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Abstract: A method for synthesizing a string of letters in script style is developed based on the minimum

principle for handwriting, whereby the pen motion is organized so as to minimize the integral of squared

jerk subject to visiting a series of spatial points. Let the series of spatial points characterizing a string be

a concatenation of those taken from individual letters. The pen motion is best expressed in the form of a

linear combination of quintic B-splines. Then, synthesis of the pen motion to write the string is reduced to

optimization of the times at which the pen visits the characteristic points. The main contribution of this

paper is a number of recurrence formulae that make it possible to evaluate arithmetically the gradients

of the integral of squared jerk with respect to visiting times. An optimization algorithm is compiled

incorporating the recurrence formulae in a gradient method. Several examples of synthesized letter strings

are presented.

Keywords: Simulated handwriting, minimum jerk, splines, gradient method.

1. Introduction

Computer printing in cursive script style may enhance the impression of personal invitation letters or

greeting cards even though they are not actually written by hand. There have been static and dynamic

approaches to the synthesis of cursive letter strings from individual letters.

In the static approach, a string of letters connected by ligatures is regarded as a patchwork of the

graphical images of individual letters and connecter elements. A traditional method employs a specially

designed font in which letters begin and end at a common height so that printed letters look connected

when aligned along the base line. An improved method by [Wasylyk, 1981] out�ts a variety of letter

shapes for each category and various types of connector elements to construct a better looking string. An
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advanced method by [Fenwick, 1995] shapes ligatures by cubic spline interpolation that bridges the facing

boundaries of adjacent letters.

The dynamic approach is based on a model of pen motion in human handwriting. One successful

attempt is `Heliscript' by [Dooijes 1989], in which the pen trajectory is modeled as three-dimensional

helical curves projected onto a at surface. Since the trajectory is maintained continuous, a ligature is

shaped naturally as the dynamic transition from one letter to another. In addition, [Flash and Hogan, 1985]

provided a sound mathematical model of handwriting on the basis of a minimum principle in mechanical

dynamics, although their model has not yet been applied to the synthesis of cursive letter strings.

According to the model of [Flash and Hogan, 1985], the pen motion is planned so as to minimize

the square integral of its jerk (third-order derivative of the position vector with respect to time) under

the constraints of passing through speci�ed via points on a plane and certain boundary conditions. This

model has been experimentally con�rmed by the same authors. Another experiment by [Abend et al.,

1982] suggests that the via points distribute around the points at which the pen has a locally minimal

speed. The pen motion is best expressed by a quintic spline function of time having knots located at

the via points, according to the general theorem by [de Boor, 1963] and [Schoenberg, 1964] on smoothest

interpolation problems. The model was extended by [Kamada, 2003] to include an additional constraint

of pausing at some of the via points (referred to herein as pause points). It has been demonstrated that

the pause constraint is crucial for the reproduction of steeples, such as that at the left bottom corner of

the letter `h'. The pen motion following the extended model is best expressed by a mixture of quintic

and quartic splines. Its practical and mathematically equivalent expression is a linear combination of

quintic B-splines having knots at the via points and having double knots at the pause points. Splines

having multiple knots are referred to as extended splines by [Curry and Schoenberg, 1966] without explicit

reference to their optimal property. Based on the above theory, a letter can be reproduced well as an

extended spline interpolation of the data consisting of the via and pause points identi�ed as the points

at which the pen speed is locally minimal and zero, respectively, and the times (referred to herein as via

times) at which the pen visits these points.

Since the minimum principle for planning how to write a letter should also be true of writing a string

of letters in one continuous stroke, the pen motion to write a string in script style may be synthesized as

an extended quintic spline interpolation of the concatenated via and pause points taken from individual

letters. Good concatenated points can be obtained by lining up via points of individual letters along the

baseline. A good initial guess for the optimal via times corresponding to the concatenated points might

be the accumulation of the time intervals between adjacent points. However, these via times are not really

optimized for the concatenated points as a whole, since each subset of the via times taken from a real

letter is optimized for the letter alone by the human brain.

The problem of optimizing the via times for the interpolation of given spatial points is called the

data parameterization problem in the general theory of splines. Flash and Hogan, in their experimental

con�rmation process of their model, solved a special case of the problem, in which a single intermediate
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via point is allowed, by reducing the problem to a higher order algebraic equation [Flash and Hogan,

1985]. The case of cubic splines having simple knots was solved by [Marin, 1984]. He provided an analytic

solution for the one-dimensional data and an iterative optimization procedure for the multi-dimensional

data. Unfortunately, those results are not applicable to the present case of extended quintic splines

represented in terms of B-splines having simple and double knots.

The present paper provides an iterative optimization procedure to optimize the via times so that the

extended quintic spline satisfying the via and pause constraints makes the square integral of the jerk

locally minimal. In order to cope with the double knots, the spline is represented in terms of the B-splines

throughout this paper.

Following Section 2, which summarizes the handwriting model, the optimization procedure is derived

in Section 3 in the following steps: (i) First, the pen motion is substituted by an extended quintic spline.

This substitution converts the variational problem of minimizing the square integral of the jerk over the set

of continuous functions into a problem of minimizing an objective function of the via times over a subset

of Euclidean space. (ii) Integration included in the objective function, which causes trouble in numerical

evaluation, is then analytically resolved to represent the objective function by an arithmetic function of

the B-splines and their derivatives. (iii) Next, partial di�erentials of the B-splines (and their higher order

derivatives) with respect to the via times, which construct the partial di�erentials of the objective function

in an arithmetic form, are derived. (iv) Finally, an optimization procedure is compiled by incorporating

the partial di�erentials into a standard gradient method. In Section 4, the e�ectiveness of this procedure

in the synthesis of letter strings in script style from the data of individual letters is presented.

2. Preliminaries

A brief summary of the minimum principle, the expression for the pen motion in writing letters, and

several well-known formulae concerning the splines are prepared in this section.

The motion of the pen is modeled as a vector-valued continuous function r(t) = (x(t); y(t))0 of time

t 2 [0; T ] on the plane having x� y orthogonal axes, as illustrated in Fig. 1, where the vector denoted by

a prime indicates its transpose. It is assumed that the pen motion r(t) is planned so as to minimize the

square integral of jerk,

P [r] :=

Z
0<t<T

:::r (t)
2 dt �! min: (1)

under the constraints of visiting the via points frkg
K
k=1 on the plane consecutively at the via times ftkg

K
k=1,

(0 < t1 < t2 < � � � < tK < T ),

r(tk) = rk; k = 1; 2; 3; � � � ;K; (2)

and pausing at pause points ft`ig
I
i=1, (1 � `1 < `2 < � � � < `I � K),

_r(t`i) = 0; i = 1; 2; 3; � � � ; I; (3)
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Figure 1: Constraints on handwriting motion (� denotes a via point and 
 denotes a pause point).

and the boundary conditions �
r(0) = rS ; r(T ) = rE

_r(0) = _rS ; _r(T ) = _rE ;
(4)

where jj � jj denotes the Euclidean norm in the plane and a dot over a function indicates di�erentiation

with respect to the variable t.

The solution r(t) of the minimization problem is analytically derived by [Kamada, 2003] as an extended

quintic spline [Curry and Schoenberg, 1966] in the form of a linear combination

r(t) =
K+IX
j=�5

djM
6
j (t) (5)

of the quintic B-splines M6
j (t), (j = �5;�4; � � � ;K + I) on the basis of the knots f�jg

K+I+6
j=�5 set by

�j =

8<
:

tj ; 1 � j � `1
tj�i; `i + i � j � `i+1 + i; (i = 1; 2; : : : ; I � 1)
tj�I ; `I + I � j � K + I

(6)

so that knots are placed at ftkg
K
k=1 and, in particular, double knots (or two knots at the same time) are

placed at ft`ig
I
i=1. The other knots are arbitrary as long as they satisfy ��5 < ��4 < � � � < ��1 < �0 = 0

and T = �K+I+1 < �K+I+2 < � � � < �K+I+6.

The array D = (d�5 d�4 � � � dK+I) of the coeÆcient vectors is uniquely determined by the

constraints (2), (3), the boundary conditions (4), and the natural boundary condition

���
r (0) =

���
r (T ) = 0; (7)
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namely,

D = XB�1; (8)

where

B =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

M6
�5(0) M6

�4(0) � � � M6
K+I(0)

_M6
�5(0)

_M6
�4(0) � � � _M6

K+I(0):::

M6
�5 (0)

:::

M6
�4 (0) � � �

:::

M6
K+I (0)

M6
�5(t1) M6

�4(t1) � � � M6
K+I(t1)

M6
�5(t2) M6

�4(t2) � � � M6
K+I(t2)

...
...

. . .
...

M6
�5(tK) M6

�4(tK) � � � M6
K+I(tK)

_M6
�5(t`1) _M6

�4(t`1) � � � _M6
K+I(t`1)

_M6
�5(t`2)

_M6
�4(t`2) � � � _M6

K+I(t`2)
...

...
. . .

...
_M6
�5(t`I )

_M6
�4(t`I ) � � � _M6

K+I(t`I )
M6

�5(T ) M6
�4(T ) � � � M6

K+I(T )
_M6
�5(T ) _M6

�4(T ) � � � _M6
K+I(T ):::

M6
�5 (T )

:::

M6
�4 (T ) � � �

:::

M6
K+I (T )

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

(9)

and

X =

0
@rS _rS 0 j r1 r2 � � � rK j 0 � � � 0| {z }

I

j rE _rE 0

1
A : (10)

The quintic B-spline Mm
j (t) of order m having the knots �j � �j+1 � � � � � �j+m is a piecewise

polynomial of degree m� 1 de�ned by [Curry and Schoenberg, 1966] as

Mm
j (t) := [�j ; �j+1; : : : ; �j+m](� � t)m�1

+ ; (11)

where [�j ; �j+1; : : : ; �j+m] denotes the operator of divided di�erence such as

[�j ; �j+1; : : : ; �j+m]g(�) :=

8>><
>>:

[�j+1; : : : ; �j+m]g(�)� [�j ; : : : ; �j+m�1]g(�)

�j+m � �j
if �j+m > �j

dig(�)

d� i

����
�=�j

if �j+m = �j :

i = 1; 2; : : : ;m: (12)

The value of the B-splines and their (higher order) derivatives with respect to the variable t can be

evaluated recursively by the recurrence formulae of de Boor and Cox [de Boor, 1978]

Mm
j (t) =

8<
:

t� �j
�j+m � �j

Mm�1
j (t) +

�j+m � t

�j+m � �j
Mm�1

j+1 (t) if �j < t < �j+m;

0 otherwise,

(m � 2) (13)
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M1
j (t) =

8<
:

1

�j+1 � �j
if �j � t < �j+1;

0 otherwise,
(14)

and another well-known recurrence formula�
d

dt

�n
Mm

j (t) =
m� 1

�j+m � �j

(�
d

dt

�n�1

Mm�1
j (t)�

�
d

dt

�n�1

Mm�1
j+1 (t)

)
;

n = 1; 2; � � � ;m� 1;m � 2: (15)

3. Numerical method to optimize via times

3.1 Objective function

The analytically derived minimizer r(t) of the functional P [r] is an extended quintic spline represented

in the form of (5) and the coeÆcients are uniquely determined by (8). Since the matrix B in (8) is

dependent on the via times ftkg
K
k=0, so is the minimizer r(t). Consequently, the functional P [r] can be

reduced to an ordinary objective function of the via times, as shown in the following.

Substituting (5) for r in (1), we have

P [r] =

Z T

0


K+IX
j=�5

dj

:::

M6
j (t)


2

dt

= tr

0
@K+IX
i=�5

K+IX
j=�5

di

Z T

0

:::

M6
i (t)

:::

M6
j (t)dt d

0
j

1
A

= tr(DGD0); (16)

where G is set as

G =

2
66666666666664

Z T

0

:::

M6
�5 (t)

:::

M6
�5 (t)dt

Z T

0

:::

M6
�5 (t)

:::

M6
�4 (t)dt � � �

Z T

0

:::

M6
�5 (t)

:::

M6
K+I (t)dtZ T

0

:::

M6
�4 (t)

:::

M6
�5 (t)dt

Z T

0

:::

M6
�4 (t)

:::

M6
�4 (t)dt � � �

Z T

0

:::

M6
�4 (t)

:::

M6
K+I (t)dt

...
...

. . .
...

Z T

0

:::

M6
K+I (t)

:::

M6
�5 (t)dt

Z T

0

:::

M6
K+I (t)

:::

M6
�4 (t)dt � � �

Z T

0

:::

M6
K+I (t)

:::

M6
K+I (t)dt

3
77777777777775
: (17)

Since the via times determine the knots by (6) and because the knots determine the B-splines, all the

matrices B, G and D are functions of the via times. Consequently, P [r] given by (16) is also a function of

the via times, which shall be denoted as

P (t) = tr(DGD0); t = (t1; t2; � � � ; tK): (18)
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Then the problem is to minimize the objective function P (t) over the feasible set of via times

F := ft = (t1; t2; � � � ; tK) j0 < t1 < t2 < � � � < tK < T g (19)

in the K-dimensional Euclidean space.

3.2 Resolution of integrals

Elements of matrix G, which form a major part of the objective function P (t) by (18), are de�ned by

(17) as integrated products of two functions. Naive replacement of the integrals by sums, which is typical

of numerical integration, would result in slow computation and degraded accuracy. In the following, the

integrals are resolved to be expressed as arithmetic functions of the B-splines and their derivatives by

repeating partial integration and exploiting the fact that a spline di�erentiated repeatedly becomes a

series of Dirac delta functions eventually.

Three-fold partial integration of an element Gij of G is

Gij =

Z T

0

:::

M6
i (t)

:::

M6
j (t)dt

=
h :::

M6
i (t)

::

M6
j (t)

iT
0
�

Z T

0

::::

M6
i (t)

::

M6
j (t)dt

=
h :::

M6
i (t)

::

M6
j (t)

iT
0
�
h ::::
M6

i (t)
:

M6
j (t)

iT
0
+

Z T

0

:::::

M6
i (t)

:

M6
j (t)dt

=
h :::

M6
i (t)

::

M6
j (t)

iT
0
�
h ::::
M6

i (t)
:

M6
j (t)

iT
0
+
h :::::
M6

i (t)M6
j (t)

iT
0
�

Z T

0

::::::

M6
i (t)M6

j (t)dt: (20)

The integrand of the last term of (20) includes the sixth-order derivative of the quintic B-spline M6
i (t).

Since the fourth-order derivative of the quintic B-spline is a piecewise linear function which is discontinuous

at double knots, the �fth-order derivative is a sum of a piecewise constant function, which is discontinuous

at simple knots, and a delta function Æ at the double knots. Consequently, the sixth-order derivative is a

sum of delta functions at simple knots and derivatives of delta function at double knots, as follows:

::::::

M6
i (t)=

X
0 � p � 6

and

�i+p < �i+p+1

h :::::
M6

i (�i+p + 0)�
:::::

M6
i (�i+p � 0)

i
Æ(t� �i+p)

+
X

0 � p � 6

and

�i+p = �i+p+1

h ::::
M6

i (�i+p+1 + 0)�
::::

M6
i (�i+p � 0)

i
_Æ(t� �i+p): (21)

The coeÆcients for Æ and _Æ in (21) are the di�erence of the function values at the corresponding disconti-

43



nuities. Then, we can resolve the integral as follows:Z T

0

::::::

M6
i (t)M6

j (t)dt =
X

0 � p � 6

and

0 < �i+p<�i+p+1 < T

h :::::
M6

i (�i+p + 0)�
:::::

M6
i (�i+p � 0)

i
M6

j (�i+p)

�
X

0 � p � 6

and

0 < �i+p = �i+p+1 < T

h ::::
M6

i (�i+p+1 + 0)�
::::

M6
i (�i+p � 0)

i
_M6
j (�i+p)

(22)

by the property Z T

0

f(t)Æ(t� �)dt = f(�) and

Z T

0

f(t) _Æ(t� �)dt = � _f(�)

of the delta function for 0 < � < T and twice di�erentiable f . Equations (20) and (22) give an arithmetic

expression of Gij as follows:

Gij =
h :::

M6
i (t)

::

M6
j (t)

iT
0
�
h ::::
M6

i (t) _M6
j (t)

iT
0
+
h :::::
M6

i (t)M6
j (t)

iT
0

�

� X
0 � p � 6

and

0 < �i+p<�i+p+1 < T

�
�����

M6
i (�i+p + 0)�

�����

M6
i (�i+p � 0)

�
M6

j (�i+p)

�
X

0 � p � 6

and

0 < �i+p=�i+p+1 < T

�
����

M6
i (�i+p + 0)�

����

M6
j (�i+p � 0)

�
_M6
j (�i+p)

�
: (23)

The B-splines and their higher order derivatives in (23) can be computed arithmetically by (13), (14)

and (15).

3.3 Resolution of partial di�erentials

Optimization of the objective function P (t1; t2; � � � ; tK) by a gradient method requires the gradient

gradP =

�
@P

@t1
;
@P

@t2
; � � � ;

@P

@tK

�
(24)

composed of the partial di�erentials @P
@tk

, (k = 1; 2; � � � ;K). Arithmetic expressions for the partial di�er-

entials shall be derived analytically in the following.

From (16), we have

@P

@tk
=

@

@tk
tr(D0GD)
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= tr

 
@D

@tk
GD0 +D

@G

@tk
D0 +DG

�
@D

@tk

�0
!
: (25)

Di�erentiating both sides of DB = X that follows from (8), we have

@D

@tk
B +D

@B

@tk
= O;

which implies
@D

@tk
= �D

@B

@tk
B�1 = �XB�1 @B

@tk
B�1: (26)

Substituting (8) and (26) for D and @D
@tk

in (25), respectively, we have an expression of @P
@tk

as

@P

@tk
= tr

 
�(XB�1 @B

@tk
B�1)G(XB�1)0 + (XB�1)

@G

@tk
(XB�1)0

�(XB�1)G

�
XB�1 @B

@tk
B�1

�0
!
: (27)

Matrix B is composed of M6
j (t),

_M6
j (t) and

:::

M6
j (t) evaluated at t = 0; t1; t2; � � � ; tK ; T . The arith-

metic expression (23) for matrix G is composed of M6
j (t),

_M6
j (t),

::

M6
j (t) and

:::

M6
j (t) evaluated at

t = �1; �2; � � � ; �K+I , and also of
::::

M6
j (t) and

:::::

M6
j (t) evaluated at t = �q � 0. The derivatives _M6

j (t),
::

M6
j (t),

:::

M6
j (t),

::::

M6
j (t) and

:::::

M6
j (t) are reduced by (15) to lower order B-splines M5

j (t), M
4
j (t), M

3
j (t),

M2
j (t) and M1

j (t), respectively. These B-splines can be evaluated by the recurrence formulae (13) and

(14).

On the other hand, arithmetic expressions for @B
@tk

and @G
@tk

have yet to be derived. The partial di�erential

@B
@tk

of B in (9) includes @
@tk

M6
j (0),

@
@tk

M6
j (T ),

@
@tk

_M6
j (0),

@
@tk

_M6
j (T ),

@
@tk

:::

M6
j (0), @

@tk

:::

M6
j (T ), and

@
@tk

M6
j (tp), (p = 0; 1; 2; � � � ;K). The partial di�erential @G

@tk
of G, the elements of which are expressed by

(23), includes

@Gij

@tk
=

��
@

@tk

:::

M6
i (T )

�
::

M6
j (T )+

:::

M6
i (T )

�
@

@tk

::

M6
j (T )

�

�

�
@

@tk

:::

M6
i (0)

�
::

M6
j (0)�

:::

M6
i (0)

�
@

@tk

::

M6
j (0)

��

�

��
@

@tk

::::

M6
i (T )

�
_M6
j (T )+

::::

M6
i (T )

�
@

@tk
_M6
j (T )

�

�

�
@

@tk

::::

M6
i (0)

�
_M6
j (0)�

::::

M6
i (0)

�
@

@tk
_M6
j (0)

��

+

��
@

@tk

:::::

M6
i (T )

�
M6

j (T )+
:::::

M6
i (T )

�
@

@tk
M6

j (T )

�

�

�
@

@tk

:::::

M6
i (0)

�
M6

j (0)�
:::::

M6
i (0)

�
@

@tk
M6

j (0)

��
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�
X

0 � p � 6

and

0 < �i+p<�i+p+1 < T

���
@

@tk

:::::

M6
i (�i+p + 0)

�
�

�
@

@tk

:::::

M6
i (�i+p � 0)

��
M6

j (�i+p)

+
h :::::
M6

i (�i+p + 0)�
:::::

M6
i (�i+p � 0)

i� @

@tk
M6

j (�i+p)

��

+
X

0 � p � 6

and

0 < �i+p=�i+p+1 < T

���
@

@tk

::::

M6
i (�i+p + 0)

�
�

�
@

@tk

::::

M6
j (�i+p � 0)

��
_M6
j (�i+p)

+
h ::::
M6

i (�i+p + 0)�
::::

M6
j (�i+p � 0)

i� @

@tk
_M6
j (�i+p)

��
: (28)

It is possible to reduce the partial di�erentials (with respect to tk) of higher order derivatives (with respect

to t) of the B-splines to those of the lower order B-splines by

@

@tk

��
d

dt

�n
Mm

j (t)

�
=

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

m� 1

(�j+m � �j)2

(�
d

dt

�n�1

Mm�1
j (t)�

�
d

dt

�n�1

Mm�1
j+1 (t)

)

+
m� 1

�j+m � �j

(
@

@tk

�
d

dt

�n�1

Mm�1
j (t)�

@

@tk

�
d

dt

�n�1

Mm�1
j+1 (t)

)
if tk = �j ;

�
m� 1

(�j+m � �j)2

(�
d

dt

�n�1

Mm�1
j (t)�

�
d

dt

�n�1

Mm�1
j+1 (t)

)

+
m� 1

�j+m � �j

(
@

@tk

�
d

dt

�n�1

Mm�1
j (t)�

@

@tk

�
d

dt

�n�1

Mm�1
j+1 (t)

)
if tk = �j+m;

m� 1

�j+m � �j

(
@

@tk

�
d

dt

�n�1

Mm�1
j (t)�

@

@tk

�
d

dt

�n�1

Mm�1
j+1 (t)

)
otherwise,

n = m� 1;m� 2; � � � ; 2; 1; m � 2; (29)

which is derived by di�erentiating both sides of (15) with respect to tk. Then, the evaluation of @B
@tk

and @G
@tk

is arithmetically reduced to the evaluation of @
@tk

Mm
j (tp), (j = �5;�4; � � � ;K + I ; m � 1;

p = 0; 1; 2; � � � ;K + 1), by taking f�0; �1; � � � ; �K+Ig � f0; t1; t2; � � � ; tK ; Tg into account and setting t0 = 0

and tK+1 = T for the convenience of notation, @
@tk

M2
j (�q � 0) in the case �q = �q+1, and

@
@tk

M1
j (�q � 0) in

the case �q < �q+1.

Although an explicit formula for the B-splines is available as written in [Greville, 1971], the via times,

which are tied to the knots by (6), are scattered elusively in the formula. Instead of struggling with the

explicit formula, we make use of the recurrence formulae (13) and (14) for the B-splines to derive another

recurrence formula for their partial di�erentials.
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Substituting tp for t in (13) and (14), we have

Mm
j (tp) =

8<
:

tp � �j
�j+m � �j

Mm�1
j (tp) +

�j+m � tp
�j+m � �j

Mm�1
j+1 (tp) if �j < tp < �j+m;

0 otherwise,

(m � 3) (30)

M2
j (tp) =

8>>>>>>><
>>>>>>>:

tp � �j
�j+2 � �j

M1
j (tp) +

�j+2 � tp
�j+2 � �j

M1
j+1(tp) if �j < �j+1 = tp < �j+2;

1

tp � �j
if �j � tp = �j+1 = �j+2;

1

�j+2 � tp
if �j = �j+1 = tp < �j+2;

0 otherwise,

(31)

M1
j (tp) =

8<
:

1

�j+1 � tp
if �j = tp < �j+1;

0 otherwise.
(32)

Di�erentiating both sides of (30) with respect to tk, we have

@

@tk
Mm

j (tp) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

1
�j+m��j

�
Mm�1

j (tp)�Mm�1
j+1 (tp)

�
+
�

tk��j
�j+m��j

�
@
@tk

Mm�1
j (tp)

+
�
�j+m�tk
�j+m��j

�
@
@tk

Mm�1
j+1 (tp) if �j < tp = tk < �j+m;

tp��j+m
(�j+m�tk)2

�
Mm�1

j (tp)�Mm�1
j+1 (tp)

�
+
�

tp�tk
�j+m�tk

�
@
@tk

Mm�1
j (tp)

+
�
�j+m�tp
�j+m�tk

�
@
@tk

Mm�1
j+1 (tp) if �j = tk < tp < �j+m;

�j�tp
(tk��j)2

�
Mm�1

j (tp)�Mm�1
j+1 (tp)

�
+
�
tp��j
tk��j

�
@
@tk

Mm�1
j (tp)

+
�
tk�tp
tk��j

�
@
@tk

Mm�1
j+1 (tp) if �j < tp < tk = �j+m;�

tp��j
�j+m��j

�
@
@tk

Mm�1
j (tp)

+
�
�j+m�tp
�j+m��j

�
@
@tk

Mm�1
j+1 (tp) if �j < tp < �j+m

and tk =2 ftp; �j ; �j+mg;

0 otherwise,

for j = �5;�4; � � � ;K + I ; m � 3; p = 0; 1; 2; � � � ;K + 1: (33)
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Similarly, di�erentiating both sides of (31) and (32) with respect to tk, we have

@

@tk
M2

j (tp) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

1
�j+2��j

�
M1

j (tk)�M1
j+1(tk)

�
+
�

tp��j
�j+2��j

�
@
@tk

M1
j (tp)

+
�
�j+2�tk
�j+2��j

�
@
@tk

M1
j+1(tp) if �j < �j+1 = tp = tk < �j+2;

tp��j+2
(�j+2�tk)2

�
M1

j (tp)�M1
j+1(tp)

�
+
�

tp�tk
�j+2�tk

�
@
@tk

M1
j (tp)

+
�
�j+2�tp
�j+2�tk

�
@
@tk

M1
j+1(tp) if �j = tk < �j+1 = tp < �j+2;

�j�tp
(tk��j)2

�
M1

j (tp)�M1
j+1(tp)

�
+
�
tp��j
tk��j

�
@
@tk

M1
j (tp)

+
�
tk�tp
tk��j

�
@
@tk

M1
j+1(tp) if �j < �j+1 = tp < tk = �j+2;

�1
(tk��j)2

if �j < tk = tp = �j+1 = �j+2;

1
(tp�tk)2

if �j = tk < tp = �j+1 = �j+2;

1
(�j+2�tk)2

if �j = �j+1 = tk = tp < �j+2;

�1
(tk�tp)2

if �j = �j+1 = tp < �j+2 = tk;

0 otherwise

(34)

and

@

@tk
M1

j (tp) =

8>><
>>:

1
(�j+1�tk)2

if �j = tp = tk < �j+1;

�1
(tk�tp)2

if �j = tp < tk = �j+1;

0 otherwise,

(35)

respectively.

M2
j (�q � 0) in the case �q = �q+1 and M1

j (�q � 0) in the case �q < �q+1 are derived from (13) and (14)

as follows:

M2
j (�q + 0) =

8>>><
>>>:

�j+2 � �j+1
(�j+2 � �j)2

if �j < �j+1 = �q < �j+2

1

�j+2 � �j+1
if�j = �j+1 = �q < �j+2

0 otherwise

(36)

M2
j (�q � 0) =

8>>><
>>>:

�j+2 � �j+1
(�j+2 � �j)2

if �j < �j+1 = �q < �j+2

1

�j+1 � �j
if �j < �q = �j+1 = �j+2

0 otherwise

(37)
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M1
j (�q + 0) =

8<
:

1

�j+1 � �j
if �q = �j < �j+1

0 otherwise
(38)

M1
j (�q � 0) =

8<
:

1

�j+1 � �j
if �j < �q = �j+1

0 otherwise
(39)

Di�erentiation of both sides of (36){(39) yields @
@tk

M2
j (�q�0) for �q = �q+1 and

@
@tk

M1
j (�q�0) for �q < �q+1

as follows:

@

@tk
M2

j (�q + 0) =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

2(�j+2 � �j+1)

(�j+2 � �j)3
if tk = �j < �j+1 = �q < �j+2

�1

(�j+2 � �j)2
if �j < tk = �j+1 = �q < �j+2

��j+2 + 2�j+1 + �j
(�j+2 � �j)3

if �j < �j+1 = �q < �j+2 = tk

1

(�j+2 � �j+1)2
iftk = �j = �j+1 = �q < �j+2

�1

(�j+2 � �j+1)2
if�j = �j+1 = �q < �j+2 = tk

0 otherwise

(40)

@

@tk
M2

j (�q � 0) =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

2(�j+2 � �j+1)

(�j+2 � �j)3
if tk = �j < �j+1 = �q < �j+2

�1

(�j+2 � �j)2
if �j < tk = �j+1 = �q < �j+2

��j+2 + 2�j+1 + �j
(�j+2 � �j)3

if �j < �j+1 = �q < �j+2 = tk

1

(�j+1 � �j)2
if tk = �j < �q = �j+1 = �j+2

�1

(�j+1 � �j)2
if �j < �q = �j+1 = �j+2 = tk

0 otherwise

(41)

@

@tk
M1

j (�q + 0) =

8>>><
>>>:

1

(�j+1 � �j)2
if tk = �q = �j < �j+1

�1

(�j+1 � �j)2
if �q = �j < �j+1 = tk

0 otherwise

(42)

@

@tk
M1

j (�q � 0) =

8>>><
>>>:

1

(�j+1 � �j)2
if tk = �j < �q = �j+1

1

(�j+1 � �j)2
if �j < �q = �j+1 = tk

0 otherwise

(43)

Now we have all the necessary formulae to compute B, G, d,
@B

@tk
,
@d

@tk
,
@G

@tk
, and eventually

@P

@tk
arithmetically. Although these formulae look quite complicated, they are compatible with computer im-

plementation that allows for recursive procedures with many if clauses.
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3.4 Numerical algorithm

An optimization procedure can be compiled by incorporating the partial di�erentials into any gradient

method over a convex polyhedral feasible set.

The feasible set F of t = (t1; t2; � � � ; tK) speci�ed as an open set by (19) shall be modi�ed to be a closed

set

D := ft = (t1; t2; :::; tK)j tk + � � tk+1; k = 1; 2; : : : ;Kg; (t0 = 0; tK+1 = T ) (44)

by introducing a small positive parameter � > 0, since any numerical methods work only for closed feasible

sets. This parameter � indicates the limit beyond which a time tk must not be closer to its neighbors

tk�1 or tk+1. There is virtually no di�erence between F and D since, in practice, we can choose � to be

arbitrarily small.

Taking the conditional gradient method from [Vasiliev, 1996], we have the following algorithm:

Step 0. Choose t(0) = (t
(0)
1 ; t

(0)
2 ; : : : ; t

(0)
K ) 2 D as the initial values of the via times. Set n := 0. Choose a

threshold � > 0.

Step 1. Set the knots f�jg
K+I+6
j=�5 by (6) according to t = t

(n).

Step 2. Compute B for t = t
(n) as expressed by (9) using the recurrence formulae (13), (14) and (15).

Step 3. Compute D from B and X by (8).

Step 4. Compute

�
@B

@tk

�K
k=0

for t = t
(n) by the recurrence formulae (29) and (33){(35).

Step 5. Compute G for t = t
(n), which is composed of the elements represented by (23), using the

recurrence formulae (13), (14) and (15).

Step 6. Compute

�
@G

@tk

�K
k=0

for t = t
(n) , which is composed of the elements represented by (28), using

the recurrence formulae (29), (33){(35), and (40){(43).

Step 7. Compute gradP (t(n)) =

�
@P

@t1
;
@P

@t2
; � � � ;

@P

@tK

�
for t = t

(n) by (27) from B, G,
@B

@tk
,
@G

@tk
, and X .

Step 8. Find a solution �t
(n)

of the linear programming problem

gradP (t(n)) (�t
(n)

� t
(n))0 ! min; �t

(n)
= (�t

(n)
1 ; �t

(n)
2 ; : : : ; �t

(n)
K ) 2 D;

by the simplex method.

Step 9. Compute the criterion hn of minimality as

hn =
���gradP (t(n)) (�t

(n)
� t

(n))0
��� :
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Step 10. If hn � �, then terminate, and t(n) is the solution. Otherwise, take a point t(n+1) = (t
(n+1)
1 ; t

(n+1)
2 ;

� � � ; t
(n+1)
K ) 2 D that is constructed as

t
(n+1) = t

(n) + �n(�t
(n)

� t
(n)); �n 2 (0; 1]

such that P (t(n+1)) < P (t(n)), set n := n+ 1, and go to Step 1.

Convergence of this algorithm to a local minimum is immediate from Theorem 3.5 of [Vasiliev, 1996] since

the feasible set D is closed, bounded and convex.

4. Experiment

The optimization procedure developed in the previous section is applied to the synthesis of letter strings

in script style from the data of individual letters.

Individual letters written by a volunteer on an electromagnetic tablet and digitized into 5 dot/mm by

the sampling interval of 10 ms are shown in Fig. 2. Characteristic points were extracted as via points and

pause points where the pen speed was locally minimal and zero, respectively. The via times at which to

visit the via points were taken from the data. In addition, the initial and terminal parameters were the

pen positions and velocity taken from the data. The via points, as well as the initial and terminal points,

are denoted by � in Fig. 2. Points denoted by 
 are pause points.

Based on the idea that the characteristic points of a letter characterize the letter even when it is written

as a part of a letter string, we can synthesize a string of letters from the concatenation of characteristic

points for the individual letters. The string \�le", for example, is synthesized as illustrated in Fig. 3. The

points taken from the individual letters in Fig. 3(a) are aligned as shown in Fig. 3(b) so that the terminal

point of a previous letter and the initial point of the next letter share the same horizontal position. The

boundary conditions, except for the initial point of the �rst letter and the terminal point of the last letter,

are discarded, as shown in Fig. 3(c), because no boundaries exist between the letters in a continuously

written string. Then, the string is synthesized as an extended spline interpolation of the concatenated

points. Figure 3(d) shows a synthesis using the initial guess of the via times, which are estimated simply by

accumulating the time intervals between the adjacent points for the case in which the letters were written

individually. Figure 3(e) plots the synthesis using the optimized via times.

Several examples of synthesized strings are shown in Fig. 4. The dark and light curves represent

syntheses using initial and optimized via times, respectively. Most of the light curves (with the initial

times) deviate considerably from our expectation, and a number of overshoots are observed. In addition,

an unnecessary switch-back is observed in \eye". The dark curves (with the optimized times) look more

similar to what is usually written. Each letter is adapted to suit the context.

The computational time of the present optimization method is plotted in Fig. 5 along with that of

the naive method employing sum and di�erence rather than integral and di�erential, respectively, for the

purpose of comparison. The sums substituting the integrals are those of the integrand evaluated by the
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Figure 2: Original letters (� denotes a via point and 
 denotes a pause point).
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(a) characteristic points and boundary conditions of individual letters

(b) characteristic points and boundary conditions lined up

(c) characteristic points and boundary conditions of a string
      without void boundary conditions

(d) synthesized string with initial guess of the via times

(e) synthesized string with the optimal via times

Figure 3: How to synthesize a string of letters in script style.
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Figure 4: Letter strings synthesized on the basis of individual letters in Fig. 2. (Dark and light curves
represent strings synthesized with initial and optimized via times, respectively.)
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Figure 5: Computational time for optimization of the via times.

sampling interval of 10 ms. The di�erences substituting the di�erentials are those of the primitive functions

evaluated at the same rate. The program was written in Java and run on the Java virtual machine emulated

on an 800 MHz Intel Cerelon. The mathematical e�ort made in this paper to write down the integrals

and di�erentials in terms of arithmetic operations resulted in an algorithm that is roughly ten times faster

than the naive algorithm.

5. Conclusions

For the purpose of synthesizing a string of letters continuously written in script style, an optimization

procedure was developed to optimize the via times such that the pen visits the via points characterizing

the string so that the integral of squared jerk is minimized. A number of recurrence formulae were derived

which allow us to compute the gradients arithmetically even though the gradients are de�ned in terms

of di�erential and integral operators. Incorporating the gradients in the conditional gradient method, we

compiled an algorithm that yielded synthesized strings of good shapes.
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