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ON A VOLUME FLEXIBLE PRODUCTION

POLICY FOR A DETERIORATING ITEM WITH
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Scope and Purpose: The scope of the model presented here lies in

its application in FMS (Flexible Manufacturing system) which is consid-

ered to be one of the best ways to improve production efficiency in modern

manufacturing concerns. The purpose of the paper is to incorporate the

concept of flexibility in the machine production rate of an item into a quan-

titative production-inventory model having the potential for application in

manufacturing industries. The unit production cost is linked to the variable

production rate. Physical decay of the stocked item over time is taken into

account and shortages in inventory are allowed. All these practical aspects

are incorporated into the model with the purpose of making it more realistic.
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Abstract: The paper extends the classical Economic Lot Scheduling Prob-

lem (ELSP) to the case of a volume flexible manufacturing system in which

the production rate is flexible and the unit production cost is a function of

the production rate. The model is developed over a finite planning hori-

zon taking the production rate as a decision variable. It is also assumed

that (i) the demand rate is time-dependent , (ii) the stock undergoes decay

or deterioration over time at a constant rate and (iii) shortages in inven-

tory are allowed and are completely backlogged. The associated constrained

Maximization Problem is solved numerically by using the Interior Penalty

Function Method for a given set of parameter values to obtain the near-

optimal solutions in the successive production cycles. The production policy

is discussed in the light of the critical design production rate of the manu-

facturing machine.

Keywords: Volume flexible production, time-dependent demand, deteriorat-

ing item, shortages in inventory.

1. Introduction

The traditional approach in the Classical Economic Lot Scheduling Prob-

lem (ELSP ) is to take the production rate of a machine to be pre-determined

and inflexible[1]. Adler and Nanda[2] extended the ELSP model to situa-

tions where learning effects would induce an increase in the production rate.

The models of Sule([3], [4] ), Axsater and Elmaghraby[5], and Muth and

Spearmann[6] were concerned with learning effects on the optimal lot size.

Proteus[7] and Rosenblat and Lee[8] extended the EOQ (economic order

quantity) and the ELSP models to the imperfect production processes.

Cheng[9] extended the ELSP model to an imperfect production process in
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which demand would exceed supply.

Schweitzer and Seidmann[10] adopted for the first time, the concept of

flexibility in the machine production rate and discussed optimization of pro-

cessing rates for a FMS (flexible manufacturing system). Obviously, the ma-

chine production rate is a decision variable in the case of a FMS and then

the unit production cost becomes a function of the production rate. Khouja

and Mehrez[11] and Khouja[12] extended the ELSP model to an imperfect

production process with a flexible production rate. Silver[13] discussed the

effects of slowing down production in the context of a manufacturing equip-

ment dedicated to the production of a family of items, assuming a common

cycle for all items. Controllable production rates in a family production con-

text were also considered by Moon, Gallego and Simchi-Levi[14]. Gallego[15]

extended the model of Silver[13] by removing the stipulation of a common

cycle for all the items.

Nowadays the managers of manufacturing companies have, in their view,

mainly four systems to improve production efficiency. These are MRP(materials

requirement planning),OPT(optimized production technology), JIT(just-in-

time)and FMS(flexible manufacturing systems). FMS offers the hope of

eliminating many of the weaknesses of the other three approaches[16]. Vol-

ume flexibility is a major component in a FMS. The manufacturing flexibility

which is capable of adjusting the production rate with the variability in the

market demand is known as volume flexibility[17].
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In the present paper, we consider a volume flexible manufacturing sys-

tem for a deteriorating item with a time-dependent demand rate, allowing

shortages in inventory. None of the authors referred to above took into ac-

count the factors of demnd variability, shortages and deterioration of goods.

We solve this general model for an imperfect production process taking the

production rate to be a decision variable and the unit production cost to be

a function of the production rate.

2. Fundamental Assumptions and Notations

Assumptions:

1. The inventory system involves only one item and is a self-production

system.

2. The demand rate for the product is deterministic and is a continuous

linear function of time ’t’.

3. Shortages in inventory are allowed and are completely backlogged.

4. The time horizon is infinite.

5. The production cost per unit item is a function of the production rate.

6. The production rate Pi in the i-th cycle is considered as a decision

variable.

7. The inventory deteriorates over time at a constant rate.

Notations:

f(t) - Demand rate function varying with time ’t’ ≥ 0 .
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h - Holding cost per unit per unit time.

θ - Constant deterioration rate of the on-hand inventory, 0 < θ < 1.

η(Pi) - The production cost per unit item in the i− th cycle.

S - Set up cost per production run.

C2 - Shortage cost per unit per unit time.

Sp - Selling price per unit.

Ri−1 - The total time elapsed upto and including the (i− 1)− th

cycle.

Ti - The duration of the i− th cycle.

tij(j = 1, 2) - The times at which the stock-period starts and ends

respectively in the i− th cycle.

Sij(j = 1, 2) - The shortage at the begining and the end of the i− th

cycle.

3. Formulation of the Model

We consider a self-manufacturing system in which the items are produced

by a machine and the demand in the market is met by these produced items.

The cost for setting up the machine and the whole system is recokned only
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in the first cycle. The production cost per unit in the i-th (i = 1, 2, 3, ....)

cycle is

η(Pi) = r +
g

Pi

+ αPi + β(Pi − Pc)H(Pi − Pc)

where

H(Pi − Pc) = 1 , Pi > Pc

= 0 , Pi ≤ Pc

This cost is based on the following factors :

1. The material cost r per unit item is fixed.

2. As the production rate increases, some costs like labour and energy

costs are equally distributed over a large number of units. Hence the

per-unit production cost ( g
Pi

) decreases as the production rate (Pi)

increases.

3. The third term(αPi), associated with tool/die costs, is proportional to

the production rate.

4. The fourth term is linked to a critical design production rate(Pc) for

the machine. The produced items are quite likely to be defective for a

high production rate( Pi > Pc). Then excess labour and energy costs

alongwith rework costs will be needed to get perfect items.

Let Ii1(t) be the shortage level at any time t in 0 ≤ t ≤ ti1 , Ii2(t) the

inventory level in ti1 ≤ t ≤ ti2 and Ii3(t) the shortage level in ti2 ≤ t ≤ Ti.
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Then the governing differential equations for the instantaneous inventory

level during i-th (i = 1, 2, 3, ....) cycle are as follows:

dIi1(t)

dt
= Pi − f(Ri−1 + t) , 0 ≤ t ≤ ti1 (1)

with Ii1(0) = −Si1 and Ii1(ti1) = 0 ;

dIi2(t)

dt
+ θIi2(t) = Pi − f(Ri−1 + t) , ti1 ≤ t ≤ ti2 (2)

with Ii2(ti1) = 0 and Ii2(ti2) = 0 ;

dIi3(t)

dt
= Pi − f(Ri−1 + t) , ti2 ≤ t ≤ Ti (3)

with Ii3(ti2) = 0 and Ii3(Ti) = −Si2 .

4. Solution of the Model

Let f(t) = a+bt, a ≥ 0 , b > 0. Here a denotes the initial demand rate and

b stands for the rate at which the demand rate increases per unit of time.

The solutions of (1), (2) and (3) are then given by

Ii1(t) = (Pi − a− bRi−1)(t− ti1)−
1

2
b(t2 − t2i1) , 0 ≤ t ≤ ti1 ; (4)

Ii2(t) = (
Pi − a− bRi−1

θ
)(1− eθ(ti1−t))− b

θ2
{(θt− 1)

−(θti1 − 1)eθ(ti1−t)} , ti1 ≤ t ≤ ti2 (5)

and

Ii3(t) = (Pi − a− bRi−1)(t
2 − t2i2) , ti2 ≤ t ≤ Ti. (6)

63



Using the condition Ii1(0) = - Si1 , we have from (4),

ti1 =
1

b
[(Pi − a− bRi−1)− {(Pi − a− bRi−1)

2 − 2bSi1}
1
2 ]. (7)

It is obvious from the above result that ti1 = 0 when Si1 = 0, i.e., the first

cycle starts with no-shortage.

Since Ii2(ti2) = 0 , we have from (5) ,

(Pi−a−bRi−1

θ
)(1− eθ(ti1−ti2))− b

θ2{(θti2 − 1)− (θti1 − 1)eθ(ti1−ti2)} = 0

or, {b(θti1−1)−θ(Pi−a−bRi−1)}eθ(ti1−ti2)+{θ(Pi−a−bRi−1)+b(1−θti2)} = 0

or,

F (Pi, ti2) = 0, (8)

where ti1 = τ(Pi).

Both ti1 and ti2 being real and distinct, the constraint Pi > a + bRi−1 +

(2bSi1)
1
2 must be satisfied. Therefore the total inventory during i-th cycle is

Hi =
∫ ti2

τ
Ii2(t)dt

=
∫ ti2

τ
[{ b
θ2

(θti1 − 1)− 1

θ
(Pi − a− bRi−1)}eθ(τ−t) − b

θ
t

+{Pi − a− bRi−1

θ
+

b

θ2
}]dt

= φ(Pi)
∫ ti2

τ
e−θtdt− b

θ

∫ ti2

τ
tdt+ ψ(Pi)

∫ ti2

τ
dt

=
φ(Pi)

θ
{e−θτ − e−θti2} − b

2θ
(t2i2 − τ 2)

+ψ(Pi)(ti2 − τ) (9)
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where

φ(Pi) =
1

θ2
{b(θτ − 1)− θ(Pi − a− bRi−1)}eθτ

and ψ(Pi) =
1

θ2
{b+ θ(Pi − a− bRi−1)}.

The total shortage in inventory in the i-th cycle is given by

Si = Si1 + Si2

where

Si1 =
∫ ti1

0
{−Ii1(t)}dt

= −
∫ ti1

0
{(Pi − a− bRi−1)(t− ti1)−

1

2
b(t2 − t2i1)}dt

=
1

2
(Pi − a− bRi−1)t

2
i1 −

1

3
bt3i1,

Si2 =
∫ Ti

ti2
{−Ii3(t)}dt

= −
∫ Ti

ti2
{(Pi − a− bRi−1)(t− ti2)−

1

2
(t2 − t2i2)}dt

= −1

2
(Pi − a− bRi−1)(Ti − ti2)

2 +
1

6
b(T 3

i + 2t3i2 − 3Tit
2
i2).

After a little calculation, Si becomes

Si =
2

3b2
{(Pi − a− bRi−1)

2 − 2bSi1}
3
2

+
Ti

6
{bT 2

i − 3Ti(Pi − a− bRi−1) + 6Si1}. (10)

Again, the number of items deteriorated during the i -th cycle is

Di = θ
∫ ti2

τ
Ii2(t)dt = θHi. (11)
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The average profit during the i -th cycle is

Π(Pi, ti2, Ti) =
Sp

Ti

{(a+ bRi−1)(ti2 − ti1) +
b

2
(t2i2 − t2i1)}

− 1

Ti

{δiS + hHi + C2Si}

− {rPi + g + αP 2
i + βPi(Pi − Pc)H(Pi − Pc)}. (12)

Hence our problem is:

To Maximize Π(Pi, ti2, Ti)

such that

a+ bRi−1 + (2bSi1)
1
2 − Pi ≤ 0 ,

Pc − Pi ≤ 0 or − Pc + Pi ≤ 0,

F (Pi , ti2) = 0 ,

−Ti + ti2 ≤ 0,

−ti2 + ti1 ≤ 0,

where Pi , ti2 , Ti are the decision variables.

We use the Interior Penalty Function Method ( see Appendix ) for nu-

merical solution of the problem. The primal problem is reformulated below:
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Primal Problem : (General Form)

Minimize Π(X̄)=-Maximize Π(X̄)

such that

Gj(X̄) ≤ 0, j = 1, 2, ....m

Hi(X̄) = 0, i = 1, 2, ....l

where Π(X̄) , Gj(X̄) , Hi(X̄) are continuous functions of

X̄εRn.

5. Numerical Example

We take the parameter values as a = 200 , b = 5.0 , Pc = 220 , r = 90 ,

g = 2500 , α = 0.01 , β = 0.04 , S = 200 , h = 3, C2 = 5 , Sp = 130.0 ,

θ = 0.01 in appropriate units.

We have

η(Pi) = r +
g

Pi

+ αPi + β(Pi − Pc) , Pi > Pc

= r +
g

Pi

+ αPi , Pi ≤ Pc.

Then

dη

dPi

= − g

P 2
i

+ α+ β , Pi > Pc
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= − g

P 2
i

, Pi ≤ Pc

and

d2η

dP 2
i

=
2g

P 3
i

> 0 for all Pi > 0.

We thus have :

(i) ηmin at Pi =

√
g

α+ β
= 223.6 when Pi > Pc

and

(ii) ηmin at Pi =

√
g

α
when Pi ≤ Pc.

We may , therefore , take Pc = 220. For Pi > Pc , Table 1 shows the av-

erage maximum profit and the corresponding optimum solution (t∗i1, t
∗
i2, T

∗
i )

for different cycles. Similarly for Pi < Pc and and Pi > Pc , Table 2 shows

the average maximum profit and the corresponding optimum solutions.

Table -1: (For Pi > Pc )

Cycle t∗i1 t∗i2 T ∗ P ∗
i Π∗

max

Number

01 0.000000 11.55398 11.66928 229.4408 5807.156

02 0.177713 05.30644 05.33011 259.8940 7013.229

03 0.002702 05.37641 05.39721 289.6619 8388.826
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Table -2: (For Pi < Pc & Pi > Pc)

Cycle t∗i1 t∗i2 T ∗ P ∗
i Π∗

max

Number

01 0.00000000 4.852452 4.900913 212.2290 5298.807

02 0.02649300 5.586026 5.609819 229.9313 7019.038

03 0.01052856 8.651609 8.737083 267.1449 7530.061

04 0.01383033 2.930659 2.946561 300.1275 7692.180

* Indicates the near-optimal solution

6. Observation and Conclusion :

The maximum average profit (Π∗
max ) , in Table 1 (Pi > Pc) gradully

increases from one cycle to another. Besides this, the optimum production

rate (P ∗
i ) increases gradully. If we start with the condition Pi < Pc with the

same parameter values as in Table 1, it is found (Table 2 ) that there exists

no feasible solution after the first cycle. Therefore, we have no alternative

but to continue operation of the production system with the production rates

Pi > Pc for the rest of the cycles in the planning horizon. Hence the compu-

tations in the third and successive cycles are carried out with the condition

Pi > Pc .

We may now compare the trade-offs between the pure strategy (Pi > Pc)

in Table 1 and the mixed strategy (Pi < Pc and Pi > Pc) in Table 2 for decid-

ing a better manufacturing policy. The TAP(total average profit)
∑

Π∗
maxTi∑
Ti

for the pure strategy is 6716.326 while that for the mixed strategy is 6929.719.

Thus a better production policy is to follow a mixed strategy. We have con-

firmed this result for several values of the planning horizon
∑
Ti. For higher
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values of
∑
Ti, the trade-off in the case of the mixed strategy will be higher.
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Appendix

Interior Penalty Function Method :

This method generally deals with an unconstrained minimization problem.

The general form of the problem equivalent to the Primal Problem is ([18] ,

[19]) :

Minimize χk(X̄, rk) = Π(X̄)− rk

m∑
j=1

1

Gj(X̄)

+
1

√
rk

l∑
i=1

H2
i (X̄). (13)

where rk is a positive penalty parameter.

If χk is minimized for a sequence of decreasing values of rk, the following

theorem proves that the unconstrained minima X̄∗
k ( k = 1, 2, ......m) con-

verges to the solution X̄∗ of the primal problem stated above.

Theorem :

If the primal problem has a solution, the unconstrained minima X̄∗
k of χk(X̄, r)

for a sequence of values r1 > r2 > .......... > rk , converges to optimal solution

of the primal problem as to the optimal solution of the primal.
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The Iterative Procedure :

Step 1. Start with an initial feasible point X̄1, satisfying all the constraints

with strict ineqality sign, i.e., Gj(X̄1) < 0 for j=1,2,........m. and a

suitable initial value of r1 where r1 = − Π(X̄1)∑m

j=1
1

Gj(X̄1)

. Set k=1.

Step 2. Minimize χk(X̄K , rk) by using any method of unconstrained minimiza-

tion(we use here the Devidon Fletcher -Powell Method) and obtain the

solution X̄∗
k .

Step 3. Test whether | Π(X̄∗
k )−Π(X̄∗

k+1)

Π(X̄∗
k
)

| ≤ ε1 | X̄∗
k − X̄∗

k−1 |< ε2 where ε1 and ε2

are arbitrary small positive numbers. If it is satisfied, then terminate

the process; otherwise, go to the next Step.

Step 4. Find the value of next penalty parameter r as rk+1 = Crk where 0¡C¡1.

Step 5. Set the new value of k=k+1, take the new starting point as X̄1 = X̄∗
k

and go to Step 2.
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