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1 Introduction

The term risk plays a pervasive role in the literature on economic, political, social
and technological issues. There are various attempts to define and to characterize
the risk for descriptive as well as prescriptive purpose (e.g., Brachinger and Weber
[16] surveyed measures of perceived risk, regarding risk as a primitive). In this
paper, we mainly concentrate on financial risks and financial risk measures. We
assume that financial risks can be quantified on the basis of a random variable X.
This random variable may present, for instance the future net worth of a position,
the relative or absolute changes in values of an investment or the accumulated claims
over a period for a collective of insureds. In general, we regard risk as random profit
or loss of a position. It can be positive (gains) as well as negative (losses). Pure
loss situations can be analyzed by considering the random variable L=X− ≥ 0. A
risk measure is a mapping from the random variables representing risks to the real
line. It gives a simple number that quantifies the risk exposure in a way that is
meaningful for the problem at hand.

Financial institutions, such as investment banks and insurance companies around
the globe are searching for techniques to enhance their risk management practice.
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One of the critical steps is to construct a proper measure of risk. Possibly enhanced
by the new trends in regulation of financial institutions and the reaction of the
academic community to the practical requirements, risk measurement is one of the
fast evolving topics both in theoretical and practical fields in recent years.

The rest of paper is organized as follows. Section 2 is about new research devel-
opments. Section 3 and section 4 are both about static risk measures. One contains
the axiomatic characterization of risk measures and the other discusses several typ-
ical examples. Section 5 describes dynamic risk measures. And section 6 briefly
concludes.

2 New research development

There has been a great momentum in research on risk measures in recent years,
which has touched the following different, but interconnected aspects: 1) axiomatic
characterization of risk measures; 2) construction of (coherent) risk measures; 3)
premium principles in insurance context; 4) dynamic risk measures; 5) the relation
between risk measures and other economic and financial theories. 6) application of
risk measures to financial activities.

The first line of research was started by a group of scholar: Artzner, Delbaen,
Eber, and Heath. The axiomatic definition of coherent risk measures was introduced
in their path-breaking paper [8, 9]. They prescribed what mathematical properties a
meaningful risk, more precisely capital requirement measures should have. Föllmer
et al. [35] and Frittelli et al. [38] proposed convex risk measures respectively. Basing
on deviation measures, Rockafellar et al. [59] put forward expected-bounded risk
measures. Their results will be presented in the next section of this paper.

In the pre-Markowitz era, financial risk was considered as a correcting factor of
expected return. These primitive measures had the advantages of allowing an imme-
diate preferential order of all investments. Variance was first proposed by Markowitz
to measure the risk associated with the return of assets. Value-at-Risk (VaR) was
introduced in 1994 by the leading bank—JP Morgan. It is very popular in practice
and has become part of financial regulations (Basel Committee on Banking Super-
vision [13, 14]). Conditional Value-at-Risk (CVaR) has been proposed as a natural
remedy for the deficiencies of VaR, which is not a coherent risk measure in general.
Many other kinds of risk measures are also constructed after the introduction of
coherent risk measures. We will give some representative examples later.

Independently, practically at the same time, Wang, Young and Panjer presented
similar conclusions on a closely related subject related to insurance premium. Wang
et al. [67] published the axioms for risk premium in a competitive insurance market.
The most recent results of this line can be seen in Landsman and Sherris [49].

Dynamic risk measures have also been studied for evaluating multi-period risks.
In real situations, risks are inherently multi-period due to intermediate cash flows
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caused by, for example, availability of extraneous cash, possible gains or losses be-
cause of the changes of economic situations or adjustment of a portfolio. Having to
account for intermediate cash flows is the essential difference between a single-period
risk measure and a multi-period risk measure. Furthermore, dynamic risk measures
are also need to be considered for intermediate monitoring by supervisors and as-
sessing the risk of a position over time. Föllmer and Leukert [33], and Cvitanić et
al. [23] have studied dynamic risk measures. Artzner et al. [11], Riedel [56], and
Balbás [12] are all trying to define coherent risk measures for dynamic models. We
shall present some results in the section 5 of this paper.

Risk measures relate closely to utility function and asset pricing theories. Based
on the classical (µ, σ)−portfolio optimization theory of Markowitz (µ and σ refer to
expected return and standard deviation respectively), (µ, ρ)−portfolio optimization
where ρ is coherent risk measure can be considered. The (µ, ρ)−problem can be
transformed into the problem of maximizing U=µ − λρ, where λ is a Lagrangian
variable. U can be interpreted as a utility function just when ρ is convex. On
the other hand, when the preference function Φ(X) = E[U(X)], where U denotes
the utility function specific to each decision maker, do not separate risk or value,
Jia and Dyer [43] proved that it is possible to derive an explicit risk measures:
ρ(X) = −E[U(X − E(X))] for the specified utility function. Jaschke and Küchler
[42] proved that coherent risk measures are essentially equivalent to generalized
arbitrage bounds, named “good deal bounds” by Černý and Hodges [21]. Thus
coherent risk measures link well with the established economic theories of arbitrage
on one hand and utility maximization on the other hand. Delbaen [26] has related
the theory of risk measures to game theory and distorted probability measures. We
can see Wang [67], and Carr [20] for other aspects in this line.

Risk measures have been widely applied to pricing, hedging, portfolio optimiza-
tion, capital allocation and performance evaluation. To some extent, we can say that
the application to performance measurement and capital allocation are the driving
force to develop the risk theory. Since the end of 1996 in the European Union
and 1998 in the United States, the largest banks subjected to regulatory approval
have been able to use the internal models to calculate VaR exposures for the trad-
ing books, and thus the capital requirements for market risk to prevent insolvency.
After coherent risk measures have been proposed, how to allocate risk capital by
selecting proper risk measures become an important issue. When the risk measure
for a portfolio has been chosen, how to attribute risk contributions to subportfolio
is another problem arising. This is of interest for risk diagnostics of a portfolio or
for performance analysis. See Tasche [63], Denault [28], Goovaerts et al. [39] and
Fischer [32] for further results. Other aspects of application can be found in Wang
[67], Föllmer and Leukert [33].
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3 Axiomatic characterization of risk measures

3.1 Coherent risk measures

Following the system of Artzner et al., we regard risks as future net worth. Denote
Ω the set of states of of nature, and assume it is finite; G the set of all risks, namely
the set of all real valued function on Ω. For simplicity, we will consider the market
models without interest rates in this section; it is immediate, however, to extend
all the definitions and results to the situation with interest rate, by appropriately
discounting.

Definition 3.1 A map ρ : X → R will be called a coherent risk measure if it
satisfies the following axioms:

(a) Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ), ∀X, Y ∈ G;

(b) Positive homogeneity: if λ ≥ 0, then ρ(λX) = λρ(X);

(c) Monotonicity: if X ≤ Y , then ρ(X) ≥ ρ(Y );

(d) Translation invariance: if m ∈ R, then ρ(X + m) = ρ(X)−m.

Let us make some comments on the economic significance of these axioms.

Subadditivity (a): It has an easy interpretation. If the subadditivity did not
hold, then ρ(X + Y ) ≥ ρ(X) + ρ(Y ). This would imply, for instance, that in order
to decrease risk, a firm might be motivated to break up into different incorporated
affiliates. From the regulatory point of view, this would allow to reduce capital
requirements. Note this axiom rules out the “semi-variance” type risk measure
defined by ρ(X) = −E(X) + σ2(X − E(X))−.

Positive homogeneity (b): We notice that subadditivity implies ρ(λX) ≤ λρ(X)
for λ ≥ 0 and X ∈ G. Thus ρ(λX) ≥ λρ(X) is imposed by the positive homogeneity
axioms. This can be justified by liquidity considerations: a position (λX) could be
less liquid, and therefore more risky, than that of λ smaller positions (X).

Monotonicity (c): It is obvious to expect that, if two final net worth are such
that X ≤ Y , their risk measures have to satisfy ρ(X) ≥ ρ(Y ). This axiom rules out
the risk measure defined by ρ(X) = −E(X) + α · σ(X), where α > 0.

Translation invariance (d): Implies that the risk ρ(X) decrease by m, by adding
a sure return m to a position X. Specially, we get

ρ(X + ρ(X)) = ρ(X)− ρ(X) = 0,

that is, when adding ρ(X) to the initial position X, we obtain a “neutral” position.

Typically, a coherent risk measure ρ can be represented by the supremum of the
expected negative of final net worth for some collection of “generalized scenarios”
or probability measures P on states of the nature, i.e.,

ρ(X) = sup
p∈P

Ep[−X]
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The axioms of coherent risk measures have been very influential. These coher-
ent risk measures can be used as (extra) capital requirements to regulate the risk
assumed by market participants, traders, and insurance underwriters, as well as to
allocate existing capitals. But we should realize that not all coherent risk measures
are reasonable to use under certain practical situations.

Coherent risk measures were extended in general spaces by Delbaen [26]. Later
were extended to convex risk measures, also called weakly coherent risk measures
by relaxing the constraints of subadditivity and positive homogeneity, and instead
requiring the following weaker condition:

Convexity (e): ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ), ∀λ ∈ [0, 1].

Definition 3.2 A map ρ : X → R will be called a convex risk measure if it satisfies
the condition of convexity (e), monotonicity (c), and translation invariance (d).

Under the assumption ρ(0) = 0, Convexity of ρ implies that

ρ(λX) ≤ λ(X), ∀λ ∈ [0, 1], ∀X ∈ G,

ρ(λX) ≤ λ(X), ∀λ ≥ 1, ∀X ∈ G,

The second inequality suggests that when λ becomes large, the whole position (λX)
is less liquid than λ singular position X. The first says when λ is small, the opposite
inequality must hold for certain reasons.

Convex risk measures take into account the situations where the risk of a position
increase in a nonlinear way with the size of the position. They assure for second
order stochastic dominance and has corresponding structure theorem:

ρ(X) = sup
P∈P

(
EP [−X]− α(P )

)
,

where α : P → (−∞, ∞] satisfy α(P ) > −ρ(0) for any P ∈ P , and can be taken to
be convex and lower semicontinuous on P .

3.2 Expectation-bounded risk measures

We introduce deviation measures first.

Definition 3.3 A map ρ : X → R satisfying subadditivity (a), positive homogeneity
(b), and the following two axioms are called deviation measures:

(f) Shift-invariance: ρ(X + m) = ρ(X), ∀X ∈ G, m ∈ R;

(g) Nonegative: ρ(X) ≥ 0, ∀X ∈ G.

We can see that ρ(X) > 0 for all nonconstant X, whereas ρ(X) = 0 for all constant
X. Shift-invariance implies deviation measures is location-free. They fully measure
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the degree of uncertainty of X. Standard deviation and semi-standard deviation are
typical examples of this kind. Deviation measures and coherent risk measures are
in fact mutually incompatible: there is no function can satisfy axioms (e) and (f)
at the same time. The two kinds measure risk from different points of view: the
former regard risk as the magnitude of deviation, however, the latter quantify risk
to determine the amount of capital has to be held as a cushion against potential
future losses.

Rockafellar et al. impose the conditions (a), (b), (d) and the following additional
condition:

(h) ρ(X) > E(−X) for all nonconstant X, and ρ(X) = E(−X) for constant X.

Risk measures satisfying the above four conditions are called expectation-bounded.
If monotonicity is further satisfied, we will have an expectation-bounded coherent
risk measures. The basic ideal of Rockafeller et al. is that applying a risk measure
in Artzner et al. sense not to X itself, but to X−E(X) will induce a deviation mea-
sure and vice versa. Coherent risk measure and deviation measure are therefore con-
nected together. Formally there is a one-to-one correspondence between expectation-
bounded risk measure and deviation risk measures. A simple examples for this corre-
spondence is ρ1(X) = b·σ(X) for b > 0 and ρ2(X) = b·σ(X)−E(X). There exist risk
measures both coherent and expectation-bounded. Take ρ(X) = −EP (X)+α·σ−P (X)

with 0 < α < 1, σ−P (X) =
(
E
(
max(E(X)−X, 0

)2)1/2

for example.

4 Some examples of risk measures

Variance and standard deviation have been traditional risk measures in economics
and finance since the pioneering work of Markowitz. The two risk measures exhibit a
number of nice technical properties. For example, the variance of a portfolio return
is the sum of the variance and covariance of the individual returns. Furthermore,
variance can be used as a standard optimization function. Finally, there is a well
established statistical methods to estimate variance and covariance. However, vari-
ance does not account for fat tails of the underlying distribution and therefore is
inappropriate to describe the risk of low probability events, such as default risks.
Secondly, variance penalizes ups and downs equally. Moreover, mean-variance deci-
sions are usually not consistent with the expected utility approach, unless returns
are normally distributed or a quadratic utility function is chosen.

A general class of downside risk is the class of lower-partial-moment of degree
k(k = 0, 1, 2, · · · ):

LPMk(c, X) = E
[
max(c−X, 0)k

]
,

or, in normalized form (k ≥ 2) : LPMk(c, X)1/k, where c denote a reference level
from which deviation are measured. It can be an arbitrary deterministic target or
even a stochastic benchmark.
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Let k = 1, we get expected regret:

ER(X) = E
[
max(c−X, 0)

]
,

It was utilized by Carino and Ziemba in the Russell Yasuda Kasai financial planning
model. It is actually an average portfolio underperformance compared to a fixed
target or some benchmark portfolio. ER can be computed by a linear programming
model based on scenario approach.

Let c = E(X), k = 1, we have lower-semi-absolute deviation :

E
[
max(E(X)−X, 0)

]
,

which is considered by Ogryczak and Ruszczynski [52] and Gotoh and Konno [40].

Let c = E(X), k = 2, we get semi-variance and semi-standard deviation.

In the following, I shall consider some other familiar risk measures: VaR, CVaR,
expected shortfall (ES), and spectral risk measures in detail.

4.1 Value-at-Risk

VaR is a very easy and intuitive concept. It points out how much one may lose
during specified period (e.g. two weeks) with a given probability and how much
capital should be set to control the risk exposure of a firm. VaR serves for the
determination of the capital requirements that banks have to fulfill in order to back
their trading activities.

We join here Delbaen [27] taking V aRα as the absolute value of the worst loss
not to be exceeded with a probability of at least 1− α.

Define
x(α) = qα(X) = inf

{
x ∈ R : P [X ≤ x] ≥ α

}
as the lower α− quantile of X,

x(α) = qα(X) = inf
{
x ∈ R : P [X ≤ x] > α

}
as the upper α− quantile of X.

Its formal definition is:

V aRα(X) = −x(α) = q1−α(−X).

Let α ∈ (0, 1] be fixed. Consider the risk measure ρ given by

ρ(X) = V aRα(X),

Then ρ has the following properties:

(1) Monotonicity: if X ≤ Y , then ρ(X) ≥ ρ(Y );
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(2) Positive homogeneity: ρ(hX) = hρ(X), for h ≥ 0;

(3) Translation invariance: ρ(X + a) = ρ(X)− a, for a ∈ R;

(4) Law invariance: if P [X ≤ t] = P [Y ≤ t] for all t ∈ R, then ρ(X) = ρ(Y );

(5) Comonotonic additivity: ρ(f ◦ X + g ◦ X) = ρ(f ◦ X) + ρ(g ◦ X), for f, g
non-decreasing.

Law invariance is a crucial condition for a risk measure to be estimated from
empirical data and ensures that the measures are suitable for industrial applications.
So it is a critical property for application. There have been many methods to
estimate VaR (see Duffie and Pan [30] for an overview). Examples are historical
simulation methods and J.P. Morgan’s RiskMetrics [46].

From shareholders’ or managements’ perspective, the quantile “VaR” at the
company level is a meaningful risk measure since the default event itself is of primary
concern, and the size of shortfall is only secondary. But VaR in general turns out to
be not even a convex measure and in particular not subadditive even when the two
random variables are independent. This is its major drawback. The subadditivity
plays a fundamental role in risk measurement, especially in the area of credit risk.
Only in the very special case in which the joint distribution of return is elliptic, VaR
is subadditive, i.e.,

V aRα(X + Y ) ≤ V aRα(X) + V aRα(Y ), X, Y ∈ G
Non-subadditivity means that the risk of a portfolio may be larger than the sum
of stand-along risks of its components. Thereupon it could happen that a well
diversified portfolio require more regulatory capital than a less diversified portfolio.
Hence, managing risk by VaR may fail to stimulate diversification and it prevents
to add up to the VaR of different risk sources.

VaR is a risk measure that only concerns about the frequency of defaults, not
the size of defaults. it is argued that VaR is an “all or nothing” risk measure. VaR
models are usually based on the assumption of normal asset returns and will not work
under extreme price fluctuations. If an extreme event causes ruin occurs, there is no
more capital to cushion losses. Basak and Shapiro found that having embedded VaR
into an optimization framework, VaR risk managers incur large losses than non-risk
managers in the most adverse states of the world.

Furthermore, it is inappropriate to use VaR in practice because of its non-
convexity. It can have many local extremes, which will lead to unstable risk ranking.
VaR is a model dependent risk measurement because, by definition, it depends on
the initial reference probability.

At the latest in 1999, when coherent risk measures appeared, it became clear that
VaR cannot be considered as an adequate risk measurement to allocate economic
capital for financial institutions. In spite of this, as a compact representation of risk
level, VaR has met the favor of regulatory agencies to measure downside risk and
has been embraced by corporate risk managers as an important tool in overall risk
management process.
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4.2 Expected shortfall

The term ES we used here stems from Acerbi et al. [2], despite the fact that in other
literatures this term was already used sometimes in other meanings. Rockafellar and
Uryasev [57] have given the formal definitions of CV aR+, CV aR−, and CVaR. They
distinguished the three clearly. In fact, CVaR in their paper is the same with ER
here. Expected shortfall is proposed as a remedy for the deficiencies of VaR and
is characterized as the smallest coherent and law invariant risk measurement to
dominate VaR.

In simple words, ES at a specified level α is the average loss in the worst 100α%
cases. It measures how much one can lose on averages in states beyond the V aRα

level. Assume E[X−] < ∞, The accurate definition of ESα is:

ESα(X) = −α−1
(
E[X1{X≤x(α)} + x(α)

(
α− P [X ≤ x(α)]

))
, (4.1)

where 1 is the indicator function

1A(a) =

{
1, a ∈ A,
0, a 6∈ A.

When the underlying distribution is continuous, (4.1) will become simple:

ESα(X) = α−1E
[
X1{X≤x(α)}

]
.

We can prove that ES is a coherent risk measure. Further more,

ESα(X) = −α−1

∫ α

0

qu(X)du. (4.2)

Together with the properties of VaR, (4.2) implies that ES is law invariant and
comonotonic additive. It also shows ES is the coherent risk measure used in Kusuoka
[48] as main building block for the representation of law invariant coherent risk
measurements.

ESα is continuous with respect to α. Hence regardless of the underlying distri-
butions, we can be sure that the risk measured by ESα will not change dramatically
when there is a switch in the confidence level, say some base points.

ES is monotonic function to α, that is

ESα+ε(X) ≤ ESα(X), ∀α ∈ (0, 1), ∀ε > 0, with α + ε < 1.

Another advantages of ES is that it can be estimated efficiently even in cases
where the usual estimators for VaR fail. First define α−tail mean (TM) as:

TMα(X) = −ESα = α−1E
[
X1{X≤x(α)}

]
= x̄(α).
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Then TMα is the average the worst 100α% cases. The tail mean is likely to be
negative, and the ES represents potential loss as positive number in most cases.
Indeed they are different names for the same object.

Let some independent samples (X1, X2, · · · , Xn) of X are given. Define the
order statistics X1:n ≤ · · · ≤ Xn:n as the sorted values of n-tuple (X1, X2, · · · , Xn).
Approximate the number of 100α% elements in the sample by

[nα] = max
{

m
∣∣ m ≤ nα, m ∈ N

}
.

The set of 100α% worst cases is therefore presented by the least [nα] outcomes{
X1:n, · · · , X[nα]:n

}
. The natural estimator for the expected loss in the 100α% worst

cases is therefore simply given by

TMn
α (X) =

[nα]∑
i=1

Xi:n

[nα]
.

We can get

lim
n→∞

[nα]∑
i=1

Xi:n

[nα]
= x̄(α) a.s. (4.3)

If X is integrable, then the convergence in (4.3) holds in L1 too.

More importantly, ES is a convex function with respect to positions, allowing
the construction of efficient optimizing algorithms. In particular, it has been shown
that ES can be minimizing using linear programming techniques, which makes many
large-scale calculations practical. And moreover, such numerical calculation is effi-
cient and stable.

ES is different from the tail conditional expectation (TCE) and worst conditional
expectation (WCE) advanced by Artzner et al. [7]:

TCEα = −E
{
X
∣∣X ≤ x(α)

}
,

WCEα(X) = − inf
{
E[X|A] : A ∈ F , P (A) > α

}
.

TCEα is usually larger than the set of selected worst cases since {X ≤ x(α)}
may happen to have a probability larger than 100α%. It is a coherent risk measure
only when restricted to continuous distributions while may violate subadditivity on
general distributions. The natural estimation for TCE is the negative of average of
all Xi ≤ x

(α)
n , i.e.,

TCEα
n (X) = −

n∑
i=1

Xi1{Xi≤X[nα]:n}

n∑
i=1

1{Xi≤X[nα]:n}

.
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WCE is a coherent risk measure but only useful in a theoretical setting since it
depends not only on the distribution of X but also on the structure of the under-
lying probability space. Both TCE and WCE are sensible to small changes in the
confidence level α when applied to discontinuous distributions.

Comparing ES, TCE and WCE, we get

TCEα(X) ≤ WCEα(X) ≤ ESα(X).

ES is the maximum of WCEs when the underlying probability space varies. If the
distribution of X is continuous, we have

TCEα(X) = WCEα(X) = ESα(X).

ES closely relates to expected return (ER). Testuri and Uryasev [65] demon-
strated the relationship between ER and ES. They formally prove that a portfolio,
which minimizes ES, can be obtained by doing a sensitivity analysis with respect
to the threshold in the expected regret. An optimal portfolio in ES sense is also
optimal in the expected regret sense for some threshold in the regret function. The
inverse statement is also valid, i.e., if a portfolio minimizes the expected regret, this
portfolio can be found by doing a sensitivity analysis with respect to the ES con-
fidence level. A portfolio, optimal in expected regret sense, is also optimal in ES
sense for some confidence level.

When comparing expected shortfall with VaR, basing on Monte-Carlo simula-
tion, Yamai and Yoshiba [73] get that expected shortfall is easily decomposed into
risk factors and optimized, while VaR is not, but expected shortfall requires a larger
size of sample than VaR for the same level of accuracy. Risk decomposition enables
risk managers to select assets that provide the best risk-return trade-off, and to al-
locate economic capital to individual risk factors. Under market stress, Yamai and
Yoshiba [72] find that: first, VaR and expected shortfall may underestimate the risk
of securities with fat-tailed properties and a high potential for large losses; second,
VaR and expected shortfall may both disregard the tail dependence of asset returns;
third, expected shortfall has less of a problem in disregarding the fat tails and the
tail dependence than VaR does. The superintendent office of financial institutions
in Canada has put in regulation for the use of expected shortfall to determine the
capital requirement.

4.3 Spectral risk measure

Spectral risk measures Mφ(X) are defined by

Mφ(X) = −
∫ 1

0

x(p)φ(p)dp, (4.4)

where φ ∈ L1([0, 1]). And φ is said to be an admissible risk spectrum if it is positive,
decreasing and ‖φ‖ = 1.
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Mφ(X) is a coherent risk measure if and only if φ is an admissible risk spec-
trum. φ can be regarded as a weight function reflecting an investor’s subjective risk
aversion. This means there exists a one-to-one correspondence between risk aversion
function φ and coherent spectral risk measures. The fact that φ(p) is decreasing pro-
vides an intuitive insight of the coherence concept: a measure is coherent if it assigns
bigger weight to worse cases. Introduce a measure dµ(α) on α ∈ [0, 1] satisfying the
normalization condition ∫ 1

0

αdµ(α) = 1.

We can get

Mφ(X) = −
∫ 1

0

x(p)φ(p)dp =

∫ 1

0

ES(α)(X)dµ(α), (4.5)

Eq. (4.5) suggests spectral risk measure can be built by ESα.

Let φ(p) = 1
α
1{0≤p≤α}, Then

ESα(X) = Mφ(X).

In this case, The weight function is simply uniform in p ∈ [0, α] and zero else-
where. In general case, φ(p) assigns different weights to different “p-quantile slices”
of the left tail.

It is not difficult to see that V aRα(X) can also be expressed as

V aRα(X) = Mφ(X) with φ(p) = δ(p− α),

where Dirac delta function is defined by∫ b

a

f(x)δ(x− c)dx = f(c), ∀c ∈ (a, b)

Spectral risk measure enjoys the properties of law-invariance and comonotonic
additivity. It is also a very simple object to be used in practice. We can estimate
Mφ by Mn

φ on a sample n i.i.d realizations X1, · · · , Xn of X. Xi;n has the same
meaning as before. Let

Mn
φ (X) = −

n∑
i=1

Xi:nφi,

where φi satisfies: (1)φi ≥ 0; (2)φi ≥ φj, if i < j; and (3)
n∑

i=1

φi = 1.

Given φ(p) as a representative positive decreasing function with sup
p∈[0,1]

φ(p) < ∞,

the most natural choice when φi is

φi =
φ(i/n)

n∑
k=1

φ(k/n)
, i = 1, · · · , n

12



If E[X+] < ∞ and E[X−] < ∞, we can prove that Mn
φ is a consistent estimator:

converges to Mφ with probability 1 for n →∞.

From the perspective of portfolio optimization, Acerbi et al. [1] revealed that
risk-reward problem is shown to coincide with the unconstrained optimization of
a single suitable spectral measure. In other words, minimizing a spectral measure
turns out to be already an optimization process itself, where risk minimization and
returns maximization cannot be disentangled from each other.

Spectral risk measures have some similarities with distorted risk measures defined
on distorted risk probabilities:

ρ(X) = E∗(X) = −
∫ 0

−∞
g(F (x)dx +

∫ ∞

0

[1− g(F (x)]dx,

where g : [0, 1] → [0, 1] is an increasing function with g(0) = 0 and g(1) = 1.
Distortion function g can reflect the risk preference of an investor. Proper risk
measures can be got by correctly choosing function g.

There are numerous risk measures. In the above, we just illustrate some typical
examples.

5 Dynamic risk measure

Consider a finite time interval [0, T ] during which all economic activities take place,
and suppose that the target is a liability C with maturity T . In a complete market
under the no arbitrage assumption, consider an agent who cannot afford to commit
at time t = 0 the entire amount

C(0) = E
[ C

S0(T )

]
,

which would guarantee perfect hedging. Here S0(t) is the price of risk-free instrument
at time t in the market. The expectation E is calculated with respect to the unique,
risk-neutral equivalent martingale measure. Then C is a risk that has to be properly
measured.

Cvitanić and Karatzas [23] proposed measuring risk as the smallest expected
discounted net-loss:

ρ(x, C) = inf
π(·)∈A(x)

E0

(
C −Xx,π(T )

S0(T )

)+

, (5.1)

where x is the initial capital available at time t = 0; A(x) is the class of admissible
portfolio strategies; Xx,π(·)is the wealth process corresponding to portfolio π(·) and
initial capital x. Under certain conditions, explicit computation are got and it is
then straightforward to determine the smallest amount of capital that keeps the
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exposure to risk below a given, acceptable level. This is the dynamic version of the
static lower-partial-moment risk proposed to amend the dynamic VaR version:

ρ(x, C) = sup
π(·)∈A(x)

P0

[
Xx,π(T ) ≥ C

]
.

which fails to take into account the magnitude of the net hedging loss
(
C−Xx,π(T )

)+
.

(5.1) can be extended to the following form:

ρ(x, C) = inf
π(·)∈A(x)

E0

[
l
(C −Xx,π(T )

S0(T )

)+]
,

where l is a concave function.

It is possible that the agent faces some uncertainty of the financial market itself
in addition to genuine risk that the liability C represents. Under this situation, we
capture the uncertainty by allowing for a suitable family P = {Pν}ν∈D of “real world
probability” or “scenarios” that are general enough to incorporate the uncertainty
about the actual values of stock-appreciation rates, instead of just one (P0). Possible
measures are set to control the risk amount, which is bounded by a lower-measure
of risk:

ρ(x, C) = sup
ν∈D

inf
π(·)∈A(x)

Eν

(
C −Xx,π(T )

S0(T )

)+

, (5.2)

which corresponds to the maximal risk of the type (5.1) from the point of view of
an agent faced with the “worst possible scenario” ν ∈ D; an upper-measure of risk:

ρ(x, C) = inf
π(·)∈A(x)

sup
ν∈D

Eν

(
C −Xx,π(T )

S0(T )

)+

, (5.3)

which is viewed by a regulator who regards the agent’s efforts merely as attempts to
“contain the worst that can happen”. The quantity of (5.2) and (5.3) can be thought
of as the lower (max-min) and upper (min-max) values of fictitious “stochastic game
between the agent and the market respectively. A saddle point of this game is shown
to be the pair (π̂(·), ν̂), where π̂(·) corresponds to the investment strategy which
borrows the amount C(0) − x from the bank at time zero, and then invests in the
market according to the optimal hedging portfolio πC(·) for C, ν̂ is the risk-neutral
measures included in the possible “real world” measures. Coincidence of (5.2) and
(5.3) means that the agent and regulator can reach agreement about how the risk
associated with the liability C is to be quantified.

In a stable hedging with finite probability space, x = 0, S(T ) = 1, and A(0) only
consisting of π(·) = 0, we have

ρ(C) = ρ(0, C) = sup
ν∈D

Eν(C
+).
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The quantity of (5.2) satisfies the following properties:

(1) ρ(x, C) ≤ ‖(C − x)+‖∞ = ess sup(C(ω)− x)+;

(2) ρ(x1 + x2, C1 + C2) ≤ ρ(x1, C1) + ρ(x2, C2);

(3) ρ(λx, λC) = λρ(x, C), for λ ≥ 0;

(4) x 7−→ ρ(x, C) is convex increasing,

x 7−→ x + ρ(x, C) is convex increasing for fixed C.

These properties are related to single-period coherent risk measures.

Siu et al. [61] proposes Bayesian risk measures for derivatives which is easy to be
implemented and satisfies the four axioms of coherent risk measures. Their approach
provides investors with more flexibility in measuring risks of derivatives, by using
Gerber Shiu’s option-pricing formula. The newly introduced concept—Bayesian
Esscher scenarios, takes both the subjective views and the market observation into
account.

It is more complex and difficult to consider dynamic risk measures. The corre-
sponding systematic axioms that dynamic risk measures should satisfy have been
tried to propose by lots of scholars. Each set of axiomatic characterizations has
its own reasonable part. But none becomes so influential as single-period coherent
risk measures. Multi-period models are still the subject of ongoing research. The
existing ones characterize dynamic risk measures from different angle. Here I just
illustrate two to bring some heuristics for further research.

Wang [70] proposed likelihood-based risk measures and gave the corresponding
structure form. This kind of risk measures satisfies six properties: continuity, risk
separability, consistency, stationarity, future independence and timing indifference.
But Wang dees not assume translation invariance. Therefore the corresponding class
of risk measures need not to be coherent nor convex.

Riedel [56] considered the changes of a position and availability of new infor-
mation. Changes in the position are to be taken into account by recalculating the
(stochastic) present value of future payments. Information is processed via updating
in a Bayesian way every single probability measure in the set of generalized scenar-
ios. He assumed that a dynamic measures should satisfy the following conditions:
independence of the past, adaptedness, monotone and predictable translation in-
variance. In addition to these four conditions, a coherent risk measure should be
homogenous and subadditivity. Riedel showed that every dynamic risk measure that
satisfies the axioms of coherence, relevance and dynamic consistence can be repre-
sented as the maximal expected present value of future losses where expectations
are taken with respect to a set of probability measures.

15



6 Conclusion

The importance of a risk measure is in its ability to differentiate between differ-
ent types of risk, its ability to accurately and consistently compare the severity of
different risk portfolio, and its ability to be easily understood and applied. VaR
does not take into account the severity of of an incurred damage event and fails
to stimulate diversification. It will lead to disastrous results when used to measure
risk in most financial situations. As a response to these deficiencies, Artzner et al.
first introduced the notion of coherent risk measures and put forward the axioms a
reasonable risk measure has to satisfy. This set of axioms has been widely accepted
and regarded as a landmark in the field of risk theory. Since then, researches on
the basis of coherent risk measures have been carried on. Convex and expectation-
bounded risk measures were put forward. Expected shortfall is proposed as a natural
coherent alternative to VaR. At the same time, it enjoys the properties of continuity
and monotonicity in the confidence level. Moreover, it has efficient estimator and
the corresponding portfolio optimization problem can be solved by linear program-
ming methods. Other different classes of (coherent) risk measures with their own
properties are also constructed.

There also arise lots of related problems, for example, the relationship between
coherent risk measures and other financial theories and how to choose proper risk
measures in practice when we have so many choices. While optimizing a portfolio
or allocating risk capital by companies as well as by regulators, we will want to
known which is the best: variance, VaR or some other coherent risk measures, the
relationship of efficient frontiers obtained by solving the portfolio selection prob-
lem under these measures or the principle of allocating capital among portfolios.
Goovaerts et al. [39] examine properties of risk measures that can be considered
to be in line with some “best practice” rules in insurance, and argue that so-called
coherent risk measures lead to problems. Financial risk include market risk, credit
risk, operation risk and so on. Each kind of risk has its own distinctive characters.
Furthermore, newer financial instruments surface in the capital market every day.
It is still great challenges to properly and effectively measure these risks. Compared
to single-period risk measures, dynamic risk measures are more complicate and dif-
ficult. The corresponding axiomatic characterizations are still an ongoing research.
On the fast developing topic of risk measurement, much work has already been done,
however, more further researches still need to be carried on.

References

[1] Acerbi, C., Spectral measures of risk: a coherent representation of subjective
risk aversion, Journal of Banking & Finance, 26(2002), 1505-1518.

[2] Acerbi, C., Nordio, C., and Sirtori, C., Expected shortfall as a tool for financial
risk management, Working paper, http://www.gloriamundi.org, 2001.

16



[3] Acerbi, C., and Simonetti P., Portfolio optimization with spectral measures of
risk, Working paper, http://www.icer.it/workshop, 2002.

[4] Acerbi, C., and Tasche, D., On the coherence of expected shortfall, Journal of
Banking & Finance, 26(2002), 1487-1503.

[5] Alexander, C. (Ed.), Mastering risk, Financial Times Prentice Hall, London,
2001.

[6] Andersson, F., Mausser, H., Rosen, D., and Uryasev, S., Credit risk optimiza-
tion with conditional value-at-risk criterion, Mathematical Programming, Ser.
B 89(2001), 273-291.

[7] Artzner, P., Application of coherent risk measures to capital requirements in
insurance, North American Actuarial Journal, 3(1999), 11-25.

[8] Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D., Thinking coherently,
Risk, 10(1997), 68-71.

[9] Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D., Coherent measures of
risk, Mathematical Finance, 9(1999), 203-228.

[10] Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D., Risk manage-
ment and capital allocation with coherent measures of risk, Working paper,
http://www.math.ethz.ch/finance, 2000.

[11] Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D., Ku, H., Coherent multi-
period risk adjusted values, http:// www.math.ethz.ch/finance, 2001.

[12] Balbás, A., Garrido J., and Mayoral S., Coherent risk measures in a dynamic
framework, Working paper, http://pascal.iseg.utl.pt/ cemapre, 2002.

[13] Basel Committee on Banking Supervision, Capital requirements and bank be-
havior: the impact of the Basel accord, Working Paper, BIS, Basel, 1, 1999.

[14] Basel Committee on Banking Supervision, The new Basel capital accord, con-
sultative document, BIS, Basel, January, 2001.

[15] Bell, D., Risk, return and utility, Management science, 41(1995), 23-30.

[16] Brachinger, H. W., and Weber, M., Risk as a primitive: a survey of measures
of perceived risk, Operations Research - Spektrum, 19(1997), 235-250.

[17] Brachinger, H. W. Measurement of risk. In: Derigs, U. (Ed.), Optimization and
Operations Research, Eolss publishers Co Ltd, 2002, 1119-1137.

[18] Bredow, H. R., Value at risk, expected shortfall, and marginal risk contribution,
www.wifak.uni-wuerzburg.de/wilan/wifak/bwl, 2002.

[19] Butsic, R. P., Solvency measurement for risk-based capital apphcat ons, Journal
of Risk and Insurance, 61(1994), 656-690.

[20] Carr, P., Geman, H., and Madan, D., Pricing and hedging in incomplete mar-
kets, Journal of Financial Economics, 62(2001), 131-168.
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[23] Cvitanić, J., and Karatzas L., On dynamic measures of risk, Finance and
Stochastics, 3(1999), 451-482.
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