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Abstract 

 

This paper describes a risk management tool for hydropower generators and its application to Norway’s second-largest 
generation company and largest electricity consumer, Norsk Hydro ASA.  The tool considers both operations scheduling and the 
utilization of financial contracts for risk management. Financial risks are accounted for by penalizing incomes below a reference 
income. The risk management problem is solved by a combination of stochastic dual dynamic programming and stochastic 
dynamic programming. Simulations demonstrate that lower income scenarios improve when risk aversion is introduced 
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1. Introduction 

 Deregulation of the Nordic power market has increased 
price uncertainty, and therefore stimulated a demand for 
risk management tools. Each generation company 
schedules by using self-dispatch at the power exchange 
(Nord Pool). Based on aggregate bids for purchases and 
sales, Nord Pool calculates the market clearing price for the 
spot market. The spot price is the reference price for the 
financial contract market. Nord Pool facilitates the trade of 
a wide range of contracts as futures, forwards, options, and 
Contracts for Differences (spatial risk hedging 
instruments). In the over-the-counter (OTC) market, 
bilateral contracts are traded. These may be forward 
contracts, options, or load factor contracts. System 
coordination, monitoring and operation of the Norwegian 
transmission network are the responsibility of the 
transmission system operator (Statnett). The Norwegian 
power market consists of 99% hydropower with its 
associated uncertainty in inflows. Therefore stochastic 
optimization tools are utilized for long-term generation 
planning [1]. The objective of these models is to find the 
optimal first-stage decision and simulate (forecast) optimal 
operation and income for the future. The most important 
risks that the Norwegian hydropower generators face are 
price uncertainty and quantity risks caused by uncertainty 
in inflows and demand. Risk management of both 
uncertainties is complex. Local area prices depend strongly 

on the precipitation and usually correlate with the local 
generation. There is also a correlation between the 
precipitation and temperature such that wet winters are 
warmer than normal. Hydropower generators with large 
reservoirs dominate the Nordic market, resulting in a 
sequential dependence in spot price. All of these 
correlations must be managed by using an appropriate risk 
management tool. A model for integrated risk management 
of hydropower scheduling and contract management in a 
stochastic dynamic optimization framework has been 
developed by Mo et al. [2] and [3]. Their model includes 
the possibility of future trading and use of reservoirs and 
futures contracts as risk management tools. The objective 
of the model is to utilize a time separable utility function to 
characterize the risk attitude of the company. The solution 
methodology is a combination of stochastic dual dynamic 
programming (SDDP) [4] and stochastic dynamic 
programming (SDP).  

The latest version of the model accounts for the 
modeling of the spot price extremes and the long-term 
uncertainty of futures prices. As mentioned in [5] it 
suggests less trading when dynamic hedging is allowed 
(Dynamic hedging is a strategy that involves rebalancing 
hedge positions as market conditions change.). The test 
results also demonstrated that the reservoir discharge 
strategy depends upon the utility function of the company. 
An increased penalty term gives a more risk-averse 
operation of the reservoir. The tests showed that it is 
possible to reduce the risk considerably without reducing 
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the expected income to the same extent. It implies that the 
income optimum is relatively flat. Gjelsvik et al. [5] 
demonstrated that the results are highly sensitive to the 
internal price model used in the optimization. This resulted 
in the development of the price model described in [6]. In 
this paper we describe the testing of the improved model on 
the power system of Norway’s second largest generation 
company. 

2. The model 

The model has been developed by Mo et al. [2] and is an 
extension of an existing tool for medium-term hydropower 
scheduling described in [5], where new state variables are 
introduced to account for future trading. For an overview, 
we present the model in this section. The objective in the 
new model is to maximize the sum of net income from 
trading in the futures market, sales in the spot market and 
the value of the water at the end of the planning period, 
minus penalty terms for failing to fulfill income 
requirements. The penalty terms penalize progressively for 
incomes below a user-specified limit at the end of the 
period. The planning period is usually two or three years 
with a time resolution of one week. The spot price and 
inflow are assumed to be known in the beginning of the 
week. Generation, trading of standardized futures contracts 
and withdrawal of load factor contracts are decided at the 
beginning of the weeks (The state variables describing 
reservoir levels, position in the futures market and 
accumulated income are referred to the beginning of the 
week.). In Nord Pool the contracts are traded in one-week 
lots for the first 4-7 weeks (This is referring to the financial 
market structure existing until fall 2003). After this 
contracts are traded in 4-week blocks and beyond one year 
in seasons. The market features are implemented in the 
model and the time resolution is dynamic, so that blocks 
are resolved into weeks and seasons are resolved into 
blocks as time passes, as in the actual market. Future 
contracts are delivered at a flat MW rate. The important 
calculated values are: 

• Generation schedules and marginal water values for 
each  reservoir. 

• Trading schedules and marginal contract values for 
each standardized future contract (traded at Nord 
Pool). 

• Income forecasts that include a realistic measure of 
future uncertainty. 

 
Model definitions include: 
period: the basic time step is one week so that a period 

may be one or more weeks 
planning period:  time from now up to the planning horizon 

(usually 2 to 3 years) used in the model 
income period: the period used for measuring income,  
    usually annually 
k  week in the planning period 
t  week in the futures market (contract period), t > k 
N    number of weeks in the planning period 
EP,v  expectation operator applied to the distributions 

of price (P) and inflow (v) 
Sp(k) energy exchanged at spot market price in week k 

(GWh) 

P(k)  average spot price in week k (NOK/MWh) 
Nprof  number of income periods 
Pst(J) first week in income period J 
Psl(J) last week in income period J 
I(k,J)  accumulated income for income period J in week   
    k (NOK) 
Pen() penalty function for failing to fulfill the income  
   requirements 
R(x(N)) value of water remaining in week N (NOK),  
   estimate obtained from long-term scheduling 
S(k,t) sales committed in week k for future week t  
   (GWh) 
K(k,t) purchase committed in week k for future week t  
   (GWh) 
B(k,t) accumulated balance (sum of commitments) in  
   week k for future week t (GWh) 
pf(k,t) contract price in week k for delivery in future  
   week t (NOK/MWh) 
∆p  transaction costs (NOK/MWh) 
x(k)  vector of reservoir levels in week k (Mm3) 
xmax(k) vector of maximum reservoir levels in week k  
   (Mm3) 
xmin(k) vector of minimum reservoir levels in week k  
   (Mm3) 
u(k)  vector of discharges in week k (Mm3) 
umax(k) vector of maximum discharges in week k (Mm3) 
umin(k) vector of minimum discharges in week k (Mm3) 
C    matrix describing the system topology 
G()  conversion function from discharge vector to  
   generation (GWh) 
v(k)  vector of inflows for week k (Mm3) 
vn(k)  normalized inflow vector in week k 

( )
v

kσ  standard deviation of inflow week k 

( )
v

kµ  expected inflow in week k 

( )
v

kε  noise-term which is normally distributed N(0,Ω)  

   where Ω  is the covariance of the noise-term 
 A   inflow matrix containing correlation in inflow  
   between week k and k+1 
 
 
The objective function is: 

,

1

1

1 1

1

1 1

( ) ( )

( , )( ( , ) )

( , )( ( , ) )

( ), )) ( ( ))
prof

N

P v

k

N N

k t k

N N

k t k

N

sl

J=1

Max E Sp k P k

K k t pf k t p

S k t pf k t p

Pen(I(P J J R x N

=

−

= = +

−

= = +





− + ∆

+ − ∆


− + 



∑

∑∑

∑∑

∑

                                  (1)                                                                                                  

The water balance, reservoir and discharge constraints are: 

( 1) ( ) ( ) ( ) 1,..,x k x k Cu k v k k N+ = − + =                     (2) 

min max( ) ( ) ( ) 1,..,x k x k x k k N≤ ≤ =                                    (3)                                                   

min max( ) ( ) ( ) 1,..,u k u k u k k N≤ ≤ =                                    (4) 

The contract balance for any future week t is updated for 
every week in the planning period k: 

( 1, ) ( , ) ( , ) ( , ) 1,.., 1B k t B k t K k t S k t k t+ = + − = −       (5)               

The spot market balance equals: 
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( ) ( ( )) ( , ) 1,..,Sp k G u k B k k k N= + =               (6)                    

Accumulated income caused by trading in the futures 
market (accounted as physical contracts) and income due to 
trading in the spot market are given by: 

(

( )

( ( ), 1)

( )

( ( ), 1)
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∑

∑
  (7)     

( , ) ( , ) ( ) ( ) if ( ) ( )st slI k J I k J Sp k P k P J k P J= + ≤ ≤                                                                                                         

The initial contract portfolio gives B(0,t) and I(0,J) for 
all t and J. Each load factor contract is modeled as a 
reservoir with a given initial energy amount and a power 
station efficiency of 1.0 and an upper MW rate. Equations 
(2) and (4) therefore apply. The inflow is zero except for 
the time of initialization or renewal. The model suggests 
the optimal use of existing load factor contracts, but does 
not give any decision support whether or not to enter into 
new load factor contracts. Accounting of futures contracts 
are as for physical contracts and affects which income 
states that are updated when trading occurs in week k for 
future week t. 

 

 

Fig.  1.  Example penalty function and the associated utility 
function for a risk-averse agent. 

 
The penalty function describes the risk attitude of the 

company and corresponds to a utility function. It is 
illustrated in Fig. 1. Incomes below a reference income (the 
income target of the company) in each income period are 
penalized in the objective function by subtracting a penalty 
cost. The cost is zero for incomes above the reference 
income. The penalty function must be defined by a 
reference income and marginal penalty (i.e. the slope of the 
function) for all income periods and may differ from one 
income period to another. It may also have two or more 
segments as illustrated in Fig. 1. If the penalty function is 
subtracted from the income, the result is a utility function 
demonstrating that the company is risk neutral for incomes 
above a certain level. The penalty function is assumed to be 
convex and must be specified and calibrated by the user of 
the model. In this paper incomes below the 25 percentile 

are penalized with different marginal penalties. We only 
include two segments in the penalty function. 

Hydropower plants have an infinite horizon and 
therefore a function that values the water at the end of the 
planning period is needed. The function is constructed from 
an aggregated long-term model system and is a function of 
total storage. 

Inflow Model 

Uncertainty is taken into account by assuming stochastic 
future spot market prices and inflows to reservoirs. The 
inflows to the reservoirs are modeled as a multivariable 
first order autoregressive model. Input data are historical 
inflows. The model described in [7] introduces additional 
state variables to Equations (1)-(7). With a weekly 
resolution there will usually be a certain autocorrelation in 

the inflow, ( )
n

v k . A simple model describing this is the 

lag-one autoregressive process. A normalized inflow model 
is used: 

( ) ( ) ( ) ( )
v n v

v k k v k kσ µ= +                                                (8)                                                                        

)1()()1( ++⋅=+ kkvAkv vnn ε                                 (9)  

A is the auto-regression matrix, and )1( +kvε is a 

stochastic term that is uncorrelated from one week to the 

next. With no auto-correlation )1()1( +=+ kkv vn ε . This 

inflow model is easily handled by the SDDP algorithm. 

The elements of A and the distribution of )1( +kvε must be 

determined from the observed inflows. To apply the SDDP 
algorithm, a set of discrete inflow values are used at each 
week resulting in a finite number of possible reservoir 
sequences. Inflow series for regulated and unregulated 
inflows are treated similarly. 

Price Model 

A first order discrete Markov price model is simple and 
applicable in a stochastic optimization framework. The 
price in one time step depends on the price in the previous 
time step. However, the Markov price model does not 
always capture all of the statistical properties of the price 
scenarios. In some cases it is observed that the mean 
reverting properties of the Markov model are stronger than 
what is observed for simulated extreme prices.  

 

 

Fig.  2.  Price model structure. 
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The general price model structure is shown in Fig. 2. For 
every time step, there is a given number of price nodes, 

( )
i

P k . Transition probabilities ( )
ij

p k are linking the price 

nodes where ( )
ij

p k  is the probability that the price is 

( 1)
j

P k +  at time step k+1 given that it was ( )
i

P k at time 

step k. A process identifies what prices belong to the same 
node and estimates the transition probabilities from Norsk 
Hydro’s statistical price forecast [6]. 

An important assumption is that the price of the futures 
contract equals the expected spot price in the delivery week 
t conditioned on the spot price in trading week k: 

( , ) ( ( ) | ( )).pf k t E P t P k=                                                 (10)                                                                                                                                                     

Here it is assumed that the futures market gives an 
unbiased estimate of the expected future spot market prices. 
The spot price model is used to compute the conditional 

probability distribution of ( , ) ( ( ) | ( ))pf k t E P t P k=  and 

therefore the futures market price at decision time step k 
and future delivery week t.  

In the forward market, prices of contracts with delivery 
up to several years ahead vary from week to week. To 
incorporate this, the price model has been expanded with 
new nodes and transition probabilities that model the 
probability of shifts in futures prices [6]. The price nodes 
consist of the original nodes and new nodes calculated as 
the original ones plus/minus a price shift. The new 
transition probabilities are calculated by combining the 
original ones and the probability of a price shift. The price 
shift model is symmetric with expected value zero so that 
the expected price of the original price model is unchanged. 
The improved price model is similar to a multi-factor price 
model. 

3. Solution methodology 

The model formulation in Equations (1)-(7) is a 
stochastic dynamic optimization problem. The solution 
methodology is a combination of SDDP [4] and SDP [5] 
adapted to the model extensions. There is no reduction of 
the state space, and a power system with many reservoirs 
and load factor contracts will have a substantial 
computational time. 

A system state vector in week k is defined as: 

( ) ( ), ( , 1),..,

( , ), ( ,1),... ( , ), ( )

T

T

prof

z k x k B k k

B k N I k I k N P k

= +



                              (11)                                                                                                                                            

and a decision vector as: 

]

( ) ( ), ( , 1),....,

( , ), ( , 1),... ( , )

T

T

y k u k S k k

S k N K k k K k N

= +

+
                                     (12)                                                                                               

With these definitions the objective is written as: 

,

1

( ( ), ( )) ( ( ))
N

P v k

k

Max E L z k y k R z N
=

  
+ 
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∑                        (13)                                                                                                          

where ( ( ), ( ))kL z k y k is the immediate return from stage k, 

including penalties represented by Equation (1). Assuming 
that transition probabilities at stage k are independent of the 
previous states z(k-1), z(k-2), ..., the problem can be solved 

by dynamic programming. The Bellman recursion equation 
is: 

{ }, 1( ( )) ( ( ), ( )) ( ( 1))k P v k kz k E Max L z k y k z kα α += + +      (14)                                 

 
and is solved subject to Equations (2), (5), and (7) which 
define z(k+1), and to other relevant constraints. 

1( ( 1))k z kα + + is the expected future return function from 

state z(k+1) to a feasible final state in the optimum manner. 
For the last interval we have the relationship 

( ( )) ( ( )) ( ( ))N z N R z N Pen z Nα = + . The objective function 

in Equation  (1) contains non-linear terms, making it non-
convex. To utilize a hyperplane (or cuts – a set of linear 

constraints) representation of the future income ( ( ))k z kα , 

5-7 discrete price levels are used. The methodology is 
analogous to traditional stochastic dynamic programming 
with respect to price state. The solution algorithm is 
iterative. Each main iteration consists of a backward 
recursion using Equation (14) where the strategy is updated 
for all weeks in the planning period and a forward 
simulation based on the last operating strategy (described 
by hyperplanes). As in the SDDP method sampling in the 
tree of outcomes is essential. SDDP differs from SDP in 
that expected future incomes are represented by 
hyperplanes and not tables. 

At each time step one builds a strategy given by 
hyperplanes in the “z-space.” The hyperplanes are 
represented as constraints of the type: 

( )

( ) jR

k

TjR

kk

j

k
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1

1
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                                   (15)                                                                                                    

where 1

1 1....j jR

k k
µ µ+ +  and 1

1 1....j jR

k k
γ γ+ +  denote the coefficients 

that define the R hyperplanes representing the expected 

future income function at the price point ( )j
P k . Moreover, 

z(k+1) includes all state variables except price. The vector 

µ  is the mean dual variable of some of the constraints in 

the sub-problem of Equation (14) while γ  is the right-hand 

side constant in the cuts. 
A single-transition sub-problem of Equation (14) under 

the assumption of a hyperplane representation together with 
the cuts Equation (15) and the respective constraints in 
Equations (2), (5), and (7) constitute a standard linear 
programming problem (with associated dual variables), 
which is easily solvable and gives the expected income in 
week k based on the hyperplanes in week k+1. In the 
backward recursion an upper limit on the income is 
obtained. To solve the single-transition sub-problem, a 
relaxation procedure is utilized. This is an effective strategy 
if relatively few constraints are binding at optimality. In the 

sub-problem )(kx  is known while )1( +kx  in the cuts 

(Equation (15)) and the bounds Equation (3) can be 
eliminated by using Equation (2) as described in [7]. 
Bounds on the reservoirs are seldom binding and may be 
relaxed. Also when many cuts are present most of them 
may be relaxed. Thus, the number of iterations in the 
relaxation procedure is relatively small. 
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The forward simulation is performed for all inflow and 
price scenarios. Optimal weekly generation is determined 
from the single-transition sub-problem, given inflow and 
price. The expected future income is calculated from the 
last backward iteration. The objective function is: 

{ }, 1Income( ) ( ( 1))P v kE Max k z kα ++ +                             (16)                                                                                                                            

The forward simulation gives possible non-optimal 
solutions that are used to calculate an indicative lower limit 
on expected future incomes. The same scenarios are 
simulated but with different state values.  A cut generated 
for one reservoir and price level may be used by the other 
scenarios at the same price level because of the Markov 
assumption. The model includes a heuristic based on 
observed inflows in the forward simulation.    

Convergence may be obtained when the absolute value 
of the difference between the upper and lower limit is 
comparable to the standard deviation of the upper limit. 
However, in practice a specified number of iterations are 
carried out.  

4. Lagrange multipliers and marginal market 

signals 

The marginal cost values determined from this model 
cannot be directly compared to the market price when 
penalty functions are active. Let the Lagrange multipliers 
associated with the contract balance (Equation (5)) and the 
accumulated income due to trading in the futures market 

(Equation (7)) be ( , )B k tΠ  and ( , )I k JΠ respectively. For a 

sale of contracts ( , ) 0S k t > a necessary condition is: 

( , ) ( ( , ) )(1 ( , ))B Ik t pf k t p k JΠ ≤ − ∆ + Π                           (17)                                                                                                                              

or 

( , ) ( , ) /(1 ( , ))B Ipf k t k t k J p≥ Π + Π + ∆                            (18)                                                                                               

Similarly for a purchase of contracts ( , ) 0K k t > , a 

necessary condition is:  

( , ) ( , ) /(1 ( , ))B Ipf k t k t k J p≤ Π + Π − ∆                            (19)                                                                                                

( , )I k JΠ is called the income penalty multiplier associated 

with week k in the planning period and J is the index of the 
income period that contains week t. 

Associate λ with the spot market balance (Equation (6)). 
To sell in the spot market we must have: 

( ) /(1 ( , ))IP k k Jλ≥ + Π                                                   (20)                                                                                                                                              

In the case ( , ) 0I k JΠ = we find the usual condition for 

sales in the spot market. When the market price is higher 
than the water value, sales are suggested. When 

( , ) 0I k JΠ > , the Lagrange multiplier associated with the 

spot market balance (λ) is modified such that risk adjusted 
water values are obtained. 

5. Test system description 

Norway’s second-largest power producer, Norsk Hydro 
ASA operates 21 power stations and has ownership in 25 
others. The total installed capacity is 1740 MW; the 
average annual generation is 8.6 TWh (11.3 TWh in 2000).  
Fig. 3 shows the respective yearly generation in the main 
five watercourses. 

 

 

  Fig.  3.  Norsk Hydro’s annual total power generation. 

 
Norsk Hydro’s fictive contract portfolio consists of a flat 

sales contract with a volume of 8.76 TWh/year and a price 
of 21.49 EUR/MWh, and three load factor contracts with 
the specifications shown in Table 1. The load factor 
contracts span different income periods (i.e. the years 2001, 
2002, and 2003) and seasons, which makes the problem 
complex to solve. The user of the model is free to specify 
the length of the contract durations.  

 
LFC Period Price 

(EUR/MWh) 
Initial volume 

(GWh) 
Min 

volume 
(GWh) 

Max 
volume 
(GWh) 

1 44-78 22.08 491 0 491 
2 79-130 22.08 664 0 664 
3 131-156 22.08 332 0 332 
 Min rest 

volume  
(GWh) 

Max rest 
volume 
(GWh) 

Min withdrawal 
(GWh) 

Max 
withdrawal 
(GWh) 

 

1 0 0 0 15.288  
2 0 0 0 15.288  
3 0 0 0 15.288  

Table 1. Load factor contract specifications. 

 
Parameter  

Generation cost 5844160 EUR monthly 
Transaction cost 0.195 EUR/MWh 
Maximum weekly  
transaction 

50 GWh/week 

Probability of price shift 0.1 
Value of price shift 0.481 EUR/MWh 
Initial contract balance in each week -168 GWh/week 

        Table 2. Different parameters used in the model. 

 

The model parameters are given in Table 2. There are 
three income periods, one for the period weeks 44-52 (the 
rest of year 2001), and one each for weeks 53-104 (2002) 
and 105-156 (2003). The locked income in the futures 
market for each of the income periods is EUR 16.56, 
102.26, and 102.40 million, respectively. The value of the 
price shift was estimated from the seasonal forward 
Summer 2001 contract prices at Nord Pool in the period 
02.05-29.12.2000. The average price of the forecast used in 
the simulations is shown in Fig. 4. The price forecast has 
240 scenarios. 
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Fig. 4. Future price forecast at week 44 used in the 
simulations. The average price of 240 scenarios is shown (1 
øre/kWh is approximately equal to 1.3 EUR/MWh). 

6. Model studies 

The integrated risk management model calculates values 
used for making decisions today, such as discharge of 
water and hedging in the futures market. It also simulates 
forecasts for possible futures given by price scenarios and 
associated local inflow scenarios after the optimal strategy 
is found.  

We have run the model for five different cases for the 
penalty function. The penalty function is similar in all 
income periods. A marginal penalty of 1.0 means that if the 
expected income is 100 EUR million below the reference 
income, the company is charged a penalty of EUR 100 
million. We use a two-segment penalty function with 
different marginal penalties or slopes corresponding to 
different risk preferences. 
Case 1: Risk neutral 

The base case is the risk neutral case. In this case it is 
unnecessary to optimize the generation and the contract 
portfolio simultaneously. 
Case 2: Risk-averse, marginal penalty 0.5 
In this case we penalize income results below the 25 
percentile with marginal penalty 0.5. 
Case 3: Risk-averse, marginal penalty 1.0 
In this case we penalize income results below the 25 
percentile with marginal penalty 1.0.  
Case 4: Risk-averse, marginal penalty 5.0 
In this case we penalize income results below the 25 
percentile with marginal penalty 5.0.  
Case 5: Risk-averse, without dynamic hedging 
The penalty function is the same as in case 2 but trading in 
the futures market is not allowed. 

 
In each run we received income results for 240 different 

scenarios (with equal probability) based on Norsk Hydro’s 
price forecast. The calculated expected income for each of 
the periods is given in Table 3. The results for income 
period 3 should not be overemphasized, since the planning 
period is rolling. Only the simulation results for weeks 1-52 
are used in practice.  

The risk neutral case (case 1) has the highest expected 
total income, EUR 379.49 million, followed by cases 2 and 
5. The expected income does not change substantially in 
the different cases, so the optimum is relatively flat. The 
standard deviation for the first period has decreased by half 
the amount from the risk neutral case for all the other cases. 
The decrease is less in other periods; cases 4 and 5 show 
the most significant change. The end reservoir is highest 
for the risk neutral case and decreases with increasing risk 
aversion (except case 3). 

 
 Case 1 Case 2 Case 3 Case 4 Case 5 

Average income 
period 1 

28.61 30.25 31.93 30.92 31.83 

Std. dev. 8.85 4.86 5.40 4.96 4.86 
Average income 
period 2 

140.70 139.98 136.35 142.11 140.96 

Std. dev. 25.81 22.46 19.60 20.60 21.56 
Average income 
period 3 

130.78 130.46 129.72 126.68 130.03 

Std. dev. 29.70 27.73 26.40 25.69 23.51 
End reservoir 79.35 74.77 76.70 72.73 73.16 
Expected total 
income 

379.49 375.44  374.68 372.43 375.31 

Min income 
period 1 

3.03 23.04 25.12 24.91 23.05 

Min income 
period 2 

85.54 88.13 109.09 107.89 96.09 

Min income 
period 3 

43.77 26.01 10.62 25.51 75.18 

Max income 
period 1 

43.79 42.86 46.01 43.34 43.90 

Max income 
period 2 

208.86 207.06 199.26 205.94 205.15 

Max income 
period 3 

221.50 221.31 217.22 211.66 217.25 

Expected trading 
income 

0.00 -2.10 -1.42 -1.40 0.00 

Expected 
transaction cost 

0.00 0.44 0.45 0.55 0.00 

Expected penalty 0.00 1.57 1.42 12.52 0.95 

 

         Table 3. Simulated income (MEUR) for cases 1- 5. 

 
Table 3 shows that the minimum income scenarios2 have 

improved in income periods 1 and 2. For income period 1, 
cases 3 and 4 show the most improvements: from EUR 
3.03 million to about EUR 25.12 and EUR 24.91 million 
respectively. For income period 2, case 3 shows the best 
improvement of the minimum value from EUR 85.54 to 
EUR 109.09 million. In short all minimum income 
scenarios in income periods 1 and 2 have improved 
significantly from the risk neutral case, while the minimum 
income in period 3 decreased in most cases, except for case 
5. The maximum income scenario in period 1 is highest in 
case 3, and in the other periods the maximum income 
scenario has the same order of magnitude in most of the 
cases. 

The expected trading income (or loss) is lowest in case 3 
(moderate penalty) and zero in cases 1 and 5 because there 
is no trading in the futures market. The transaction and 
penalty costs are highest in case 4. 

The hydropower generation in the different cases and 
periods is given in Table 4. The total generation is lowest 
in case 1 and highest in case 5. This is as expected because 

                                                           
2 The minimum income scenario is the value of the scenario with 

lowest income of the 240 scenarios. 
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hedging is not allowed in case 5. The only way the 
producer can fulfill the income requirement is to use 
physical generation. With increasing risk aversion the 
generation in the period Winter 2 2001 is increasing 
relative to case 1. The reason is that when a penalty for 
failing to fulfill the income requirement is introduced, it is 
cheaper to use hydropower generation than hedging in the 
futures market to meet the budget for the year 2001. The 
results are more ambiguous for the other seasons.  
 

Period Case 1 Case 2 Case 3 Case 4 Case 5 

Winter 2 
2001 

1840.4 1949.2 1935.6 1970.6 2001.7 

Winter 1 
2002 

3255.7 3150.1 3153.3 3134.8 3155.7 

Summer 
2002 

3912.0 3927.1 3916.9 4041.8 4018.1 

Winter 2 
2002 

2191.6 2254.3 2230.9 2263.3 2297.0 

Winter 1 
2003 

2966.3 2900.9 2877.1 2653.5 2783.8 

Summer 
2003 

3871.6 3939.9 3935.6 3997.1 3899.2 

Winter 2 
2003 

2371.5 2468.1 2488.9 2511.0 2500.4 

Total 20409.1 20589.5 20538.2 20572.1 20656.0 

 

       Table 4. Simulated generation (GWh) for all cases. 

 
 Income period 

1 
Income period 

2 
Income period 

3 

Case 1 0 0 0 
Case 2 0.036 0.020 0.003 
Case 3 0.024 0.002 0.017 
Case 4 0.030 0.015 0.019 
Case 5 0.030 0.023 0.041 

 

   Table 5. Income penalty multipliers for the initial week. 

The income penalty multipliers for our runs are shown in 
Table 5. The multipliers are highest in the first period for 
cases 1-4, meaning that the model emphasizes the 
fulfillment of the income requirement more in this period 
compared to the other periods.The marginal risk adjusted 
water values and contract values for some of the most 
important reservoirs in Norsk Hydro’s total system in the 
initial week are shown in Table 6. To use the marginal 
water values as a decision support tool, they must be 
divided by one plus the income penalty multipliers for 
income period 1.  

As for the marginal water values the marginal future 
contract values shown in Table 7 must be adjusted with an 
income penalty multiplier referred to the actual income 
period. Trading of futures contracts in the model occurs 
when the difference between the corrected marginal 
contract value and the market price for that specific futures 
contract exceeds the transaction cost. A positive difference 
indicates purchase; a negative difference indicates sale. 

 
 
 
 
 
 
 

 Case 1 Case 2 Case 3 Case 4 Case 5 

Møsvann 19.09 20.77 20.05 20.73 18.40 
Middyrvann 20.52 20.88 21.45 19.65 18.82 

Votna 19.92 20.13 20.67 18.64 17.82 
Valldalen 19.49 19.53 20.21 17.51 19.90 

Røldalsvann 19.82 19.56 20.36 16.48 19.84 
Sandvann 21.49 22.81 21.99 20.82 22.35 
Tyinsjøen 19.12 19.45 19.92 17.99 18.44 

Øvre Herva 22.02 23.05 22.80 23.62 22.84 
Storevatn 21.59 23.08 22.63 22.96 22.65 

Herva 22.14 23.43 22.79 22.97 23.01 
Skålavatn 22.14 23.43 22.79 22.97 23.01 
Fellvann 19.16 20.04 19.46 16.79 18.40 

Sokumvann 18.33 19.39 18.76 15.61 17.61 
LFC 1 17.93 18.20 18.28 18.29 18.42 

LFC 2 17.13 17.44 17.40 17.35 17.48 
LFC 3 18.14 18.18 18.40 18.45 18.83 

 

Table 6. Marginal water values and marginal values of 
load factor contracts (LFCs) in EUR/MWh in week 44 for 
all cases. 

 
Futures 

contracts 
Case 1 Case 2 Case 3 Case 4 Case 5 

Week 45 21.90 22.66 22.55 22.52 22.53 
Week 46 22.62 23.38 23.37 23.24 23.25 
Week 47 23.18 23.92 23.83 23.79 23.79 
Week 48 23.86 24.57 24.47 24.44 24.43 
Block 1 24.00 24.57 24.58 24.55 24.55 
Block 2 25.49 25.99 25.94 25.86 26.05 
Block 3 25.34 25.83 25.78 25.70 25.90 
Block 4 22.51 22.95 22.89 22.82 23.00 
Block 5 21.16 21.57 21.52 21.45 21.62 
Block 6 20.47 20.86 20.80 20.74 20.91 
Block 7 19.04 19.39 19.34 19.27 19.43 
Block 8 17.34 17.65 17.61 17.56 17.69 
Block 9 17.32 17.62 17.59 17.53 17.66 

Block 10 20.09 20.40 20.38 20.31 20.43 
Block 11 21.12 21.43 21.39 21.35 21.45 
Season 1 22.08 22.39 22.35 22.31 22.39 
Season 2 23.62 23.69 24.01 24.06 24.64 
Season 3 19.36 19.40 19.62 19.68 20.06 
Season 4 23.18 23.22 23.43 23.51 23.83 

 

Table 7.  Marginal future contract values (EUR/MWh) in 
week 44 all cases. 

 
   Period Case 1 Case 2 Case 3 Case 4 Case 5 

Week 45 0 -5.21 -5.21 -3.96 0 
Week 46 0 -10.21 -10.00 -8.96 0 
Week 47 0 -21.67 -20.00 -15.83 0 
Week 48 0 -29.32 -27.50 -25.62 0 
Week 49 0 -35.19 -31.04 -30.0 0 
Week 50 0 -35.19 -31.04 -30.0 0 
Week 51 0 -35.19 -31.04 -30.0 0 
Week 52 0 -35.19 -31.04 -30.0 0 

 

Table 8. Expected trade (sale GWh/week) for future weeks 
in the first week (week 44), as function of future weeks for 
all cases. 

The expected trade (sale) of futures contracts in the first 
week (week 44) for all future weeks is shown for all cases 
in Table 8. The trade is zero for all weeks in 2002 and 
2003, and is highest for cases 2 and 3 in the rest of the 
weeks in year 2001. When risk aversion and hedging are 
introduced, there is trade (sale) in the end of year 2001. 

The withdrawal from the load factor contracts illustrated 
in Fig. 5 shows that the withdrawal is typically high in 
periods with high prices (winter) and low in periods with 
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low prices (summer). The withdrawal profiles for the 
different cases are relatively similar. 

 

Fig. 5. Simulated sum withdrawal from load factor 
contracts (GWh). 

7. Practical issues 

Practical issues should be given high priority when the 
system will be run in parallel with today’s risk management 
tools. The inputs for the model simulations on Norsk 
Hydro’s total power system and portfolio are 
comprehensive. For the weekly runs, the following data are 
needed: reservoir levels; contract and income balance for 
the entire planning period; revision plans; options data; 
load factor contract data; and the weekly price forecast. A 
special program is used to extract the contract portfolio 
data from two databases. During testing it usually takes 1-2 
hours to update all of the mentioned data. The running time 
for the model is about 15-20 hours on a 1 GHz CPU PC. 

8. Discussion and conclusions 

Our tests have demonstrated that it is possible to apply 
the model to realistic cases. The case results have shown 
that hydropower generation and trading in the futures 
market change with the risk aversion.  

In general we found that the expected income decreased 
with increasing penalty as we expected. The minimum 
income scenarios in the closest income periods are reduced 
when risk aversion is introduced. When no hedging in the 
futures market is allowed, the water is moved between the 
different time periods (seasons) to meet the income targets. 

The model gives risk adjusted water values as output and 
these can be used as a condition for sale in the spot market.  
Another result of the simulations is that the marginal 
contract values, when properly adjusted, can be used as 
signals for buying or selling in the futures market. 

The expected trading observed from week 44 occurs in 
weeks 45-52 of year 2001 for the cases with risk aversion 
and hedging. Most of the withdrawals from the load factor 
contracts occur in the periods with high price, and the 
withdrawal profiles are relatively unaffected by risk 
aversion if the transaction costs are small [3].  

When dynamic hedging is introduced, the simulated 
income uncertainty is reduced and the model offers a more 
realistic forecast of the associated income for a portfolio of 
physical generation, futures contracts, and load factors 
contracts. An optimization of both physical generation and 
the contract portfolio is necessary because the information 
about reservoir levels and rest volumes gives signals about 
changes in future position and reduces inflow risks. 
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