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Abstract
An inventory model is developed for a deteriorating item having
an instantaneous supply, a quadratic time-varying demand and
shortages in inventory. A two-parameter Weibull distribution is
taken to represent the time to deterioration. The model is solved
analytically to obtain the optimal solution of the problem. It is
then illustrated with the help of a numerical example. The sen-
sitivity of the optimal solution towards changes in the values of
different system parameters is also studied. Special features of a
time-quadratic demand are discussed.
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1. Introduction
The aim of the paper is to develop an EOQ(Economic Order Quantity)
model for a single-item inventory having a time-varying quadratic de-
mand. Inventory modellers have so far considered only two types of time-
dependent demands, linear and exponential. Linear time-dependence of
demand implies a uniform change in the demand rate of the product per
unit time. This is rarely seen to occur in the real market. On the other
hand, an exponentially time-varying demand also seems to be unrealistic
because an exponential rate of change is very high and it is doubtful
whether the market demand of any product may undergo such a high
rate of change as exponential. In the opinion of the authors, an alterna-
tive (and perhaps more realistic) approach is to consider quadratic time-
dependence of demand which may represent all types of time-dependence
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depending on the signs of the parameters of the time-quadratic demand
function.
A brief review of the literature dealing with time-varying demands is
made in the following paragraphs.
In formulating inventory models, two factors of the problem have been of
growing interest to the researchers, one being the deterioration of items
and the other being the variation in the demand rate with time. Silver
and Meal[1] developed an approximate solution procedure for the gen-
eral case of a deterministic, time-varying demand pattern. The classical
no-shortage inventory problem for a linear trend in demand over a finite
time-horizon was analytically solved by Donaldson[2]. However, Don-
aldson’s solution procedure was computationally complicated. Silver[3]
derived a heuristic for the special case of a positive, linear trend in de-
mand and applied it to the problem of Donaldson[2]. Ritchie([4],[5],[6])
obtained an exact solution, having the simplicity of the EOQ formula,
for Donaldson’s problem for a linear, increasing demand. Mitra et al[7]
presented a simple procedure for adjusting the economic order quantity
model for the case of increasing or decreasing linear trend in demand.
The possibilities of shortage and deterioration in inventory were left out
of consideration in all these models.
Dave and Patel[8] developed an inventory model for deteriorating items
with time-proportional demand. This model was extended by Sachan[9]
to cover the backlogging option. Bahari-Kashani[10] discussed a heuristic
model for obtaining order quantities when demand is time-proportional
and inventory deteriorates at a constant rate over time. Deb and Chaud-
huri[11] studied the inventory replenishment policy for items having a
deterministic demand pattern with a linear (positive) trend and short-
ages; they developed a heuristic to determine the decision rule for select-
ing the times and sizes of replenishment over a finite time-horizon so as
to keep the total costs minimum. This work was extended by Murdesh-
war[12]. Subsequent contributions in this direction came from researchers
like Goyal([13],[14]), Dave[15], Hariga[16], Goswami and Chaudhuri[17],
Xu and Wang[18], Chung and Ting([19],[20]), Kim[21], Hariga([22],[23]),
Jalan, Giri and Chaudhuri[24], Jalan and Chaudhuri[25], Giri and Chaud-
huri[26], Lin, Tan and Lee[27], etc.
The assumption of the constant deterioration rate was relaxed by Covert
and Philip[28] who used a two-parameter Weibull distribution to repre-
sent the distribution of time to deterioration. This model was further
generalized by Philip[29] by taking a three-parameter Weibull distribu-
tion. Misra[30] also adopted a two-parameter Weibull distribution deteri-
oration to develop an inventory model with a finite rate of replenishment.
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These investigations were followed by several researchers like Shah and
Jaiswal[31], Aggarwal[32], Roy-Chowdhury and Chaudhuri[33], etc. The
models developed by Covert and Philip[28], Philip[29] and Misra[30] did
not allow shortages in inventory and used a constant demand rate.
Recently Wee[34] and Jalan and Chaudhuri[35] worked with an exponen-
tially time-varying demand.
In the present paper, we assume that time-dependence of the demand
rate is quadratic. Deterioration rate is assumed to follow a two-parameter
Weibull distribution and shortages in the inventory are allowed. An an-
alytical solution of the model is discussed and it is illustrated with the
help of a numerical example. Sensitivity of the optimal solution with
respect to changes in different parameter values is also examined. The
detailed justifications for the choice of a quadratic demand are given in
the Concluding Remarks section.

2. Notations

The following notations are used in the model.
C1 - inventory carrying cost per unit per unit time.
C2 - shortage cost per unit per unit time.
C3 - ordering cost per order.
C4 - cost of a unit.
q0 - size of the initial inventory.
R(t) - demand rate at any time t ≥ 0.
T - cycle time.
K - a constant value (0 ¡ K ¡ 1).
t1 - time during which there is no shortage (0 ¡ t1 ¡T ).
Z(t) - instantaneous rate function for a two-parameter Weibull

distribution = αβt(β−1) where α is the scale parameter
and β is the shape parameter.

T ∗ - optimal value of T .
q0
∗ - optimal value of q0.

t1
∗ - optimal value of t1.

K∗ - 0ptimal value of K.
3. Assumptions
The following assumptions are used in the model:
(i) The deterministic demand rate R(t) varies quadratically with time,
i.e, R(t) = a + bt + ct2, where a, b and c are constants such that
a ≥ 0, b 6= 0, c 6= 0. Here a stands for the initial demand rate and b
for the positive trend in demand.
(ii) Shortages in the inventory are allowed and completely backlogged.
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(iii) The supply is instantaneous and the lead time is zero.
(iv) A deteriorated unit is not repaired or replaced during a given cycle.
(v) The holding cost, ordering cost, shortage cost and unit cost remain
constant over time.
(vi) The distribution of the time to deterioration of the items follows the
two-parameter Weibull distribution.

4. Formulation and solution

The instantaneous state of the inventory level q(t) at any time t is gov-
erned by the differential equations

dq(t)

dt
+ q(t)Z(t) = −(a + bt + ct2), 0 ≤ t ≤ t1 (1)

with q(0) = q0 and q(t1) = 0,
and

dq(t)

dt
= −(a + bt + ct2), t1 ≤ t ≤ T (2)

with q(t1) = 0.
The deterioration rate Z(t) follows the two-parameter Weibull distribu-
tion given by

Z(t) = αβtβ−1 , α > 0, β > 0, t > 0. (3)

By virtue of (3), (1) becomes

dq

dt
+ qαβtβ−1 = −(a + bt + ct2), 0 ≤ t ≤ t1. (4)

This is a linear ordinary differential equation of first order and its inte-
grating factor is

= exp
{
αβ

∫
tβ−1dt

}
= exp{αtβ}.

Multiplying both sides of (4) by exp{αtβ} and then integrating over [0,t],
we have

q.exp{αtβ} − q0 = −
∫ t

0
(a + bt + ct2)exp{αtβ}dt, 0 ≤ t ≤ t1. (5)

Using the condition q(t1)=0, we have from (5)

q0 =
∫ t1

0
(a + bt + ct2)exp{αtβ}dt. (6)
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Substituting the value of q0 from (6) in (5), we get

q(t) =

∫ t1
0 (a + bt + ct2)exp{αtβ}dt−

∫ t
0 (a + bt + ct2)exp{αtβ}dt

exp{αtβ}
.

0 ≤ t ≤ t1 (7)

The solution of (2)is

q(t) = a(t1 − t) +
b

2
(t21 − t2) +

c

3
(t31 − t3), t1 ≤ t ≤ T. (8)

Hence the instantaneous level of inventory at any time t ∈ [0,T] is given
by

q(t) =

∫ t1
0 (a + bt + ct2)exp{αtβ}dt−

∫ t
0 (a + bt + ct2)exp{αtβ}dt

exp{αtβ}
,

0 ≤ t ≤ t1

= a(t1 − t) +
b

2
(t21 − t2) +

c

3
(t31 − t3), t1 ≤ t ≤ T. (9)

The inventory level at the beginning of the cycle must be sufficient enough
to meet the total demand given by∫ t1

0
(a + bt + ct2)dt = at1 +

1

2
bt21 +

1

3
ct31.

Also the total quantity of deteriorated items is given by

q0 −
∫ t1

0
(a + bt + ct2)dt = q0 − at1 −

1

2
bt21 −

1

3
ct31.

Expressing the exponential term in (7) in infinite series and then inte-
grating term by term, we have

q0 = a
∞∑

n=0

αntnβ+1
1

(nβ + 1)n!
+ b

∞∑
n=0

αntnβ+2
1

(nβ + 2)n!
+ c

∞∑
n=0

αntnβ+3
1

(nβ + 3)n!
. (10)

The average inventory holding cost in (0,t1) is

1

2

C1

T
q0t1.

Although the inventory depletion curve is not a straight line here, the
average inventory holding cost is taken here in the same form as it is
used in deterministic EOQ models with no deterioration. Without this
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approximation, the model becomes too complex to be solved. Similar ap-
proaches have been adopted by Covert and Philip(1973) and Misra(1974).
The average shortage cost in [t1, T ] is

C2

T

∫ T

t1
(a + bt + ct2)(T − t)dt

=
C2

12T
[(T − t1)

2{6a + 2b(T + 2t1) + c(T 2 + 2T t1 + 3t 2
1 )}].

Therefore, the total variable cost per unit time is

AV C =
C4

T
(q0 − at1 −

1

2
bt21 −

1

3
ct31) +

1

2

C1

T
q0t1

+
C2(T − t1)

2

12T
{6a + 2b(T + 2t1) + c(T 2 + 2T t1 + 3t 2

1 )}+
C3

T
. (11)

Since the length of the shortage interval is a part of the cycle time,
we assume

t1 = KT, 0 < K < 1 (12)

where K is a constant to be determined in an optimal manner. Using
(12), in (6) we have from (11),

AV C =
(

C4a

T
+

1

2
C1Ka

) ∫ KT

0
exp{αtβ}dt +

(
C4b

T
+

1

2
C1Kb

)∫ KT

0
t exp{αtβ}dt

+
(

C4c

T
+

1

2
C1Kc

) ∫ KT

0
t2exp{αtβ}dt− C4aK − 1

2
C4bK

2 T

− 1

3
C4cK

3T 2 +
1

2
C2(1−K) 2aT +

1

6
C2(1−K) 2(1 + 2K)bT 2

+
1

12
C2(1−K) 2(1 + 2K + 3K 2)cT 3 +

C3

T
.

Expressing the exponential terms in infinite series and then integrating
term by term, we have

AV C =
(

C4a

T
+

1

2
C1Ka

) ∞∑
n=0

αn(KT )nβ+1

(nβ + 1)n!
+

(
C4b

T
+

1

2
C1Kb

) ∞∑
n=0

αn(KT )nβ+2

(nβ + 2)n!

+
(

C4c

T
+

1

2
C1Kc

) ∞∑
n=0

αn(KT )nβ+3

(nβ + 3)n!
− C4aK − 1

2
C4bK

2 T − 1

3
C4cK

3T 2

+
1

2
C2(1−K) 2aT +

1

6
C2(1−K) 2(1 + 2K)bT 2

+
1

12
C2(1−K) 2(1 + 2K + 3K 2)cT 3 +

C3

T
. (13)
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Treating K and T as decision variables, the necessary conditions for the
minimization of the average system cost are

∂

∂T
(AV C) = 0 =

∂

∂K
(AV C).

After a little calculation, the condition ∂(AV C)
∂T

= 0 yields

C4a
∞∑

n=0

nβ

nβ + 1

αn(KT )nβ+1

n!
+ C4b

∞∑
n=0

nβ + 1

nβ + 2

αn(KT )nβ+2

n!

+ C4c
∞∑

n=0

nβ + 2

nβ + 3

αn(KT )nβ+3

n!
+

1

2
C1a

∞∑
n=0

αn(KT )nβ+2

n!

+
1

2
C1b

∞∑
n=0

αn(KT )nβ+3

n!
+

1

2
C1c

∞∑
n=0

αn(KT )nβ+4

n!

− 1

2
C4bK

2T 2 − 2

3
C4cK

3T 3 +
1

2
C2(1−K) 2aT 2

+
1

3
C2(1−K) 2(1 + 2K)bT 3 +

C2

4
(1−K) 2(1 + 2K + 3K 2)cT 4

− C3 = 0. (14)

The other condition ∂(AV C)
∂K

= 0 leads to the result

C4a
∞∑

n=1

αn(KT )nβ

n!
+ C4b

∞∑
n=1

αn(KT )nβ+1

n!
+ C4c

∞∑
n=1

αn(KT )nβ+2

n!

+
1

2
C1a

∞∑
n=0

nβ + 2

nβ + 1

αn(KT )nβ+1

n!
+

1

2
C1b

∞∑
n=0

nβ + 3

nβ + 2

αn(KT )nβ+2

n!

+
1

2
C1c

∞∑
n=0

nβ + 4

nβ + 3

αn(KT )nβ+3

n!
− C2aT (1−K)− C2bT

2K(1−K)

+
1

3
C2cT

3K(3K 2 − 3K + 1) = 0. (15)

The optimal values T ∗ of T and K∗ of K are obtained by solving (14) and
(15). The sufficient conditions that these values minimize AV C(T, K)
are

∂2(AV C)

∂T ∗2
∂2(AV C)

∂K∗2 −
(

∂2(AV C)

∂T ∗∂K∗

)2

> 0

∂2(AV C)

∂T ∗2 > 0,
∂2(AV C)

∂K∗2 > 0. (16)

Equations (14) and (15) can only be solved with the help of a computer
oriented numerical technique for a given set of parameter values by trun-
cating the infinite series. Once T ∗ and K ∗ are obtained, we get t∗1 from
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(12). We may then use (10) to determine the optimal EOQ q∗0 and (13)
to get the optimal average cost AV C∗.

5. Numerical Example

Equations (14) and (15) are now solved with the help of a computer
using the following parameter values:
C1= Rs. 0.001 per unit per day,
C2= Rs. 10.00 per unit per day,
C3= Rs. 20.00 per order,
C4= Rs. 4.00 per unit,
α= 0.002, β=1.5, a=10.0, b=2.0, c=1.0.
Based on these input data, the results are:
Optimum cycle time T ∗=1.3532 days,
Optimum value K∗=0.630,
Economic order quantity q0

∗=9.46472 units,
Optimum stock-period t1

∗=0.8525 days and
Optimum average cost AV C∗=Rs. 36.4387 per day.
It is checked that this solution satisfies the sufficient conditions (16)
for optimality.
To understand the benefits of choosing K optimally rather than arbitrar-
ily, we show the results for arbitrary choice of K in Table 1 (for quadratic
demand) and Table 2 (for linear demand). It is interesting to note that
the results for arbitrary values of K differ significantly from the optimal
results. As K increases from its lower values to its optimum value, each
of T ∗ and q0

∗ increases while C∗ decreases. The optimal results for a
linear demand rate (c=0) are
Optimum cycle time T ∗=7.30 days,
Optimum value K∗=0.9977,
Economic order quantity q0

∗=128.37 units,
Optimum stock-period t1

∗ =7.29 days and
Optimum average cost AV C∗=Rs. 29.99 per day.
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Table 1. Results for arbitrary choice of K in the case of quadratic demand
K T ∗ q0

∗ TC∗

0.500 1.06450 5.65786 36.9193
0.550 1.15658 6.85451 36.6591
0.560 1.17760 7.12820 36.6224
0.570 1.19930 7.41328 36.5818
0.580 1.22195 7.71210 36.5438
0.590 1.24570 8.02634 36.5109
0.600 1.27059 8.35705 36.4835
0.610 1.29670 8.70561 36.4607
0.620 1.32420 9.07420 36.4457
0.630∗ 1.35320∗ 9.46472∗ 36.4387∗

0.640 1.38390 9.87993 36.4429
0.650 1.41645 10.3224 36.4591
0.660 1.45100 10.7950 36.4829

Table 2. Results for arbitrary choice of K in the case of a linear demand
K T ∗ q0

∗ TC∗

0.500 1.11064 5.86357 37.7119
0.600 1.33860 8.68182 37.1732
0.700 1.69340 13.2732 36.4657
0.800 2.33090 22.1726 35.4698
0.900 3.83980 46.7673 33.8048
0.950 5.60860 82.6019 32.1389
0.980 6.97980 117.149 30.5518
0.990 7.24700 125.481 30.1397
0.9977∗ 7.30500∗ 128.372∗ 29.9925∗

Comparing the solution of the quadratic demand to that of the linear
demand, we observe the following changes in the case of a quadratic de-
mand:
(i) The cycle time decreases by 81.51 % nearly.
(ii) The stock period decreases by 88.32 %.
(iii) The economic lot size reduces by 92.33 %.
(iv) The average system cost increases by 21.51 % per day.
Reorders become more frequent in the case of a quadratic demand.

6. Sensitivity Analysis

We now study the effects of changes in the values of the system pa-
rameters a, b, c, C1, C2, C3, C4, α and β on the optimal average cost,
cycle time and EOQ derived by the proposed method. The sensitivity
analysis is performed by changing each of the parameters by -50 %, -20
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%, +20 %, and +50 %, taking one parameter at a time and keeping the
remaining eight parameters unchanged.

Table 3. Sensitivity Analysis.
Changing % change in the % change % change % change
parameter system parameter in T ∗ in q0

∗ in TC∗

a -50 14.01 -35.38 -6.18
-20 5.16 -13.13 -2.02
+20 -4.64 12.02 1.59
+50 -10.74 28.33 3.37

b -50 5.57 2.01 1.94
-20 2.08 0.74 0.71
+20 -1.91 -0.66 -0.64
+50 -4.52 -1.53 -1.51

c -50 2.47 1.60 0.63
-20 0.93 0.59 0.23
+20 -0.87 -0.72 -0.21
+50 -2.07 -1.29 -0.47

C1 -50 0.007 0.008 -0.002
-20 0.002 0.002 -0.001
+20 -0.002 -0.002 0.001
+50 -0.004 -0.006 0.002

C2 -50 34.20 40.13 0.39
-20 9.84 11.18 0.15
+20 -7.38 -8.19 -0.23
+50 -15.69 -17.25 -0.66

C3 -50 -24.32 -31.74 -48.59
-20 -8.39 -9.32 -19.22
+20 7.28 8.24 19.01
+50 16.72 19.17 47.19

C4 -50 -15.12 -16.96 -1.59
-20 -6.15 -6.89 -0.65
+20 6.35 7.13 0.68
+50 16.22 18.23 1.75
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Changing % change in the % change % change % change
parameter system parameter in T ∗ in q0

∗ in TC∗

α -50 0.04 0.013 0.008
-20 0.02 0.008 0.006
+20 -0.01 -0.004 -0.002
+50 -0.04 -0.013 -0.008

β -50 0.03 0.055 0.05
-20 0.01 0.007 0.02
+20 -0.02 -0.003 -0.01
+50 -0.04 -0.023 -0.02

On the basis of the results shown in the Table 3, the following obser-
vations can be made:
(1) T ∗ decreases while q0

∗ and AV C∗ both increase with the increase in
the value of the parameter a. However, AV C∗ and T ∗ have low sen-
sitivity to changes in a. On the other hand, q0

∗ has moderate sensiti-
vity towards changes in a.

(2) T ∗, AV C∗ and q0
∗ all decrease (increase) with the increase (decrease)

of b. However, they are slightly sensitive to changes in b.
(3) Each of T ∗, q0

∗ and AV C∗ decreases (increases) with the increase
(decrease) of c and they are slightly sensitive to changes in c.

(4) T ∗, q0
∗ and AV C∗ are all insensitive to changes in the parameter

C1.
(5) T ∗, q0

∗, AV C∗ all decrease (increase) with the increase (decrease) of
C2. T ∗ and q0

∗ are moderately sensitive while AV C∗ is almost insen-
sitive to changes in C2.

(6) Each of T ∗, q0
∗ and AV C∗ increases (decreases) with the increase

(decrease) of C3. The are all moderately sensitive to changes in C3.
(7) Each of T ∗, q0

∗ and AV C∗ increases (decreases) with the increase
(decrease) of C4. q0

∗ and T ∗ have low sensitivity while AV C∗ is al-
most insensitive to changes in C4.

(8) T ∗, q0
∗, AV C∗ are insensitive to changes in α.

(9) T ∗, q0
∗, AV C∗ are insensitive to changes in β.

7. Concluding Remarks

While considering time-varying demands, inventory modellers usually
take the demand to be either linearly dependent or exponentially de-
pendent upon time. For the first case, the demand rate function is of
the form R(t) = a + bt, a ≥0, b 6= 0, which implies steady increase
(or decrease) in demand, which may be rarely seen to occur in the real
market. For the second case, the demand rate function is of the form
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R(t) = αeβt, α > 0, β 6= 0. In the real market situations, demand is
unlikely to increase at a rate which is so high as exponential. Quadratic
time-dependence of demand of the form R(t) = a + bt + ct2, a ≥ 0, b 6=
0, c 6= 0, seems to be a better representation of time-varying market
demands. Here a (≥ 0) stands for the initial demand rate. We have

dR(t)

dt
= Ṙ(t) = b + 2ct

and

R̈(t) = 2c.

Now Ṙ(t)=0 gives t = − b
2c

which is positive if b and c are of opposite
signs. For b¿0 and c¡0, R(t) has a maximum at t = − b

2c
. In this case, the

demand rate gradually rises to a maximum (a − b2

4c
) and then gradually

declines. This type of demand is quite appropriate for seasonal products
like winter cosmetics. As the season progresses, the demand rate begins
to rise, attains a peak in the mid-season and then wanes out towards the
end of the season.
For b¡0 and c¿0, the demand rate gradually falls to a minimum and then
increases. This type of situation is rare in the real market.
For b¿0, c¿0, the demand rate undergoes an accelerated growth which is
found to occur in the case of spare parts of newly introduced state-of-the-
art aircrafts, computers, etc. There is accelerated decline in demand for
b¡0, c¡0; this happens in the case of spare parts of the obsolute aircrafts,
computers, etc.
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