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Abstract.

An Economic Production Lot Scheduling model is generalized
analytically in which time-dependent demand in the market is
adjusted by finite rate of production. The rate of production de-
pends upon modern technology, capital investment and number
of labors. Also, the generalized EPLS model is simplified espe-
cially for constant demand, linear trend in demand, quadratic
demand and exponentially demand pattern. The relevant cost
function of this model is minimized analytically.
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1. Introduction

The classical EOQ formula , which is also known as the Wilson’s Square
Root Formula[1] was derived long ago under the assupmtion of constant de-
mand rate. In real market, the demand rate of any product is always in a
dynamic state. Demand of product may vary with time or with price or even
with the instanteneous level of inventory displayed in a retail shop. Sev-
eral authors have enlightened the EOQ model with time-varying demand.
It was started with the work of Silver and Meal[2] who developed a heuris-
tic approach to determine EOQ in the general case of a deterministic time
dependent demand pattern. Donaldson[3] came out with a full analytic so-
lution of the inventory replenishment problem with a linear trend in de-
mand over a finite time-horizon. Silver[4] used the Silver-Meal [2] heuris-
tic to obtain a simple operating schedule for the same problem which in-
curs only negligible cost penalies. Other noteable works in this direction
came from Ritche[ 5-7] , Kicks and Donalson[8] , Buchanan[9], Mitra et
al.[10] , Ritchie and Tsado[11], Goyal[12], Goyal et al. [13], Deb and Chaud-
huri[14], Murdeshwar[15], Dave[16], Goyal[17], Hariga[18], Goyal et al.[19],
Dave and Patel[20], Bahari-Kashani[21], Hong et al.[22], Chung and Ting[23],
Goswami and Chaudhuri[24], Hariga[25], Giri et al.[26], Teng[27], Jalan et
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al.[28], Chakrabarty et al.[29], Lin et al.[30], Goyal et al.[31], Chakrabarty
and Chaudhuri[32], Hariga and Benkherouf[33], Wee[34], Khanra and Chaud-
huri[35] among others.

In the Classical Economic Production Lot Scheduling model, the amount
ordered becomes available at a constant supply rate[36]. But the machine
production rate can easily be changed[37-39]. The models of Adler and
Nanda[40], Sule[41, 42], Axsater and Elmaghraby[43], Muth and Spearmann[44]
were concerned with learning effects on the optimal lot size. Proteus[45],
Rosenblatt and Lee[46] extended the models to the imperfect production pro-
cesses. Shweitzer and Seidmann[37] first enlightened the researchers about
the concept of flexibility in the machine production rate and discussed opti-
mization of processing rates for a FMS(flexible manufacturing system). Sil-
ver[47] discussed the effects of slowing down production in the context of a
manufacturing equipment dedicated to the production of a family of items,
assuming a common production cycle for all items. Gallego[48] extended
the model of Silver[47] by applying different production cycles for different
items. Moon, Gallego and Simchi-Levi[49] discussed controllable production
rates in a family production context. Khouja and Mehrez[50] and Khouja[51]
extended the EPLS model to an imperfect production process with a flexible
production rate.

Under increased competition, inventory-based businesses are forced to
better coordinate their procuremen and marketting decisions to avoid carry-
ing excessive stock when sales are low or shortages when demands are high.
An effective means of such coordination is to conduct the inventory control
and manufacturing decision jointly. The main task in doing so is to deter-
mine the optimal rate of production and inventory policy in a given time
varying demand.

In this paper, a manufacturing-inventory system is considered in which
the time-varying demand( any continuous function of time ”t”) in market
is met by its produced items. The rate of production is controlled by the
applied technology, capital investment in variable factors of production and
number of labours,

2. Fundamental Assumptions and Notations

Assumptions:

1. The model is developed for single item.

2. The rate of production is variable.

3. Shortages are not permitted.

4. Time-horizon is finite.

5. The lead time between production and supply to an enterprise is neg-
ligible small.
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Notations:

P - The rate of production ;

T - Production technology which produces T times of production,
keeping unchanged the another factors;

K - Capital investment in production system per unit time;

N - Number of labours;

f(t) - Demand rate at time ”t” ≥ 0 ;

CL - Remuneration of each labour per unit time;

Ch - Inventory holding cost per unit per unit time;

Cs - Setup cost per cycle;

Q(t) - On-hand inventory at time ”t” ≥ 0 ;

n - Number of cycles;

H - Time horizon;

TAC - Total average profit.

3. Formulation of the Model
We consider a manufacturing system in which the demand in market is

met by its produced items. Here the time horizon [0, H] is divided into n
cycles. In the i -th cycle ( i = 1, 2, ....n) , production starts at Ti−1 with zero
inventory and continues upto time ti and the level of inventory again reaches
zero at time Ti. The inventory piles up during [Ti−1, ti] , after adjusting the
demand in market. Here n cycles are of equal length. Therefore,

Ti = i
H

n
, i = 1, 2, .....n (1)

ti = Ti−1 + ri(Ti − Ti−1)

= (i− 1)
H

n
+ ri

H

n

= (ri + i− 1)
H

n
, (2)

where ri , 0 < ri < 1 , is the service level of i - th cycle. Now the rate of
production is considered as Cobb - Doughlas production function :

P = TKαN1−α , 0 < α < 1 (3)
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Where T is the technology which accelerates the rate of production, K is
the invested capital for production except investment in technology, N is
the number of labours, (1− α) and α represent labour and capital elasticity
of production respectively. Generally speaking, production is the result of
combined efforts of the factors of production. These factors may be fixed or
variable. A fixed factor is one, whose quantity cannot readily be changed in
responce to desired changes in output or market conditions. Its quantity re-
mains the same whether the level of output is more or less or zero. Buildings,
land, machinery plants and top management are some common examples of
fixed factors. A variable factor, on the otherhand, is one whose quantity
may be changed in responce to a change in output. Raw materials, ordinary
labour, power, fuel etc. are examples of variable factors. Such factors are
required more, when output is more; less, when output is less and zero, when
output is nil.

The governing equations of this model are :

dQ

dt
= P − f(t) , Ti−1 ≤ t ≤ ti with Q(Ti−1) = 0 (4)

and

dQ

dt
= −f(t) , ti ≤ t ≤ Ti with Q(Ti) = 0 (5)

From equ.(4) and equ.(5) , we have

Q(t) = P (t− Ti−1)−
∫ t

Ti−1

f(t) dt , Ti−1 ≤ t ≤ ti (6)

and

Q(t) = P (ti − Ti−1)−
∫ t

Ti−1

f(t) dt , ti ≤ t ≤ Ti with Q(Ti) = 0(7)

Using the condition Q(Ti) = 0 in equ.(7), we have

P (ti − Ti−1)−
∫ Ti
Ti−1

f(t) dt = 0

or, Pri
H
n

=
∫ Ti
Ti−1

f(t) dt =
∫ i H

n

(i−1)H
n

f(t) dt

or,

ri =
1

P

n

H
A(i, n) , where A(i, n) =

∫ i H
n

(i−1)H
n

f(t) dt (8)

Therefore , the inventory of the i - th cycle is

Invi =
∫ ti

Ti−1

Q(t) dt +
∫ Ti

ti
Q(t) dt
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=
P

2
(ti − Ti−1)

2 −
∫ ti

Ti−1

{
∫ t

Ti−1

f(u) du} dt

+ P (ti − Ti−1)(Ti − ti)−
∫ Ti

Ti−1

{
∫ t

Ti−1

f(u) du} dt

=
PH2

n2
ri(1−

ri

2
)−

∫ Ti

Ti−1

(Ti − t) f(t) dt

=
PH2

n2
ri(1−

ri

2
)−B(i, n), (9)

where

B(i, n) =
∫ Ti

Ti−1

(Ti − t)f(t) dt

=
∫ i H

n

(i−1)H
n

(
iH

n
− t)f(t) dt

Now the total average cost is

TAC =
nCs

H
+

1

H

n∑
i=1

[(K + CLN)ri
H

n
+ Ch{P

H2

n2
(ri −

r2
i

2
)−B(i, n)}]

=
nCs

H
+

1

H

n∑
i=1

[(K + CLN)
A(i, n)

P

+Ch{
H

n
A(i, n)− 1

2P
A2(i, n)−B(i, n)}] (10)

From equ.(3), we have

K = (
P

TN1−α
)

1
α

Using this in equ.(10), we have

TAC =
nCs

H
+

1

H

n∑
i=1

[(CLNP−1 +
P

1
α
−1

(TN1−α)
1
α

)A(i, n)

+Ch{
H

n
A(i, n)− 1

2P
A2(i, n)−B(i, n)}] (11)

Now we have to minimize TAC , such that 0 < ri < 1.
2 Theorem : There exist a global minimum value of TAC , for fixed ”n”
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and ”N” iff CL

Ch
>

∑n

i=1
A2(i,n)

2N
∑n

i=1
A(i,n)

is satisfied.

Proof:
Since

dTAC

dP
=

1

H

n∑
i=1

[
( 1

α
− 1)P

1
α
−2

(TN1−α)
1
α

A(i, n)− CLNP−2A(i, n) +
Ch

2
P−2A2(i, n)]

and

d2TAC

dP 2
=

1

H

n∑
i=1

[
( 1

α
− 1)( 1

α
− 2)P

1
α
−3

(TN1−α)
1
α

A(i, n) + 2CLNP−3A(i, n)− ChP
−3A2(i, n)]

For extremum,

dTAC

dP
= 0,

i.e.,
( 1

α
−1)P

1
α

(TN1−α)
1
α

∑n
i=1 A(i, n) + Ch

2

∑n
i=1 A2(i, n) = CLN

∑n
i=1 A(i, n)

or,

P =
1∑n

i=1 A(i, n)
(
1

α
− 1)α

.(TN1−α).[CLN
n∑

i=1

A(i, n)− Ch

2

n∑
i=1

A2(i, n)]α = P ∗ (say).

For real value of P ,

CLN
n∑

i=1

A(i, n) >
Ch

2

n∑
i=1

A2(i, n)

must be satisfied.
Again,

d2TAC

dP 2
|P=P ∗ =

1

HP 3
[(

1

α
− 2)

n∑
i=1

A(i, n){CLN
n∑

i=1

A(i, n)

− Ch

2

n∑
i=1

A2(i, n)}+ 2CLN
n∑

i=1

A(i, n)− Ch

n∑
i=1

A2(i, n)]

=
1

HP 3α
{CLN

n∑
i=1

A(i, n)

−Ch

2

n∑
i=1

A(i, n)2}
n∑

i=1

A(i, n),
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Therefore d2TAC
dP 2 |P=P ∗> 0 for 0 < α < 1 iff

CLN
n∑

i=1

A(i, n) >
Ch

2

n∑
i=1

A2(i, n).

i.e.,

CL

Ch

>
1

2N

∑n
i=1 A2(i, n)∑n
i=1 A(i, n)

.

Hence the Proof. 2

The above problem can be solved by the following algorithm:
Algorithm :

Step 1 : Set n = 1

Step 2 : Set N = 1

Step 3 : Minimize TAC(n, N, P ) ; set Uold = MinTAC(n,N, P )

Step 4 : N = N +1; minimize TAC(n, N, P ) and set Unew = MinTAC(n,N, P )

Step 5 : Check the condition Uold > Unew; if it is true then go to Step 3; other-
wise go to step 6

Step 6 : Set n = n+1; check the condition MinTAC(n, N, P ) > MinTAC(n+
1, N, P ); if it is true then go to step 2; otherwise go to step 7.

Step 7 : The required solution is n = n∗ , N = N∗ , P = P ∗ and required
MinTAC = TAC(n∗, N∗, P ∗)

Step 8: Stop.

Corollary 1:
There exists a global minimum of TAC ; for fixed ”n” and ”N” , f(t) =
a + bt + ct2, a quadratic demand rate; iff

CL

Ch
> 1

2N
{n(n+1)

30
(6n3 + 9n2 + n− 1)φ2

3 + 1
2
n2(n + 1)2φ2φ3

+1
6
n(n + 1)(2n + 1)(2φ1φ3 + φ2

2) + n(n + 1)φ1φ2

+nφ2
1} 1

nφ1+ 1
2
n(n+1)φ2

2+ 1
6
n(n+1)(2n+1)φ3

is satisfied .
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Proof :
Since f(t) = a + bt + ct2 , a quadratic demand rate and

A(i, n) =
∫ i H

n

(i−1)H
n

(a + bt + ct2) dt

= φ1(n) + φ2(n)i + φ3(n)i2,

where

φ1(n) =
aH

n
− bH2

2n2
+

cH3

3n3

φ2(n) =
bH2

n2
− cH3

n3

φ3(n) =
cH3

n3
;

A2(i, n) = φ2
3i

4 + 2φ2φ3i
3 + (2φ1φ3 + φ2

2)i
2

+2φ1φ2i + φ2
1.

Therefore,

n∑
i=1

A(i, n) = nφ1 +
1

2
n(n + 1)φ2 +

1

6
n(n + 1)(2n + 1)φ3;

n∑
i=1

A2(i, n) =
1

30
n(n + 1)(6n3 + 9n2 + n− 1)φ2

3 +
1

2
n2(n + 1)2φ2φ3

+
1

6
n(n + 1)(2n + 1)(2φ1φ3 + φ2

2) + n(n + 1)φ1φ2 + nφ2
1.

Now,∑n
i=1 A2(i, n)∑n
i=1 A(i, n)

= {n(n + 1)

30
(6n3 + 9n2 + n− 1)φ2

3 +
1

2
n2(n + 1)2φ2φ3

+
1

6
n(n + 1)(2n + 1)(2φ1φ3 + φ2

2) + n(n + 1)φ1φ2

+nφ2
1}

1

nφ1 + 1
2
n(n + 1)φ2

2 + 1
6
n(n + 1)(2n + 1)φ3

Therefore, CL

Ch
>

∑n

i=1
A2(i,n)

2N
∑n

i=1
A(i,n)

implies
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CL

Ch
> 1

2N
{n(n+1)

30
(6n3 + 9n2 + n− 1)φ2

3 + 1
2
n2(n + 1)2φ2φ3

+1
6
n(n + 1)(2n + 1)(2φ1φ3 + φ2

2) + n(n + 1)φ1φ2

+nφ2
1} 1

nφ1+ 1
2
n(n+1)φ2

2+ 1
6
n(n+1)(2n+1)φ3

.

Hence the proof. 2
Corollary 2:
There exists a global minimum of TAC ; for fixed ”n” and ”N” , f(t) = a+bt,
a linear trend in demand , iff

CL

Ch

>
1

6N
[
(n + 1)φ2{(2n + 1)φ2 + 6φ1}+ 6φ2

1

2φ1 + (n + 1)φ2

]

is satisfied .
Proof :

Putting c = 0 in Corollary 1 , we have,

φ1 =
aH

n
− bH2

2n2

φ2 =
bH2

n2

φ3 = 0;

and ∑n
i=1 A2(i, n)∑n
i=1 A(i, n)

=
(n + 1)φ2{(2n + 1)φ2 + 6φ1}+ 6φ2

1

3{2φ1 + (n + 1)φ2}

Therefore, CL

Ch
> 1

2N

∑n

i=1
A2(i,n)∑n

i=1
A(i,n)

implies

CL

Ch

>
1

6N
[
(n + 1)φ2{(2n + 1)φ2 + 6φ1}+ 6φ2

1

2φ1 + (n + 1)φ2

]

Hence the proof.2
Corollary 3:
There exists a global minimum of TAC ; for fixed ”n” and ”N” , f(t) = a,
a constant demand rate, iff

CL

Ch

> [
aH

2Nn
]

is satisfied .
Proof :
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Putting b = 0 , c = 0 in Corollary 1, we have

φ1 =
aH

n
,

φ2 = 0,
φ3 = 0,

and ∑n
i=1 A2(i, n)∑n
i=1 A(i, n)

= a
H

n

Therefore, CL

Ch
> 1

2N

∑n

i=1
A2(i,n)∑n

i=1
A(i,n)

implies

CL

Ch

>
aH

2Nn

Hence the proof. 2
Corollary 4:
There exists a global minimum of TAC ; for fixed ”n” and ”N” , f(t) =
aebt , b > 0, an exponential demand rate; iff

CL

Ch

>
a

2Nb
[
(e

bH
n − 1)(ebH − 1)

(e
bH
n + 1)

]

is satisfied .
Proof :

Since

A(i, n) =
∫ i H

n

(i−1)H
n

aebt dt

=
a

b
[ei bH

n − e(i−1) bH
n ]

n∑
i=1

A(i, n) =
a

b
(ebH − 1)

n∑
i=1

A2(i, n) =
a2

b2
(
e

bH
n − 1

e
bH
n + 1

)(e2bH − 1).

Now, ∑n
i=1 A2(i, n)∑n
i=1 A(i, n)

=
a

b

(e
bH
n − 1)

(e
bH
n + 1)

(ebH + 1).
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Therefore, CL

Ch
> 1

2N

∑n

i=1
A2(i,n)∑n

i=1
A(i,n)

implies

CL

Ch

>
a

2Nb
[
(e

bH
n − 1)(ebH − 1)

(e
bH
n + 1)

]

Hence the proof. 2

4.Conclusion
Up to now, many inventory models have been considered in the litera-

ture. Some of them assumed the rate of production is inflexible and some of
them assumed a decision variable. It is common belief that production is the
result of combined efforts of the factors of production. These factors may
be fixed or variable. The variable factors: raw materials, ordinary labour ,
power, fuel and modern technologies accelerate the rate of production. The
capital investment for variable factors is required more when output is more;
less when output is less. Generally, MRP(material requirement planning),
OPT(optimized production technology), JIT(just-in-time) and FMS(flexible
manufacturing system) offer the hope of eleminating many of the weaknesses
of improving production effeiciency. In general, a production rate much
higher than the demand rate leads to rapid accumulation of inventories re-
sulting in higher holding costs and other related problems. If the machine
production rate is less than the demand rate, the management has to face
problems that are usually associated with stock-out situations. These in-
conveniences arise due to inability of the manufacturing setup to adjust its
production rate in keeping with the variability in the market demand. But
the machine production rate can easily be changed[37]. The treatment of
machine production rate as a decision variable is especially appropriates for
automated technologies that are volume flexible[38]. Indeed, in many as-
pects of industrial management one of the most difficult problems is to strike
a proper balance between the scientific techniques on the one hand, and on
the other hand, a complete dependence upon the decision and judgement
of any or some people at the top echelon. In the former case, people with
high salaries keep themselves busy and concerned over the inventory control
problems and with so-called quantitive formulas. In the latter case, a small
group of men generally much lesser degree of control and end up with high
levels of inventory and low degree of coordination. For any manufacturing
enterprise to be economically viable, it is of utmost importance to reach a
working compromise between low control costs and maximum output costs,
that is, low level of inventory with a high rate of inventory turnover, which
is operationally feasible and economically sound. In this paper, we proposes
an extension to the economic production lot size model in which the rate of
production depends upon the technology of manufacturing system, capital
investment for MRP, power fuel etc. and number of labours. In that sense,
the proposed extension is reflective of the capability of modern production
systems.
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