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Abstract

The main aim of this work is to provide a new variant of Karmarkar's
algorithm to give a high-performance algorithm for solving linear
programming problems. Modification of the new interior point algorithm
presents the parameter that has a great role in faster convergence of the new
method comparing to methods presented by Karmarkar 1984 and Scherijver
1986. Successful convergence for problems of different sizes is obtained.
Numerical results show that when we use a new parameter in the classical
Karmarkar's algorithm, number of iterations is less than the number of
iterations for two mentioned methods.
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1 Introduction

The simplex method had no serious competition until 1984 when N. Karmarkar
proposed a new-polynomial-time algorithm for linear programming problems
[Karmarkar 1984]. Since proposition 1984 of Karmarkar's algorithm, a number of
variant techniques have been arisen (see [Gonzaga 1987], [Hertog and Roos 1991],
[Adler et al. 1989]) and some efforts have been made to unify the view of these
techniques ([Shanno and Bagchi 1988]). Karmarkar in his method introduced a
parameter ¢, such that the potential function value in each iterations decreases about

' E-mail: mala@modares.ac.ir
* E-mail: nasserir@modares.ac.ir

43



0.2. Later Scherijver [Scherijver 1986] presented another parameter «, in which
aforementioned decrease is at least 0.30685. Here in this paper we present a new
parameter ¢, which produces more potential decreases in each iteration than classical
Karmarkar's algorithms.

2 Karmarkar's Projective Algorithm

This algorithm addresses LP problem of the form:

Min CX
S.t: AX=0
n 1
i (1)
i=1
X>0

where A isa mxn matrix of rankm , Cis Ixn vector, X = (xl,....,xn), n>2 and A
and C are all integers. The following assumptions hold:

1) The point (1/n,...,1/n) is feasible in problem (1).

i1) The optimal objective value of problem (1) is zero.

3 Main Steps of Karmarkar's Algorithm

and (« :n_—l or azL),
n(n—1) 3n I+7
and let X, = (l/n,...,l/n) , put k=0.
Step 1: If CX < ¢ use the optimal rounding routine (section 3.1) to determine an
optimal solution, and stop. Otherwise define D, = diagx,,,...,x,, |,

ADk . Nl
P=" Y, =(/n,...1/n) ; C=CD,

Step 0: Compute r =

t t t Cl’
and compute C, = [I—P PP )P]E where ¥, =Y, —arm.
p
Hence obtain X, = —"* Increment k by one and repeat the step 1([Bazaraa, 1984
k= new

and Hamdy 1992]).

3.1 Optimal Rounding Routine

Starting with the final iterate X, obtained with objective value CX < ¢, this procedure
finds an extreme point solution X with at least as good an objective value using the
following method known as a purification scheme: If # linearly independent constraints
are binding at X, , then it is already a basic feasible solution. Otherwise there exists a
direction d #0 lying in the null space of the binding constraints. The method now
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moves the current iterate along the direction d if Cd <0 and along the direction —d
otherwise until some constraint block any further motion by feasibility consideration.
This must happen since the feasible region is bounded. Note that at the new solution the
objective value is no more than CX < ¢ and at least one additional linearly independent
constraint is binding. Proceeding in this fashion, a basic feasible solution X to problem
(1) can be obtained with objective value strictly less than & [Bazaraa, 1984].

4 Karmarkar's Potential Function

Karmarkar in the analysis of his method used the following potential function:

@, (X) =nLn(C'X)-Y_ Ln(x,)
i=l
where C' is referred to transpose of C . At first, karmarkar presented ¢, = (n—1)/3n
and proved that each iteration decreases the potential function value by about 0.2 (for
example see [Bazaraa, 1984], [Karmarkar, 1984]). Since then, Scherijver presented and
proved the following lemma and theorem [Roos, 2001]:

Lemma 1: Taking o, = %; each iteration of the projective algorithm in [Scherijver,
+7

1986] decreases the potential function value by at least 0.30685.

Ct
Theorem 1: After no more than ‘I’nl) Ln( %) iteration, the algorithm stops with a
£

feasible point X such that C'X <&, where ¥ : (— l,oo) — R and
Y({@)=t—-Ln(l+1) 2)

Remark: Parameter o, presented by Scherijver is better than the Karmarkar's
parameter ¢, , however we present new parameter ¢, that in each iteration decreases
the potential function value more than the two former parameters. In the next section we
present this new parameter ¢, . Then we will prove that in each iteration more
decreases of potential function will happen when we use this new «, .

5 Presentation of new parameter

Lemma 2: Taking o, =1- , decreases the potential function value

1
n*(+4n(n-1))

in each iteration more than other classical Karmarkar's algorithms defined in
[Karmarkar, 1984 and Roos, 2001]. Moreover when n — oo the parameter o is almost
equalto «, .

Proof: In general, decrease of the objective function value in each iteration is computed
as follows [Karmarkar, 1984]:

45



Ctxi+1 — (1 _i)ctxi
n—1

where a, €(0,1), X*and X" are the two successive iteration solutions. Therefore, the

. . . a
maximum value of decrease for objective function value occurs when 1— "1 tends to
n —
. . ak . .
zero, that is, reduction factor and consequently «, is chosen close to one. Taking
n p—
a, <a, <1, we will have
1
o, = <a,=l-¢,<1
I+7r

where ¢, € (0,1). Thus we can write the following inequality with respect to n the
dimension of the problem (1):

1
g, <

! 1+1/nin—1i

1 - .
this is exactly the Scherijver's parameter o, . Now for

L+n(n=1)

For ¢, =

1

1
o At dnn=1)) 1+l =1)

o is less than ¢, and therefore this new parameter «, has more objective function
values decrease in two successive iterations. Now, when 7 is large enough, we have
g, >0 and ayand ¢, tend to one with different rate of convergence. Since we
assumed o, < a, so, for the large amount of n, oy, = «,,.

Now, we present the following theorem to show the lower bound of potential function
decreasing values in each iteration:

Theorem 1: Taking o, =1— ; each iteration of the new projective

1
n*(1+n(n-1))

algorithm decreases the potential function values by at least:
2

r n
0.30685+ (e, =) +—(a,” —as ) =),

Proof: Let us to denote A, and A, as the potential function decreasing in each iteration
corresponding to «, and «, respectively. From lemma 1 of [Scherijver, 1986] for
0<ea, <1 wecan

write:

Ag = agr” +n¥(-a %) —W(-a,r) 3)
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n—1

3n

where R =

. Thus for 0 <&, <1 we will have:

A za r’+n¥(-a, %)—‘I’(—anr). (4)

From (2) and (4) we obtain:

2
A, za,r"+a,r+Ln(l-a,r)-na

n

r r
E—l’lLl’l(l—Oln E) (5)

Expand functions Ln(l1-e,r) and Ln(l-«, %) and substituting then into (5), thus

2 k
r 2, N r v, N
A>ar+—a (—-D++—a (—-1)+- 6
e e ) e ) ©)
In the similar way for the Scherijver's algorithm we can write:
2 k
2 F 2. N r v, N
AS Zasr +7C¥S (F—l)"f‘""‘r?as (F_l)—i— (7)

From inequalities (6) and (7) we have:

(8)
l’2 n
A, —Ag>(a, —ag)r’ +7<a,,2 —af)(?—m---

k
r k k n
+oo(a) —a =D+

Since for all &, (% —1) >0, in the inequality (8) all of the right hand side terms are

positive and consequently we have:
2

r n
A, =g 2 (@, —a)r +—(@, —a ) oz =D,

We know that for =1, A, 2W¥(¢) =1-Ln(2) =0.30685 [Scherijver, 1986]. This means

that:
2

A, >0.30685+(a, —arg)r’ +2

2 2y, N
7(05;1 — U )(?_1)

and then the proof is complete.
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Theorem 2: After no more than
n C'X,
2

T gy
YD) +(a, —as)r +7(an U )(R2 1)

number of iterations, the algorithm will stop with a feasible point solution X, where
C'X<eg¢.

Proof: Proof is similar to the proof of theorem 1, if we put:
2

2, T 2 a2y
Y1) +(a, —as)r +7(an Ag )(R2 1)

Instead of W(1).

6 Numerical Results

Various types of the linear programming problems with different range of sizes are
considered. In the following plots (Fig. 1-4) we show that for the more accurate
solutions we need to increase the number of iterations. The rate of increases in three
different algorithms (Karmarkar, Scherijver and new method) varies, and it is dependent
to a,, a, and «a, respectively. Our observations show that convergence of the new
algorithm is faster than the two former algorithms. As the size of the problem increases,
the solutions of Scherijver's algorithm tend to the solutions of our new algorithm. For
the large scale problems, the solutions of Scherijver's algorithm and new algorithm is
the same (Fig.4).
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Figure 1-Plots of the tolerance in the approximation to the solutions of the linear programming problems of 2 X 2
dimensions.
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Figure 2-Plots of the tolerance in the approximation to the solutions of the linear programming problems of 3x3
dimensions.
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Figure 3- Plots of the tolerance in the approximation to the solutions of the linear programming problems of
50 % 50 dimensions.
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Figure 4- Plots of the tolerance in the approximation to the solutions of the linear programming problems of

100x100 dimensions.
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