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Abstract

The paper is concerning about the basic optimization problem of
projecting a point onto a convex set. We present a class of methods
where the problem is reduced to a sequence of projections onto the
intersection of several balls. The subproblems are much simpler and
more tractable, but the main advantage is that, in so doing, we can
avoid solving linear systems completely and thus the methods are very
suitable for large scale problems. The methods have been shown to
have nice convergence properties under Slater’s constraint qualifica-
tion.
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1 Introduction

In this paper we present a class of methods for solving the optimization
problem of projecting a point onto a special kind of convex set:

Minimize ‖x− a‖2

subject to x ∈ Ei := {x|gi(x) ≤ 0}
i = 1, 2, . . . ,m,

(1)

where each gi is a continuously differentiable strictly convex function and ‖.‖
is the 2-norm. The class of algorithms presented here is a generalization of
the algorithms in [Lin, Han, 2003] which solve the special case of Problem
(1) where each Ei is an ellipsoid. The main idea is to replace a convex
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set by balls. More specifically, we solve the problem by iteratively doing
projection on the intersection of several balls. There are several advantages
for this approach. First, the subproblem is much simpler and can be solved
very efficiently. Second, these algorithms can avoid solving linear systems;
therefore, they are very suitable for large scale problems.

In Section 2 we describe the class of methods and in Section 3 we study
their convergence properties. Then we discuss how to solve the subprob-
lem in Section 4. The major focus of this paper is to present this novel
idea. There are still some implementation issues to be solved which will
be addressed in future work. However, we did implement the algorithm
for solving the special case where each Ei is an ellipsoid and the numerical
results presented in [Lin, Han, 2003] shows that this idea has great poten-
tial. All discussion is limited to the Rn space. For a set S in Rn we use
∂S and int(S) to denote its boundary and interior, respectively. We also
use R++ to denote the set of positive real numbers and Rm

+ to denote all
m-vectors with nonnegative components. Throughout the paper we assume
that E = ∩m

i=1Ei satisfies the Slater condition: E has nonempty interior, or
equivalently in this case, E has more than one point. We also use A(x) to
denote the active index set at x for Problem (1).

2 The Class of Algorithms

The class of algorithms we present here are iterative and in each of them we
generate a sequence of feasible points {xk} which will be shown to converge
to the unique optimal solution. Having a point xk at the k-th iteration, we
first solve a subproblem of the form:

Minimize ‖x− a‖2

subject to x ∈ Bi(xk) i = 1, 2, . . . ,m
(2)

where each Bi(xk) is a ball approximation to the convex set Ei at xk. Let yk

be the solution of this subproblem. Generally yk may not be feasible to the
original problem and therefore, we apply a feasibility-restoration procedure
to yk to produce the next feasible point xk+1. To give a clear presentation
of our methods, we explain how to generate the balls Bi(xk) and how to
carry out the feasibility-restoration procedure in the following subsections.

2.1 Ball Approximation

Given a general convex set M = {x| g(x) ≤ 0} with g(x) being continu-
ously differentiable and strictly convex, for any point z ∈ M we consider a
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ball BM (z) which can be viewed as a local approximation to M at z. Some
properties are needed for this set-mapping BM (z). For simplicity we study
those properties in terms of its center c(z) and radius γ(z), thus the ball
BM (z) is given by BM (z) := {x : ‖x− c(z)‖ ≤ γ(z)}. The center mapping,
c : M −→ Rn, and the radius mapping, γ : M −→ R++, are required to
satisfy the following conditions:

R1. Both c and γ are continuous mappings defined on M .

R2. If z ∈ int(M), then z ∈ int(BM (z)).

R3. If z ∈ ∂M , then z ∈ ∂BM (z), and c(z) = z − λ5 g(x) for some fixed
λ > 0.

It is not particularly difficult to construct mappings that can satisfy the
above requirements and the class of methods differ in the choices of them.
We give an example below:

For any two positive numbers λ and β,

c(z) = z − λ5 g(z)

γ(z) = λ‖ 5 g(z)‖+ β
√
−g(z).

2.2 Feasibility-Restoration Procedure

For any closed convex set M and two points u and v with u ∈ M , we define
a step τ(u, v,M) as:

τ(u, v, M) = min{τ : v + τ(u− v) ∈ M and τ ∈ [0, 1]}.

Therefore, the point v + τ(u, v,M)(u− v) is the closest point of M to v on
the line-segment [u, v]. For the set E in our problem,

τ(u, v, E) = max{τ(u, v, Ei)|i = 1, 2, . . . ,m}.

We have the following lemma regarding the continuity of τ(·, ·, S).

Lemma 2.1 If M is defined as {x|g(x) ≤ 0} for some continuously differ-
entiable strictly convex function g, then τ(·, ·,M) is continuous at any (u, v)
where u ∈ M , v ∈ Rn and u 6= v.

Proof: If g(v) < 0, then for any v̄ sufficiently close to v we have g(v̄) <
0, thus τ(ū, v̄,M) = 0 = τ(u, v,M) for any ū ∈ M . Hence τ(·, ·,M) is
continuous at (u, v).
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Now suppose g(v) ≥ 0. We must have g(v + τ(u, v,M)(u − v)) = 0.
If τ(u, v,M) is not continuous at (u, v), then there exist {vk} ⊂ Rn and
{uk} ⊂ M such that vk → v, uk → u and τ(uk, vk,M) does not converge
to τ(u, v,M). Since {τ(uk, vk,M)} is bounded, by passing to a subsequence
if necessary, we can assume that τ(uk, vk,M) → τ̄ 6= τ(u, v, M). If v ∈
M c, then when k is sufficiently large, we have vk ∈ M c. If v ∈ M , then
τ(u, v, M) = 0, hence there are infinitely many k such that vk /∈ M . By
further passing to a subsequence if necessary, we can also assume {vk} ⊂ M c.
Since g(vk) > 0 and g(uk) ≤ 0, we have g(vk + τ(uk, vk,M)(uk − vk)) = 0.
Hence by letting k go to ∞, we get g(v + τ̄(u − v)) = 0. Obviously τ̄ ∈
[0, 1]. According to the definition of τ(·, ·,M), we have 0 ≤ τ(u, v,M) <

τ̄ ≤ 1. Since g is strictly convex, g(v + τ(u,v,M)+τ̄
2 (u − v)) < 0. Thus

when k is sufficiently large, g(vk + τ(u,v,M)+τ̄
2 (uk − vk)) < 0, which leads

to τ(uk, vk,M) ≤ τ(u,v,M)+τ̄
2 . Letting k go to ∞, we get τ̄ ≤ τ(u,v,M)+τ̄

2
which contradicts τ(u, v,M) < τ̄ . So τ(·, ·,M) must be continuous at (u, v).
Q.E.D.

Therefore the mapping τ(·, ·, E) is continuous on the set {(x, y) : x ∈
E, y ∈ Rn and x 6= y}. We also need the following mapping T : E×Rn → E:

T (x, y) = y + τ(x, y, E)(x− y).

It follows from the continuity of τ(·, ·) that T (·, ·) is also continuous on the
set {(x, y) : x ∈ E, y ∈ Rn and x 6= y}.

In the class of algorithms we are going to present, having xk, yk and a, we
use the mapping T (·, ·) to generate the next feasible estimate xk+1. Further-
more, if x 6= y and y−x is a feasible direction of E at x, then τ(x, y, E) < 1.
This follows directly from the definition of a feasible direction: a vector d is
a feasible direction of a set S at x if x + λd ∈ S for all λ ∈ [0, ε] with some
ε > 0. The above continuity and less-than-one properties of the mapping τ
will be needed in our convergence analysis.

2.3 Description of the Algorithms

We now describe the class of algorithms. At an iteration of the algorithm,
having a feasible point x ∈ E as an estimate of the solution, we compute a
better estimate x̄ by first generating a ball Bi(z) := {z : ‖z−ci(x)‖ ≤ γi(x)}
for each convex set Ei as described in Subsection 2.1. Then we solve the
following projection problem:

Minimize ‖z − a‖2

subject to z ∈ Bi(x), i = 1, 2, . . . ,m.
(3)
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When the solution y of the above subproblem is infeasible to the original
problem, we compute a feasible point v on the line segment [T (x, y), βT (x, y)+
(1 − β)x] where β is some prespecified constant from (0, 1]. This can be
achieved by some variants of the bisection method. When y is feasible, we
just simply set v = y. Since we are interested in points closer to a, we
can improve v further by choosing our next estimate x̄ from [v, T (a, v)] and
idealy, we want x̄ to be as close to T (a, v) as possible.

The algorithm can now be summarized as follows:

1. Choose a constant β ∈ (0, 1]. Start from a feasible point x0.

2. At the k-th iteration, having a feasible point xk, we do the following:

(i) For each convex set Ei, generate a ball Bi(xk) which satisfies the
three conditions in Subsection 2.1.

(ii) Find the projection yk of the given point a onto ∩m
i=1Bi(xk).

(iii) If yk ∈ E, then set vk = yk; otherwise choose vk to be any point
in [T (yk, xk), βT (yk, xk) + (1− β)xk].

(iv) Compute a new estimate xk+1 ∈ [vk, T (a, vk)].

3 Convergence Analysis

We first establish that our subproblems are well defined and satisfy the
Slater condition when the original problem does. For simplicity, let B(x)
denote the intersection ∩m

i=1Bi(x). We note here an interesting fact which
will be used very often in the following discussion: E and B(x) have the same
feasible direction cone at the point x. This is because that for i ∈ A(x),
Ei and Bi(x) have the same normal vector gi(x) and for i /∈ A(x), x is an
interior point for both Ei and Bi(x).

Lemma 3.1 If there exists y ∈ int(E) = {x|gi(x) < 0 i = 1, 2, . . . ,m},
then for any x ∈ E, int(B(x)) 6= ∅.

Proof. If A(x) = ∅, then gi(x) < 0 for i = 1, 2, . . . ,m. Thus we have
x ∈ int(Bi(x)) for all i, hence x ∈ int(B(x)).

If A(x) 6= ∅, then x 6= y. Letting s = y − x, we will show that for
sufficiently small ε > 0, point x + εs is in int(Bi(x)) for all i, so that it
lies in int(B). This holds for each i /∈ A(x), since by requirement R2, x
lies in int(Bi(x)). Now consider any i ∈ A(x). By the definition of s and
the convexity of gi(·), we have sT 5 gi(x) ≤ gi(y) − gi(x) < 0. Since by
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requirement R3, x− zi(x) has the same direction as 5gi(x), it follows that
sT (x − zi(x)) < 0. From this together with the consequence x ∈ ∂Bi(x) of
R3, it follows as desired that x + εs is in int(Bi(x)) for sufficiently small
ε > 0. Q.E.D.

We now establish a key lemma that shows the point y obtained from the
subproblem (3) is, indeed, a substantial improvement over the current point
x.

Lemma 3.2 For any x ∈ E and the solution y of the subproblem (3),

‖x− a‖2 ≥ ‖y − a‖2 + ‖x− y‖2.

Proof: If any two of x, y and a are the same, the conclusion is obviously
true.

If they are three distinct points, then they form a triangle. If a− y and
x − y make an accute angle, then y can not be the optimal solution of the
subproblem (3) since y + t(x − y) is better for small t > 0. Therefore the
angle between a − y and x − y is greater than or equal to π

2 , hence the
conclusion holds. Q.E.D.

Using the same notation as in Subsection 2.3, we know that the feasible
point v lies on the line-segment [x, y], therefore, by the convexity of the
objective function we have

‖x− a‖ ≥ ‖v − a‖ ≥ ‖y − a‖.

Moreover, the new point x̄ is a further improvement over v and hence we
also have

‖x− a‖ ≥ ‖v − a‖ ≥ ‖x̄− a‖.

Consequently, both {‖xk − a‖} and {‖vk − a‖} are nonincreasing and have
the same limit. We summarize the above results in the following lemma.

Lemma 3.3 The following statements are true for the three sequences {xk}, {vk}
and {yk}:
(1) ‖xk − a‖ ≥ ‖vk − a‖ ≥ ‖yk − a‖.
(2) ‖xk − a‖ ≥ ‖vk − a‖ ≥ ‖xk+1 − a‖.
(3) lim ‖xk − a‖ = lim ‖vk − a‖.

We also need the following lemma about the relationship between the se-
quences {yk} and {xk}.

Lemma 3.4 lim(xk − yk) = 0.
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Proof: By Lemma 3.2 we only need to show lim(‖xk−a‖2−‖yk−a‖2) = 0.
We prove it by contradiction. Assume that this is not true, then there
exists a subsequence {nk} such that lim ‖xnk − a‖ > lim ‖ynk − a‖. Because
both {xk} and {yk} are bounded, we may assume, by extracting a further
subsequence if necessary, lim xnk = x∗ and lim ynk = y∗ for some points
x∗ ∈ E and y∗ ∈ Rn. Of course, x∗ 6= y∗. We first show that the step
τ(x∗, y∗, E) is strictly less than 1. It follows from the continuity of the
ball mapping Bi(x) and ynk ∈ B(xnk) that y∗ ∈ B(x∗). Therefore the
nonzero vector y∗ − x∗ is a feasible direction of B(x∗) at x∗, hence it is also
a feasible direction of E at x∗. Thus the step τ(x∗, y∗, E) < 1 and therefore
T (x∗, y∗) 6= x∗. It follows from ‖x∗ − a‖ > ‖y∗ − a‖, τ(x∗, y∗, E) < 1 and
the convexity of the objective function that ‖T (x∗, y∗) − a‖ < ‖x∗ − a‖.
By the continuity of the mapping T (·, ·) at (x∗, y∗), we have T (xnk , ynk) →
T (x∗, y∗). Note that ‖T (xnk , ynk)− a‖ ≤ ‖xnk − a‖, so from Lemma 3.3 we
have ‖xnk+1 − a‖ ≤ ‖vnk − a‖ ≤ β‖T (ynk , xnk) − a‖ + (1 − β)‖xnk − a‖.
Letting nk go to ∞ we get ‖x∗ − a‖ ≤ β‖T (y∗, x∗)− a‖+ (1− β)‖x∗ − a‖.
This is a contradiction since we just showed that ‖T (y∗, x∗)−a‖ < ‖x∗−a‖.
Q.E.D.

The following lemma shows the close connection between Problem (1)
and the subproblem.

Lemma 3.5 A vector u∗ is the unique optimal solution of Problem (1) if
and only if u∗ ∈ E and u∗ is the optimal solution of the problem: min{‖x−
a‖ : x ∈ B(u∗)}.

Proof: This follows directly from comparing the Karish-Kuhn-Tucker con-
ditions of the two problems. Q.E.D.

The following lemma is a special case of the standard parametric opti-
mization. The results for much more general cases are contained in Propo-
sition 23 on page 120 in [Aubin, Ekeland, 1984] and the Maximum theorem
on page 116 in [Berge, 1997].

Lemma 3.6 Let {uk} be a sequence in E convergent to a point u∗. If for
each k, wk solves min{‖x−a‖ : x ∈ B(uk)} and lim wk = w∗, then the point
w∗ solves the problem min{‖x− a‖ : x ∈ B(u∗)}.

We now give our main convergence theorem below.

Theorem 3.7 The three sequences {xk}, {vk} and {yk} all converge to the
solution of Problem (1).
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Proof: It follows from Lemma 3.4 that all three sequences have the same
set of accumulation points because lim(xk − yk) = 0 and vk lies on the line-
segment [xk, yk]. Let u∗ be an accumulation point, we want to show that u∗

solves the problem. Let {nk} be a subsequence such that lim znk = lim ynk =
u∗. It follows from Lemma 3.6 that u∗ solves min{‖x− a‖ : x ∈ B(u∗)} and
by Lemma 3.5, the vector u∗ is optimal to the original problem. By the
strict convexity of the objective function, u∗ is the unique optimal solution.
It then follows from the boundedness of the three sequences that they all
converge to u∗. Q.E.D.

4 Projecting a point onto the intersection of sev-
eral balls

This section is basically a copy of the Section 4 of [Lin, Han, 2003]. The
only purpose of putting it here is to make this paper self-contained.

In this section we briefly discuss how to project a point onto the inter-
section of several balls, an operation needed for Step 2(ii) of our projection
algorithm. The problem can be expressed as

Minimize ‖x− a‖2

subject to x ∈ Bi := {x|‖x− ai‖2 ≤ r2
i } i = 1, 2, . . . ,m.

(4)

Letting B = ∩m
i=1Bi, we assume int(B) 6= ∅ and a /∈ B.

As usual, the Lagrangian function is defined as

L(x, λ) = ‖x− a‖2 +
m∑

i=1

λi(‖x− ai‖2 − r2
i )

= (1 +
m∑

i=1

λi)‖x−
a +

∑m
i=1 λiai

1 +
∑m

i=1 λi
‖2 − ‖a +

∑m
i=1 λiai‖2

1 +
∑m

i=1 λi

+
m∑

i=1

λi(‖ai‖2 − r2
i ) + ‖a‖2,

where λ ∈ Rm
+ ; the dual function is

g(λ) = inf
x∈Rn

L(x, λ)

= L(
a +

∑m
i=1 λiai

1 +
∑m

i=1 λi
, λ)

= −‖a +
∑m

i=1 λiai‖2

1 +
∑m

i=1 λi
+

m∑
i=1

λi(‖ai‖2 − r2
i ) + ‖a‖2,
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and thus the dual problem is defined as

Maximize g(λ)
subject to λ ∈ Rm

+ .

The primal problem is a convex programming problem satisfying Slater’s
condition, so strong duality holds. Let x∗ denote the primal optimal solution
which is unique due to the strict convexity of the primal objective function,
λ∗ denote a dual optimal solution. Since strong duality holds, we have

‖x∗ − a‖2

= g(λ∗)
= inf

x∈Rn
L(x, λ∗)

≤ L(x∗, λ∗)

= ‖x∗ − a‖2 +
m∑

i=1

λ∗i (‖x∗ − ai‖2 − r2
i )

≤ ‖x∗ − a‖2,

where the last inequality is due to the fact that x∗ is a feasible point of the
primal problem and λ∗ ≥ 0. Thus we get

L(x∗, λ∗) = inf
x∈Rn

L(x, λ∗) = L(
a +

∑m
i=1 λ∗i ai

1 +
∑m

i=1 λ∗i
, λ∗).

Note L(x, λ∗) is a strictly convex function of x, so we must have

x∗ =
a+

∑m

i=1
λ∗i ai

1+
∑m

i=1
λ∗i

.

From the above discussion, we see that in order to find x∗ we only need
to solve the dual problem. The dual problem is a simple convex program-
ming problem with only nonnegative constraints and readily computable
gradients and Hessians. A lot of standard algorithms can solve this problem
very efficiently. For example, the nonmonotone spectral projected gradi-
ent method proposed in [Birgin, Mart́inez, Raydan, 2000] is very fast and
only involves simple arithmetic computation, i.e., no matrix-factorization is
needed. In [Lin, Han, 2003] we use this method to solve the ball-constrained
subproblem.

Due to its special structure, the primal problem can also be attacked
directly, for example, by interior-point methods. “SeDuMi”[Sturm, 1999] is
probably the best noncommercial software for doing this job.

Both the nonmontone spectral projected gradient method and the interior-
point methods are excellent algorithms, but we don’t think they fully exploit
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the special structure of this ball-constrained subproblem. It will not be sur-
prising that a special method dedicated to this problem can outperform
these general methods.

5 Comments and Future Research

We have presented a new idea for projecting a point onto a special kind
of convex set. This idea, based on approximating a convex set by several
balls, can avoid solving linear systems. Therefore it can be expected to be
very economic in terms of memory usage. The numerical experiments in
[Lin, Han, 2003] demonstrates this property for the case when the convex
set is the intersection of several ellipsoids. For future research, we are trying
to solve the implementation issues and in particular to develop a dedicated
method of solving the subproblem. We are also interested in generalizing
this idea to other problems.
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