is not a harmless operational convenience. This was early
observed in relation with the FDH technology by Wunsch [37] and
more recently Cherchye et al. [18] and Kuosmanen and Post [26]
have pointed towards imperfect competition (i.e., price-making rather
than price-taking) and risk aversion under price uncertainty as circum-
stances under which the organizations objectives become non-linear
and hence non-convexities of the technology influence the optimal pro-
duction plan

Now, given the model of the technology, an efficiency index can be in-
troduced in the usual way. Let (x0, y0) ∈ R

r×s be the input-output vector
we want to evaluate. Traditionally DEA operates with an input oriented
efficiency score as well as an output oriented efficiency score by means of
a Farrell index. In the current setting the input oriented efficiency score is
the optimal value of the program

min{θ ∈ R | (θx0, y0) ∈ T}. (3)

By the structure of T this is equivalent to

min{θ | ∃i ∈ N where (θx0, y0) ∈ (Li, Pi)}

or simply

min
i∈N

min{θ | (θx0, y0) ∈ (Li, Pi)}.

215



Hence, the efficiency score can be determined by solving |N | optimiza-
tion problems, one for each of the pairs of sets.

In the next section, we will discuss how to construct the input-output
sets in some practical cases. Then, in Section 4, we develop alternative
primal and dual representations of the technology, and use these represen-
tations to develop alternative LP formulations of the efficiency measurement
problem above.

3 Technologies using Convex Pairs

Many different production structures can be modeled using the convex pairs
framework. To emphasize this we shall now give a series of examples.

3.1 FDH model

Initially, we note that the free disposability hull (FDH) model is a special
case of the present approach. Consider a set I of decision making units,
DMU’s, and for each i ∈ I let xi denote the nonnegative input vector
used and yi the nonnegative output vector produced by i’th DMU. Free
disposability now implies that the set of inputs

Li = {x | x ≥ xi}

can also produce the set of outputs

Pi = {y ≥ 0 | y ≤ yi}

for all i ∈ I. So, geometrically Li is a translation of the nonnegative orthant
of the input space. In the output space Pi is a box, which has full dimension
if and only if all elements in yi are strictly positive. See Figure 1 for an
illustration.
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Figure 1: Feasible input-output combinations with free disposablity.

If free disposability is the only assumption made, the resulting technol-
ogy

T = ∪i∈I(Li, Pi)
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is simply the FDH model introduced by Tulkens [35].

3.2 FDH model with prices

Next, let us consider an FDH model with partial price information. The
total lack of substitution possibilities presumed in the FDH model is rather
extreme. Often, some substitution among the inputs and among the outputs
is possible around a given production plan. To model this, we may to every
DMU i ∈ I attach a set of relative prices on the input side, Ui ⊆ R

r
0, and a

set of relative prices on the output side Vi ⊆ R
s
0 and let the input set be

Li = {x|ux ≥ uxi ∀u ∈ Ui}

and the output set be

Pi = {y|vy ≤ vyi ∀v ∈ Vi}.

This formulation can be used in a number of different contexts depending
on the price information at hand. In the DEA literature, the so-called
assurance regions suggested by Thompson et al. [33] has been widely used.
In this set-up, upper and lower bounds are imposed on the relative prices,
i.e.

Ui = {u ∈ R
r
0|α

u
ihk ≤

uh

uk

≤ βu
ihk h, k = 1, .., r, h < k}

Vi = {v ∈ R
s
0|α

v
ihk ≤

vh

vk

≤ βv
ihk h, k = 1, .., s, h < k}.

A specific example of this is given in Figure 2 below. We assume here
that two types of outputs correspond to monetary amounts in each of two
periods. The difference between the hyperplanes spanning a given Pi in
this case may reflect the difference between the borrowing and the lending
interest rates.

Other specifications of the sets Ui and Vi are possible. Thus, Kuosmanen
and Post [25] consider price domains specified by polyhedral convex cones
with zero vertex.

3.3 Local Substitution

Of course the substitution allowance in the FDH model with partial price
information can easily be combined with the lack of substitution allowance
in the original FDH model by using pairs of convex sets given by for example

Li = {x|uix ≥ uixi ∀ui ∈ Ui and x ≥ (1 − ∆i)xi}

Pi = {y|viy ≤ viyi ∀vi ∈ Vi and y ≤ (1 + δi)yi}.
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Figure 2: Feasible output combination with an (imperfect) capital market.

The idea here is that the substitution possibilities are only valid locally -
when we try to lower any input more than the fraction ∆i ∈ [0, 1] from
its original level or increases any output more than the fraction δi from its
original level, the local substitution possibilities are no longer valid and we
return to the extreme case of no further substitution.

In the previous formulations of convex pairs, we assumed that dual par-
tial price information is available and that the convex sets can be con-
structed from these. In many applications, however, the information at
hand may instead be available in primal form. To model a context with

primal substitution information, we may to every DMU i ∈ I attach a set
of possible input vectors, Xi ⊆ R

r
+, and a set of possible output vectors,

Yi ⊆ R
s
+ and let the input set be

Li = conv(Xi) + R
r
+

and the output set be

Pi = (conv(Yi) − R
s
+) ∩ R

s
+.

Thus for example, in an agricultural context, different feeding plans can be
used to span the input set in milk production and different land use plans
can generate the output set of a crop farmer.

3.4 Convex Projections

A fourth instance of the convex pairs set-up is derived by assuming free
disposability and convex projection in the input and output space, cf. Pe-
tersen [27], Bogetoft [7] and Bogetoft et al. [11]. Consider again a set I of
DMUs, and for each i ∈ I let xi denote the nonnegative input vector used
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and yi the nonnegative output vector produced. Free disposability now im-
plies that the set of inputs Li = {x | x ≥ xi} can also produce the set of
outputs Pi = {y ≥ 0 | y ≤ yi} for all i ∈ I. A basic question is: What is the
minimal possibility set T containing data and satisfying free disposability
such that the input projections L(y) = {x|(x, y) ∈ T} and output projec-
tions P (x) = {y|(x, y) ∈ T} are convex for all (x, y) ∈ T ? To emphasize
the symmetry of the framework let ] denote the convex union operation,
i.e. A ]B is the smallest convex set conv(A ∪B) containing A and B, and
define the following two pairs of sets for arbitrary indices i, j ∈ I :

(Ln, Pn) = (Li ∩ Lj, Pi ] Pj) (4)

and

(Lm, Pm) = (Li ] Lj, Pi ∩ Pj). (5)

Due to free disposability any x ∈ Li∩Lj and y ∈ Pi∪Pj constitute a feasible
input-output combination. Since the production set P (x) is required to be
convex this is also true for any pair (x, y) ∈ (Ln, Pn). Similarly any pair
(x, y) ∈ (Lm, Pm) is a feasible combination, since the consumption set L(y)
is convex.

Hence, (4) and (5) generate pairs of sets consisting of feasible input-
output combinations in addition to the original pairs (Li, Pi) for i ∈ I. This
approach is continued in an iterative procedure to be outlined below.

If Li ⊆ Lj and Pi ⊆ Pj for some i, j ∈ I then the pair (Lj, Pj) is said
to dominate the pair (Li, Pi). In this case all input-output combinations
of the i’ th pair are included in the j’th pair and index j may be removed.

This may be formalized by the following

Procedure

Start: Let N1 = I and l = 1.
Step 1: Create by (4) and (5) all new pairs (Ln, Pn) and (Lm, Pm) based on
existing pairs with indices i, j ∈ Nl.
Step 2: Let Nl+1 consist of all pairs in Nl together with the new ones created
in Step 1.
Step 3: Remove from Nl+1 any pair which is dominated by another pair in
Nl+1.
Step 4: If Nl+1 = Nl no more non-dominated pairs can be generated and
the procedure terminates. Otherwise let l := l + 1 and go to Step 1.

The procedure creates a series of indices. This series, to be denoted
by N , may be finite or infinite dependent on possible fulfillment of the
termination criterion in Step 4. Now the resulting possibility set T defined
by

T = ∪i∈N (Li, Pi)
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is by construction the smallest possible possibility set satisfying the desired
properties: It contains the input-output points of the DMU’s, satisfies free
disposability and has convex projections. More details including conditions
for finiteness of the procedure may be found in Bogetoft et al. [11].

3.5 Specialization and Diseconomies of Scope

In general, the use of convex pairs allows us to model a series of phenomena,
that are relevant in applications. In particular, we can have a model with
gains from specialization and diseconomies of scope. This conflicts with
the idea of convex isoquants, but not with the idea of having isoquants
that are unions of convex subsets, as illustrated in figure 3 below, where
technology (L1, P1) has a relative advantage specialization in the use of x1

and production of y1 compared to technology (L2, P2).
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Figure 3: Gains from specialization and diseconomies of scope.

3.6 In-comparabilities

Also, we can model the occurrence of in-comparabilities - or ordinal compa-

rabilities only. The different convex pairs can simply correspond to different
values of a categorical or ordinal variable, e.g. quality levels. Convexifica-
tion of unions of such subsets makes little sense since it would lead to
average categorical or ordinal values which is meaningless by the definitions
of categorial and ordinal variables, see Roberts [29]. Along the same line,
we may think of different sets as belonging to different sub-technologies or
investment types. Again, it may not be relevant to convexify across such in-

vestments. Thus for example, if two museums, one having invested mainly
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in modern art and another having invested mainly in impressionists, are
both able to generate the same output in terms of revenue, visitors etc., it
does not mean that an average art museum with half modernist and half
impressionist art may be able to attract the same number of visitors or
generate the same revenue. Figure 3 could illustrate this as well if we think
of x1 and x2 as the amount of modern art and impressionism, respectively.

3.7 Further Perspectives

Using a series of examples, we have shown above how convex pairs can be
used to approximate the information we have about the technology in many
cases. We close this section with a few more methodological remarks.

From a conceptual perspective, we believe that the modeling via a union
of convex pairs may be interesting. Like classical preference theory, cf. e.g.
Bogetoft and Pruzan [9], classical production theory with convex production
sets has come under attack in the productivity analysis literature. It is
often felt that the classical paradigm is much too restrictive to aid real
world evaluations. Indeed, it can be argued that one should not necessarily
aim at making consistent and comprehensive comparisons at all costs. In
particular, strong arguments can be made for in-comparabilities (like in
the cases with categorical or ordinal properties). Also, intransitivities may
exist in the sense that local comparisons and convexifications may be natural
without global comparisons necessarily being relevant. Both deviations from
the classical framework can be encompassed by the convex pairs approach.

From a practical perspective, a convex pairs model may be thought of
as an initial, incomplete but nevertheless useful framework that may subse-
quently be refined. Of course, a slackening of the demands as to convexity
of the technology leads to less forceful evaluations. Using a less involved
technology assumption may result in a larger set of efficient units from
which further discrimination must be undertaken using other, presumably
less formal and more intuitive means. Still, this should not discourage us.
An initial screening of the DMUs based on easily accepted substitution
premises may be a good starting point - just like the notion of efficiency in
itself. In fact this view of efficiency evaluation as a process of enriching the
production and hereby the efficiency relation so as to aid the evaluation of
units, conforms nicely with the idea of evaluations being a cyclic process
involving additional information as we go along.

Also, incomplete technology models may be useful in an attempt to
handle repetitive evaluations. Even a partial model may handle many eval-
uations, e.g. identify under-performance, and only in those cases, where the
partial analysis can not identify inefficiencies, and where additional infor-
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mation can be convincingly verified, it may be necessary to work with the
enriched technological description. In a hierarchical organization, it may for
example be useful to endow lower levels with at least a partial description
of technology since this may reduce the frequency of referrals that are called
for.

Now, to enrich the production structure, we have already illustrated in
the iterative procedure in Section 3.4 that two operations are important.
One is to make convex unions ], and the other is to make intersections ∩.
We do not argue that the iterative procedure should always be continued to
convergence nor that all pairs of intersections and convex unions should be
formed even in a one shot procedure. We simply claim that for a selected set
of pairs, the construction of convex intersections and unions may be natural,
and that using the natural convexifications in input and output space may
enrich the technology and hereby the ability to identify non-efficient units.

4 Non-negative polarity

In this section, we shall develop the relationship between primal and dual
formulations of a convex pair (L, P ). We have two reasons to develop these
relationships. First, to model a specific situation it is sometimes most con-
venient to use a primal approach and sometimes most convenient to use a
dual approach. Also, the operations we use to enrich the technology are
more easily performed in one rather than the other space. Thus, to form
convex unions, it is most convenient to have the sets described in primal
terms, since the convex union of sets is then the convex hull of the union
of activities spanning the original sets. On the other hand, to form convex
intersections, a dual description is convenient because the intersection is
defined by a set of constraints. It follows that to allow for easy expansions
of the technology, we must know the relationship between primal and dual
formulations.

As the following shows we are able to choose a description utilizing
some polarity results from convex analysis, see for example Rockafellar [30].
However, some slight modification of the classical results is required due to
our assumptions about free disposability and non-negativity.

4.1 Antiblockers

Let us first look at the output side. For simplicity omit the indices and
consider an output set P satisfying (2). Assume additionally that P is
closed and 0 ∈ P . By (2) the last assumption is equivalent to saying that
P is non-empty.
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Polarity for polyhedra of this form has been studied by Fulkerson [21]
for the investigation of a class of problems in combinatorial optimization.
He introduced the notion of an antiblocker and we shall here see that the
basic concept appears useful for an investigation of polarity properties in
data envelopment analysis.

The antiblocker of P is defined by

A(P ) = {y∗ ∈ R
p
+ | y∗y ≤ 1 for all y ∈ P}. (6)

Note that A(P ) is also closed, contains 0 and satisfies (2). Hence the
properties for P carry over to its antiblocker.

Antiblockers are similar to the notion of polar sets. For an arbitrary set
Q ∈ R

p the polar set of Q is defined by

{y∗ ∈ R
p | y∗y ≤ 1 for all y ∈ Q}.

So the main distinction between the notion of a polar set and an an-
tiblocker is that all sets in the last case are non-negative. Various duality
properties exist for polar sets. So, subject to a minor modification due
to non-negativity they can be transformed into similar properties for an-
tiblockers, as demonstrated by following propositions.

Introduce an additional closed set O containing 0 and satisfying (2). We
may then state the following

Proposition 1 A(P ] O) = A(P ) ∩ A(O).

The proof follows the same lines as for a similar statement for general
polar sets. See Rockafellar [30, Corollary 16.5.2].

The next proposition states the involutory property for antiblockers.
This was shown by Fulkerson [20].

Proposition 2 A(A(P )) = P .

As a counterpart to Proposition 1 we shall state the following dual ver-
sion.

Proposition 3 A(P ∩ O) = cl (A(P ) ] A(O)).

This may be proven similarly as in Rockafellar [30].

The following example shows the neccessity of the closure operation cl
in Proposition 3 in general.

Example 1
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Consider in the two dimensional output space the two polyhedra P =
conv [(0, 0), (0, 0.5), (0.5, 0)] and O = conv [(0, 0), (1, 0)]. They each have a

form that could be the output part of a feasible input-output pair. However
O has no output in the second component. Now A(P ) = {(y∗

1, y
∗
2) | (0, 0) ≤

(y∗
1, y

∗
2) ≤ (2, 2)} and A(O) = {(y∗

1, y
∗
2) | 0 ≤ y∗

1 ≤ 1 and y∗
2 ≥ 0}. In this

case A(P ) ] A(O) is not closed. See Figure 4.
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Figure 4: A(O) ] A(P ) is not closed.

The trouble in the above example is the lower dimension of O. Indeed,
the closure operation can be removed if A(P ) and A(O) have the same
recession cone, see Rockafellar [30, Corollary 9.8.1]. This occurs if the cones
generated by P and O have full dimension p in the output space, in which
case A(P ) and A(O) are bounded. These observations can be summarized
into the following

Corollary 4 If the output sets P and O are both full dimensional then

A(P ∩ O) = A(P ) ] A(O).

The above results make it possible to interchange the role of intersection
and convex union as summarized in

Proposition 5

P ∩ O = A(A(P ) ] A(O)) (7)

and cl (P ] O) = A(A(P ) ∩ A(O)). (8)
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Proof: A(P ) and A(O) satisfy the properties (2). Hence by Proposition
1 we get A(A(P ) ] A(O)) = AA(P ) ∩ AA(O). Finally, application of
Proposition 2 on the last terms implies (7). (8) follows by Propositions 2
and 3.

4.2 Blockers

We shall here study the input sets in the framework of blockers. This notion
is also due to Fulkerson [20] . Again for simplicity we drop the index and
consider an input set L satisfying (1). Additionally assume that L is closed
and 0 6∈ L. Together with (1) the last assumption is equivalent to saying
that L 6= R

r
+.

The definition of a blocker is similar to the definition (6 ) of an an-
tiblocker, however with the inequality reversed. So, the blocker B(L) of L

is going to be defined by

B(L) = {x∗ ∈ R
r
+ | x∗x ≥ 1 for all x ∈ L}. (9)

The blocker B(L) is closed, 0 6∈ B(L) and satisfies (1). Hence the as-
sumed properties of B are alway valid for a blocker.

Similar structures have been studied as so-called aureoled sets by Wed-
depohl [36] and Ruys and Weddepohl [31] and as so-called reverse polar sets
by Tind [34]. Based on these results we can obtain results of the same type
as for antiblockers with due consideration to the properties (1).

Introduce an additional closed set K, 0 6∈ K and satisfying (1). Similar
to Proposition 1 we have

Proposition 6 B(L ] K) = B(L) ∩ B(K).

Also we get the involutory property:

Proposition 7 B(B(L)) = L.

We additionally get

Proposition 8 B(L ∩ K) = B(L) ] B(K).

In analogue with Proposition 5 we may finally get

Proposition 9

L ∩ K = B(B(L) ] B(K))

and L ] K = B(B(L) ∩ B(K)).
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4.3 Polarity in DEA

Proposition 5 and Proposition 9 make it possible to substitute the convex
union operation in (4) and (5) in the original spaces by an intersection op-
eration in the dual spaces, respectively. Similarly the intersection operation
in (4) and (5) may be substituted by a convex union operation in the dual
spaces. In particular if the original output sets Pi for i ∈ I are full dimen-
sional then also all subsequent output sets generated by (4) and (5) become
full dimensional. In this case we may use Corollary 4 and dismiss the closure
operation in Proposition 5.

Example 2

Consider in the two dimensional output space two DMU’s indexed by 1
and 2 and with output vectors (5, 4) and (6, 1), respectively. We thus have
P1 = {(y1, y2) | (0, 0) ≤ (y1, y2) ≤ (5, 4)}
= {(y1, y2) ≥ (0, 0) | 1

5
y1 ≤ 1, 1

4
y2 ≤ 1} and

P2 = {(y1, y2) | (0, 0) ≤ (y1, y2) ≤ (6, 1)}
= {(y1, y2) ≥ (0, 0) | 1

6
y1 ≤ 1, y2 ≤ 1}.

These sets are indicated on Figure 5. We obtain
A(P1) = {(y∗

1, y
∗
2) ≥ (0, 0) | 5y∗

1 + 4y∗
2 ≤ 1}

and A(P2) = {(y∗
1, y

∗
2) ≥ (0, 0) | 6y∗

1 + 1y∗
2 ≤ 1}.

Those sets are also indicated on Figure 5.
Then A(P1)∩A(P2) = {(y∗

1, y
∗
2) ≥ (0, 0) | 5y∗

1 +4y∗
2 ≤ 1 and 6y∗

1 +1y∗
2 ≤ 1}

implying that
A(A(P1) ∩ A(P2))
= {(y1, y2) ≥ (0, 0) | 3

19
y1 + 1

19
y2 ≤ 1, 1

6
y1 ≤ 1 and 1

4
y2 ≤ 1}

= P1 ] P2.

This shows that the antiblocker of A(P1) ∩ A(P2) is equal to P1 ] P2 il-
lustrating (8). The two sets are shown on Figure 5 by thick borderlines.

By definition we have for any y∗ ∈ A(P ) that {y | yy∗ ≤ 1} ⊇ P .
In other words for fixed y∗ ∈ A(P ) then yy∗ ≤ 1 is a valid inequality for
P . The inequality has nonnegative coefficients and a positive right hand
side, normalized to one. The inequality may be interpreted as a resource
constraint in the usual sense. Special interest is devoted the binding valid
inequalities. For those a y ∈ P exists such that y∗y = 1. The coefficents
y∗ may be interpreted as a vector of marginal substitution possibilities,
i.e. a price vector for trade offs. In general we have that A(P1) ⊆ A(P2)
if P2 ⊆ P1. This implies that A(P ] Q) ⊆ A(P ). This expresses that the
vector of tradeoffs for the convex union of P and Q is included in the vectors
of valid inequalities for any of the two sets. Due to normalization (all valid
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Figure 5: Example.

inequalities have right hand side equal to one) this diminishes the size of
the trade off coefficients for (P )](Q) in comparison with the coefficients for
the smaller set P and Q, respectively. This is perhaps not too surprising.
But by Proposition 1 we get additionally and more informative that the set
of trade off vectors is equal to the intersection of trade off vectors for P and
Q.

A similar observation holds for blockers.

5 Productivity index

This section discusses how a productivity index may be calculated in a
convex pairs technology. Consider the technology T defined by the unions
of the convex pairs (Li, Pi) with i ∈ N , i.e.

T = ∪i∈N (Li, Pi).

Assume that all sets Li and Pi , i ∈ N are polyhedral. By the blocking
theory developed in Section 4.2 we may therefore rewrite an input set Li as

Li = {x ≥ 0 | Bix ≥ 1} (10)

where Bi is a nonnegative matrix and 1 is a vector of ones of conformable
dimensions. Similarly by Section 4.1 we have

Pi = {y ≥ 0 | Aiy ≤ 1} (11)

where Ai is a nonnegative matrix and 1 is a vector of ones of conformable
dimensions.
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For a given index i such that y0 ∈ Pi the computation of the Farrell index
in (3) can be transformed into the following linear programming problem.

min
θ

θ

s.t. Bix0θ ≥ 1.

The objective is to select an index i giving the minimal value of the above
program. This can be formulated as a disjunctive programming problem
leading further to a linear programming formulation, see Balas [5]. Using
this technique we introduce the additional variables zi ∈ R+ and θi ∈ R for
i ∈ N and consider the linear programming problem.

min
θi,zi

∑

i∈N

θi

s.t. Bix0θi − zi1 ≥ 0 for all i ∈ N

(Aiy0 − 1)zi ≤ 0 for all i ∈ N∑

i∈N

zi = 1

zi ≥ 0.

This program is linearly homogeneous in the zi variables, 0 ≤ zi ≤ 1. Hence
an optimal solution may be found by putting a single variable zi equal to
1 and the remaining ones to 0. The selected value will correspond to the
input-output pair (Li, Pi) in (3) giving the minimal value of θ.

As an alternative to the closed half-space characterization used in (10)
and (11) the input and output sets may be characterized by their extreme
points. For this purpose let Ri denote the index set of all extreme points
of the input set Li and let eij denote an extreme point, j ∈ Ri. Similarly,
for the corresponding output set Pi let fij denote an extreme point together
with the index set Si. In the case of output sets some extreme points may
be removed as they may be dominated by other extreme points with larger
elements. This is due to free disposability in the output space where domi-
nated extreme points may occur on the axes of coordinates. By introduction
of the variables λij and µij we have

Li = {x ≥ 0 | x ≥
∑

j∈Ri

eijλij,
∑

j∈Ri

λij = 1, λij ≥ 0} and

Pi = {y ≥ 0 | y ≤
∑

j∈Si

fijµij,
∑

j∈Si

µij = 1, µij ≥ 0}.

(Strictly speaking the non-negativity condition in Li is not required as all
extreme points eij are nonnegative in our case). In this framework the
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Farrell index in (3) may be calculated by the following linear program.

min
∑

i∈N

θi

s.t.
∑

j∈Ri

λijeij ≤ x0θi for all i

∑

j∈Si

µijfij ≥ y0zi for all i

∑

j∈Ri

λij = zi for all i

∑

j∈Si

µij = zi for all i

∑

i∈N

zi = 1

λij, µij ≥ 0 for all i, j

zi ≥ 0 for all i.

It should be noted that the extreme points of Li are all non-negative nor-
mals of facets for the antiblocker A(Li). By the involutory correspondence
stated in Proposition 2 we symmetrically have that the extreme points of
A(Li) correspond to the non-negative facets of Li, which again is the mini-
mal set of rows in Bi required to define Li by (10). For details see Fulkerson
[20].

We shall see that the above linear programming model is a generalization
of some classical models as well.

With only a single input-output pair, i.e. when |N | = 1, we may delete
index i and denote the single pair by (L, P ). Assume additionally that the
number of non-dominated extreme points are the same in the two sets L

and P to be indexed by R. Furthermore, let the vector λ be equal to µ. In
this setting we get the classical varying return to scale model studied in [6],
in which the extreme points correspond to the decision making units. With
the current notation we obtain the usual standard form:
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min θ

s.t.
∑

j∈R

λjej ≤ x0θ

∑

j∈R

λjfj ≥ y0

∑

j∈R

λj = 1

λj ≥ 0.

Alternatively, we may assume that each pair (Li, Pi) are given by the
original DMU’s illustrated by Figure 1. Then each set of the pair has only
one non-dominated extreme point. We may thus remove the index j and
additionally assume that λi = µi = zi. In this setting the model reduces
to the FDH model studied in [35] and here stated as a linear programming
problem,

min
∑

i∈N

θi

s.t. ziei ≤ x0θi for all i

zifi ≥ y0zi for all i∑

i∈N

zi = 1

zi ≥ 0 for all i

in which N is the index set for the DMU’s.
In all of the above models we have for simplicity excluded the intro-

duction of slacks to indicate the cases in which an input-output vector is
efficient according to the index, i. e. θ = 1, but nevertheless is dominated.
Those slacks may however easily be introduced in a traditional manner, see
for example Charnes et al. [16].

A similar analysis as above can be done in connection with the estab-
lishment of an output oriented efficiency score.

6 Illustrative experiments

The procedure in Section 3.4 consists of iterations numbered by index l. We
shall run a couple of experiments with the input index while completing the
first two iterations.
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In the initialization, we form the n pairs of recession cones generated by
free disposability. In the first iteration, we should generate new polyhedra
and add these to the ones from the initialization. This, however, is easy.
Convex union is simply formed by merging extreme points and intersection
is formed by taking maximum and minimum coordinates, respectively, for
input and output polyhedra. For the original polyhedra, both input and
output polyhedra have exactly one extreme point. This can for our purposes
be seen as a degenerate version of polyhedra with two extreme points, the
points being equal. The polyhedra generated by convex hull formation in
the first iteration will have exactly two extreme points each, while those
generated by intersection will have one - again, we can for our purposes see
this as a degenerate version of polyhedra with two extreme points.

Thus, the result of the first iteration will be a list of, say, m combinations
of input and output polyhedra, each polyhedron given by two extreme points
(which might be equal). The actual computation in the first iteration can
be done in a spreadsheet and seen as a preprocessing step.

The result of the first iteration is a list of m times 4 extreme points, of
those 2 input extreme points xi1, xi2 and 2 output extreme points yi1, yi2.
In order to find θ we look at

min θ

s.t. λi1xi1 + λi2xi2 ≤ x0θ

λj1xj1 + λj2xj2 ≤ x0θ

λi1 + λi2 = 1

λj1 + λj2 = 1

µi1 + µi2 + µj1 + µj2 = 1

µi1yi1 + µi2yi2 + µj1yj1 + µj2yj2 ≥ y0

λi1, λi2, λj1, λj2, µi1, µi2, µj1, µj2 ≥ 0.

This program calculates a productivity index by intersecting two input poly-
hedra and forming the convex hull of the corresponding output polyhedra.
By looping over this for all combinations of i and j, where i, j = 1, ..., m, we
can calculate the lowest θ value. A similar program is run intersecting two
output polyhedra while the convex hull is generated by the corresponding
input polyhedra. Finally, the minimal θ value is taken of all values. We
have done computation on test data taken from the airline industry. There
are n = 15 DMU’s with 2 inputs and 2 outputs in the selected set. The
result was very close to the results obtained by the FDH model, as only a
single DMU changed from being efficient to getting the value θ = 0.988.

For a constructed example of how the second iteration can have an effect,
we look at Table 1 with 4 DMUs. Clearly DMU 4 is inefficient, even under
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DMU i xi1 xi2 yi1 yi2

1 4 8 5 9
2 5 7 13 5
3 11 3 8 7
4 13 10 7 6

Table 1: Input and output values.

FDH. We find the θ values listed in Table 2. By making a diagram, it is

DMU FDH ours VRS
1 1 1 1
2 1 1 1
3 1 1 1
4 0.846 0.584 0.554

Table 2: θ values.

easily seen that the effect of the second iteration is due to the following
combination

(H1 ∩ H2) ] H3 and (K1 ] K2) ∩ K3 (12)

which cannot, of course, be reached using a single iteration.

7 Conclusion

This paper is concerned with a new and flexible way to model technologies,
the convex pairs approach, and its pratical implementation using primal or
dual representations.

We have argued that many interesting instances can be modeled using
this approach. In particular, the framework can encompass free disposabil-
ity hulls with and without partial substitution information like in assurance
regions, the convex projection model, as well as the occurrence of gains from
specialization and diseconomies of scope and the occurrence of incompa-
rabilities due to investments, categorical variables and ordinal properties.
Moreover, we have argued that dual pairs may be particularly useful as
building blocks in an iterative evaluation process when the production- and
hereby the efficiency- relation is enriched as we go along.

We have shown also how the Farrell index in all instances can be repre-
sented as the solution to a linear program.

232



Extensions are possible. For example one may in a similar way ana-
lyze the free replicability model based on Tulkens [35]. This is an integer
programming model, for which the duality theory for integer programming
should be used, see for example Schrijver [32]. This implies that a polarity
analysis may be done in a dual space consisting of Chvatal functions. Work
along this line has been done in Agrell and Tind [1]. Indeed the above
analysis may be performed on any optimization model in DEA, for which
an appropriate duality theory exists with no duality gap.

Before closing, we briefly comment on two possible modifications of the
dual pairs approach.

Firstly, we have used the Farrell efficiency as a prototype efficiency cal-
culation. This is natural since the vast majority of productivity analysis
papers rely on it. On the other hand, there are many other measures that
can be used. Also, once a production model like the dual pairs model has
been established, there are many other questions which can be analyzed
in addition to the mere efficiency evaluations. An important class of such
problem is the reallocation problems where the potential gains from reallo-
cating production with a given technological structure is examined, cf eg.
Andersen and Bogetoft [2], Bogetoft, Strange and Thorsen [10], Bogetoft
and Wang [12], Brännlund, Färe and Grosskopf [14], Brännlund, Chung,
Färe and Grosskopf [13], and Korhonen and Syrjänen [22]. It is worthwhile
to observe that the linearization of the resulting proram, e.g. a generalized
productivity analysis problem like

max
(x,y)

{F (x, y) | (x, y) ∈ T = ∪i∈I(Li, Pi)}

is often possible using the same principles as demonstrated in this paper.
Secondly, it should be noted that the dual pair approach, despite its

flexibility, is restrictive in terms of local convexifications in the full input
- output space. It is, for example, easy to work with assurance regions on
the input side or on the output side, but not on the input and outputs sides
simultanously. To introduce such variations, we could instead introduce a
straightforward disjunctive convex approach with

T = ∪i∈ITi

where Ti ⊆ Rr×s
+ is a traditional input-output production set, assumed for

example to be convex and free disposable. In this settiung, the usual duality
theory could be used on the individual subsets. In Andersen and Bogetoft
[3], for example, we have used this approach in an efficiency evaluation and
re-allocation context to determine the posssible gains from re-allocating
fishery quotas among vessel and assuming that it is possible to vary the
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scale of operation with constant return to scale as long as the variations are
restricted to for example ±30% of the present scale. Similarly, in Bogetoft,
Eeckaut and Fried [8], we have used this approah together with an FDH
assumption to extend the production possibility set of credit unions. The
reason we have relied in this paper on the more restrictive formulation
T = ∪i∈I(Li, Pi) is that it allow us to dispense with convexiifications accross
inputs and outputs simultanously, and that it allowed us to introduce into
the productivity analysis literature the idea of duality based on blockers
and anti-blockers.
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[14] Brännlund, R., R. Färe and S. Grosskopf, “Environmental Regulation
and Profitability: An Application to Swedish Pulp and Paper Mills”,
Environmental and Resource Economics 6 (1995) 23–36.

[15] Chang, K.-P., “Measuring Efficiency with Quasiconcave Production
Frontiers”, European Journal of Operational Research 115(3) (1999)
497 – 506.

[16] Charnes, A., W.W. Cooper, A.Y. Lewin and L.M. Seiford, “Data En-
velopment Analysis: Theory, Methodology, and Application”, Kluwer
Academic Publishers, 1994.

[17] Charnes, A., W.W. Cooper, and E. Rhodes, “Measuring the Efficiency
of Decision Making Units”, European Journal of Operational Research

2 (1978) 429 – 444.

[18] Cherchye, L., T. Kuosmanen and T. Post, “What is the Economic
Meaning of FDH? A Reply to Thrall”, Journal of Productivity Analysis

13 (2000) 259 – 263.

[19] Farrell, M.J., “Convexity Assumption in Theory of Competitive Mar-
kets”,. Journal of Political Economy 67 (1959) 377 – 391.

[20] Fulkerson, D.R., “Blocking and Anti-blocking Pairs of Polyhedra”,
Mathematical Programing 1 (1971) 168 – 194.

235



[21] Fulkerson, D.B., “Anti-blocking Polyhedra”, Journal of Combinatorial

Theory 12 (1972) 50 – 71.

[22] Korhonen, P. and M. Syrjänen, “Resource allocation based on efficiency
analysis”, Helsinki School of Economics and Business Administration,
Working Paper W-293, (2001)

[23] Kuosmanen, T., “DEA with Efficiency Classification Preserving Con-
ditional Convexity”, European Journal of Operational Research 132
(2001) 83 – 99.

[24] Kuosmanen, T., ”Duality Theory of Non-convex Technologies”, Jour-

nal of Productivity Analysis 20 (2003).

[25] Kuosmanen, T. and G.T. Post, “Measuring Economic Efficiency with
Incomplete Price Information: With an Application to European Com-
mercial Banks”, European Journal of Operational Research 134 (2001)
43 – 58.

[26] Kuosmanen, T. and G.T. Post, “Nonparametric Efficiency Analysis
under Price Uncertainty: A First-Order Stochastic Dominance Ap-
proach”, Jouranl of Productivity Analysis 17 (2002) 183 – 200.

[27] Petersen, N.C., “Data Envelopment Analysis on a Relaxed Set of As-
sumptions”, Management Science 36 (1990) 305 – 214.

[28] Post, G.T., “Estimating non-convex production sets using transconcave
DEA”, European Journal of Operational Research 131(1) (2001) 132–
142.

[29] Roberts, R. F., “Measurement Theory – with Applications to Decision
making, Utility, and the Social Sciences, Encyclopedia of Mathematics

and its Applications, Vol. 7, Addison-Wesley, 1979.

[30] Rockafellar, R.T., Convex Analysis, Princeton University Press, Prince-
ton, New Jersey, 1970.

[31] Ruys, P.H.M. and H.N. Weddepohl, “Economic Theory and Duality”
in: M. Beckmann and H. P. Künzi (editors), Convex Analysis and

Mathematical Economics, Lecture Notes in Economics and Mathemat-
ical Systems, Vol. 168 (1979) 1 – 72.

[32] Schrijver, A., Theory of Linear and Integer Programming, Wiley-
Interscience Series in Discrete Mathematics and Optimization, Wiley,
1986.

236



[33] Thompson R.G., F.D. Jr. Singleton, R.M. Thrall and B.A. Smith,
“Comparative Site Evaluation for Locating a High-Energy Physics Lab
in Texas”, Interfaces 16(6) (1986) 35 – 49.

[34] Tind, J. “Blocking and Antiblocking Sets”, Mathematical Program-

ming 6 (1974) 157 – 166.

[35] Tulkens, H., “On FDH Efficiency Analysis: Some Methodological Is-
sues and Applications to Retail Banking, Courts, and Urban Transit”,
The Journal of Productivity Analysis 4 (1993) 183 – 210.

[36] Weddepohl, H.N., “Duality and Equilibrium”, Zeitschrift für Na-

tionalökonomie, 32 (1972) 163 – 187.

[37] Wunsch, P., “Peer Comparison, Regulation and Replicability”, Work-
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