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Abstract.

A stock-review inventory model is developed for perishable items with
uniform replenishment rate and stock-dependent demand. The deterioration
function per unit time is a quadratic function of time. The associative cost
function under some constraints is optimized due to the limitation of storage
capacity.
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1. Introduction

The (S, Q) model with lost sales was first discussed by Hadley and Whitin
[1]. They derived an exact formulation of the average inventory cost for an
(S, Q) policy with poisson demand and constant deterministic lead times.
They also presented an easy approximation of the average cost and devel-
oped an iterative procedure to optimize the policy parameters which has
become the standard text book approach [2, 3]. Thereafter, Johansen and
Thorstenson[4] formulated and solved the same model as a semi-Markov de-
cision model. The first contribution in a continuous review inventory model
was made by Nahamias and Demmy[5]. They analysed an (S, Q) inventory
model with two demand classes, poisson demand, backordering, a fixed lead
time and a critical level policy. The result of Nahamias and Demmy[5] were
generalised by Moon and Kang[6]. They considered an (S, Q) model with
compound poisson demand, and derived (approximate) expression for the fill
rates of the two demand classes. Cohen et at.[7] consider a periodic review
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(s, S) inventory system where all demand in each period are collected and
by the end of each period the inventory is used to satisfy high-priority de-
mand first and the remaining inventory is then made available for low priority
demand.

In formulating inventory models, two facets of the problem have been
of growing interest, one being the deterioration of items, the other being
the variation in the demand rate. Among researchers considering inventory
models for deteriorating items, Shah and Jaiswal [8] considred the rate of
deterioration to be uniform, Covert and Philip [9] formulated an EOQ model
for items with variable rate of deterioration, Misra [10] used a two-parameter
Weibull distribution to fit the deterioration rate, and Deb and Chaudhuri [11]
suggested a model with variable rate of deterioration allowing shortages to
occure. Gupta and Vrat [12] considered a model of stock-dependent con-
sumption rate.

In the proposed model , an inventory model is suggested for deteriorating
items with a function of time, quadratic deterioration rate. In the model the
rate of replenishment is uniform, the demand rate is varying with stock-level,
setup cost is considered, limitation of storage capacity is considered.

2. Fundamental Assumptions and Notations

Assumptions:
We adopt the following assumptions and notations for the models to be

discussed.

1. Replenishment rate is infinite but replenishment size is finite,

2. Lead time is zero,

3. No shortages are permitted,

4. The time-horizon is infinite.

Notations:

q(t) - On-hand inventory at time ”t”(≥ 0) ;

S1 - Starting and ending inventory level;

S2 - Pick of the inventory level;

P - Finite replenishment rate ;

Cs - Set up cost per cycle;

Ch - Inventory holding cost per unit per unit time;

Cp - Procurement cost per unit item ;
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T - Duration of the cycle;

3. Formulation of the Model
Here we consider the demand rate of perishable items depends upon on hand
inventory. The items undergoes decay at θ(t)I(t) at time t. Generally, dete-
rioration increases to increase of time t. Here

θ(t) = a + bt + ct2

θ ′(t) = b + 2ct

θ ′′(t) = 2c

where a = initial deterioration, b = intital rate of change of deterioration , c
= acceleration of deterioration.
In this model, uniform replenishment rate starts with inventory (S1) and
continues upto time t = t1. The inventory piles up during [0, t1], after
meeting demands in the market. The inventory level at time t = t1 is S2.
The storage space is limited here. It can store maximum ( Smax) units. Again,
the inventory level reaches at S1 at time t = T . Therefore, the governing
equations of this model are:

dq(t)

dt
= P − αqβ − θ(t)q , 0 ≤ t ≤ t1 (1)

with q(0) = S1 and q(t1) = S2

and

dq(t)

dt
= −αqβ − θ(t)q , t1 ≤ t ≤ T (2)

with q(T ) = S1.

Since the equ.(1) and equ.(2) can not be solved by classical method. So
we can get an approximate solution by Taylor’s Series expansion . This
approximation is valid for short term review period. Now from equ.(1) , we
have

dq

dt
= P − αqβ − θ(t)q

d2q

dt2
= −αβqβ−1dq

dt
− θ ′(t)q

−θ(t)
dq

dt
d3q

dt3
= −αβ(β − 1)qβ−2(

dq

dt
)2
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−αβqβ−1d2q

dt2
− θ ′′(t)q

−2θ ′(t)
dq

dt
− θ(t)

d2q

dt2

Now using the initial condition, we have

[
dq

dt
]t=t0 = P − αSβ

1 − aS1 = M1(S1) (> 0) (say),

for feasibility of the model,

[
d2q

dt2
]t=t0 = −αβPSβ−1

1 + α2βS2β−1
1 + αβaSβ

1

−aP + aαSβ
1 + a2S1 − bS1 = N1(S1) (say)

[
d3q

dt3
]t=t0 = −α3β(β − 1)S3β−1

1 − α3β2S3β−2
1

−(3aα2β2 − 2Pα2β(β − 1))S2β−1
1 − 2aα2β(β − 1)S2β

1

+α2β2PS2β−2
1 − a2αβ(β − 1)Sβ+1

1

−{a2α + 2a2αβ − αβb− 2aPαβ(β − 1)− 2αb}Sβ
1

+(2aPαβ − αβ(β − 1)P 2)Sβ−1
1

−(a3 − 3ab + 2c)S1 + (a2 − 2b)P = R1(S1) (say).

Neglecting higher order of the expansion of q(t), we have

q(t) = q(0) + [
dq

dt
]t=t0 .t

+[
d2q

dt2
]t=t0

t2

2
+ [

d3q

dt3
]t=t0

t3

6

= S1 + M1(S1).t +
N1(S1)

2
.t2 +

R1(S1)

6
.t3 , 0 ≤ t ≤ t1 (3)

Similarly, from equ.(2), we have

q(t) = S2 + M2(S2)(t− t1) +
N2(S2)

2
(t− t1)

2

+
R2(S2)

6
(t− t1)

3 , t1 ≤ t ≤ T (4)
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where

M2(S2) = −αSβ
2 − (a + bt1 + ct21)S2

N2(S2) = α2βS2β−1
2 + α(β + 1)(a + bt1 + ct21)S

β
2

+{(a + bt1 + ct21)
2 − (b + 2ct1)}S2

R2(S2) = −α3β(β − 1)S3β−1
2 − α3β2S3β−2

2

−3aα2β2S2β−1
2 − 2aα2β(β − 1)S2β

2

−a2αβ(β − 1)Sβ+1
2 − {a2α + 2a2αβ

−αβb− 2αb}Sβ
2 − (a3 − 3ab + 2c)S2

Using the condition q(t1) = S2 in equ.(3), we have

R1(S1)t
3
1 + 3N1(S1)t

2
1 + 6M1(S1)t1 + (S1 − S2) = 0 (5)

Here S1 − S2 < 0 , as S2 > S1 and M1(S1) > 0 . Therefore, by Descarte’s
rule, it may have at least one positive real root. This equation can be solved
by Cardon’s method. One real root of the above equation is (see Appendix)

t1 =
1

R1

[{−3R2
1(S1 − S2) + 3N1M1R1 −N3

1

+
√

(3R2
1(S1 − S2)− 3N1M1R1 + N3

1 )2 + (2M1R1 −N2
1 )3 }

1
3

+{−3R2
1(S1 − S2) + 3N1M1R1 −N3

1

−
√

(3R2
1(S1 − S2)− 3N1M1R1 + N3

1 )2 + (2M1R1 −N2
1 )3 }

1
3 ]− N1

R1

Similarly, using the condition q(T ) = S1 in equ.(4), we have

R2(S2)(T − t1)
3 + 3N2(S2)(T − t1)

2

+6M2(S2)(T − t1) + (S2 − S1) = 0 (6)

Here S1 − S2 < 0 , as S2 > S1 and M2(S2) < 0 . Therefore, by Descarte’s
rule, it may have at least one positive real root. This equation can be solved
by Cardon’s method. One real root of the above equation is (see Appendix)

T =
1

R2

[{−3R2
2(S2 − S1) + 3N2M2R2 −N3

2

+
√

(3R2
2(S2 − S1)− 3N2M2R2 + N3

2 )2 + (2M2R2 −N2
2 )3 }

1
3

+{−3R2
2(S2 − S1) + 3N2M2R2 −N3

2

−
√

(3R2
2(S2 − S1)− 3N2M2R2 + N3

2 )2 + (2M2R2 −N2
2 )3 }

1
3 ]

−N2

R2

+ t1
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Therefore, the total average cost is

AV C(S1, S2) =
1

T
[Ch{

∫ t1

0
q(t)dt +

∫ T

t1
q(t)dt}+ Cs + kPt1]

=
1

T
[Ch{S1t1 + M1(S1)

t21
2

+ N1(S1)
t31
6

+ R1(S1)
t41
24

+S2(T − t1) + M2(S2)
(t2 − t1)

2

2
+ N2(S2)

(T − t1)
3

6

+R2(S2)
(T − t1)

4

24
}+ Cs + CpPt1] (7)

Now we have to

Minimize AV C(S1, S2)

such that S1 > 0,

P > αSβ
1 + aS1,

S2 > S1,
S2 ≤ Smax.

The above constrained minimization problem can be solved by Interior Penalty
Function Method or any other Software .

4.Conclusion

One of the important problems to a supply manager in modern organi-
zation is the control and maintenance of inventories of deteriorating items.
For some items, such as steel, hardware, toys, and glassware, the rate of
deterioration is so low that there is little need for considering deterioration
in the determination of the economic lot size. However, there are numerous
types of storage so that in time they become partially or unfit for consump-
tion. For example, lysis or the disintegration of red blood cells renders blood
unacceptable for transfusion twenty-one days after the blood is drawn. Fresh
produce, meats, and other foodstuffs becomes unusable after a certain time
has elapsed. Photographic film and drugs are further examples of items that
have a limited useful lifetime. It is now evident that in many systems, the
impact of deterioration or perishability cannot be neglected.

It is real fact that, in a supermarket, a large piles of goods motivated
the customer to by more. So the demand rate should be a function of the
stock-level. In the existing literature, deterioration rate is considered as
constant, linear function of time, and weibull distribution. But we have
considered the deterioration is a quadratic function of time. Because, when
deterioration starts then it is accelerated with time. So the purpose of our
model is to reduce the inventory cost and deterioration at optimal inventory-
level , production-run-time and inventory-review-level.

30



References

1. Hadley G. and Whitin T. M. Analysis of inventory systems, Prentice
Hall: Englewood Cliffs, NJ, (1963).

2. Silver E. A. and Peterson R. Decision systems for inventory manage-
ment and production planning, John Willey & Sons: New York, (1985).

3. Tersine R. J. Principles of inventory and materials management, Nort-
Holland: New York, (1988).

4. Johansen S. G. and Thorstenson A. Optimal and approximate (Q, r)
inventory policies with lost sales and gamma-distributed lead time, Int.
J. Prod. Econ., 30-31: 179-194 (1993).

5. Nahamias S. and Demmy S. Operating characteristics of an inventory
system with rationing, Mgmt Sc., 17: 1236-1245 (1981).

6. Moon I. and Kang S. Rationing policies for some inventory systems, J.
Opl. Res. soc., 49: 509-518 (1998).

7. Cohen M. A. , Kleindorfer P. R. and Lee H. L. Service constrained (s,
S) inventory system with priority demand classes and lost sales, Mgmt.
Sci., 34: 482-499 (1988).

8. Shah Y. K. and Jaiswal M. C. An order-level inventory model for a
system with constant rates of deterioration, Opsearch, 14: 174-184
(1977).

9. Covert R. P. and Philip G. C. An EOQ model for items with Weibull
distribution deterioration, AIIE Trans., 5: 323-326 (1973).

10. Misra R. B. Optimum production lot-size model for a system with
deterioration inventory , Int. J. Prod. Res., 13: 495-505 (1975).

11. Deb M. and Chaudhuri K. S. An EOQ model for items with finite
rate of deterioration and variable rate of deterioration, Opsearch, 23:
175-181 (1986).

12. Gupta R. and Vrat P. Inventory model for stock-dependent consump-
tion rate, Opsearch, 23: 19-24 (1986).

Appendix:

Here R1(S1)t
3
1 + 3N1(S1)t

2
1 + 6M1(S1)t1 + 6(S1 − S2) = 0,

or,

t31 + 3B1t
2
1 + 3C1t1 + D1 = 0 (8)
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wher B1 = N1

R1
, C1 = 2M1

R1
, D1 = 6(S1−S2)

R1
. Let the roots of equ.(8) are

diminished by h such that the 2nd degree term is removed. Let α, β, γ be
the roots of this equation . To diminish the roots of this equation by h , we
put t1 = y + h and the transformed equation is

y3 + 3(h + B1)y
2 + 3(h2 + 2B1h + C1)y

+(h3 + 3B1h
2 + 3C1h + D1) = 0 (9)

Next we remove the second term by effecting h+B1 = 0 , so that h = −B1 =
−N1

R1
and the equation becomes

y3 + 3(C1 −B2
1)y + (D1 − 3B1C1 + 2B3

1) = 0 (10)

Using the symbols

H = C1 −B2
1

= 2
M1

R1

− (
N1

R1

)2

=
1

R2
1

(2M1R1 −N2
1 ),

G = D1 − 3B1C1 + 2B3
1

=
2

R3
1

{3R2
1(S1 − S2)− 3N1M1R1 + N3

1},

the transformed equation is

y3 + 3Hy + G = 0 (11)

The roots of this equarion are thus α−h, β−h, γ−h , i.e., α+B1, β+B1, γ+B1.
By cardon’s method, we have at least one real root of equ. (11) that is

[−G+
√

G2+4H3

2
]
1
3 + [−G−

√
G2+4H3

2
]
1
3 . Therefore, the real root of equ.(8) is

t1 = [
−G +

√
G2 + 4H3

2
]
1
3 + [

−G−
√

G2 + 4H3

2
]
1
3 + B1

=
1

R1

[{−3R2
1(S1 − S2) + 3N1M1R1 −N3

1

+
√

(3R2
1(S1 − S2)− 3N1M1R1 + N3

1 )2 + (2M1R1 −N2
1 )3 }

1
3

+{−3R2
1(S1 − S2) + 3N1M1R1 −N3

1

−
√

(3R2
1(S1 − S2)− 3N1M1R1 + N3

1 )2 + (2M1R1 −N2
1 )3 }

1
3 ]

−N1

R1

(12)
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