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ON A VOLUME FLEXIBLE STOCK-DEPENDENT
INVENTORY MODEL
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ABSTRACT. An inventory model of a volume flexible manu-
facturing system for a deteriorating item is developed, taking a
stock -dependent demand rate. It is assumed that the demand
rate remains stock-dependent for an initial period after which
a uniform demand rate follows as the stock comes down to a
certain level. The unit production cost is taken to be a function
of the finite production rate which is treated to be a decision
variable. The mathematical expression for the average profit
function is derived and it is maximized subject to the differ-
ent constraints of the system using Zoutendijk’s Method of
constrained optimization, the algorithm of which is given. The
solution procedure is illustrated with the help of a numerical ex-
ample. Using the result of the example, sensitivity of the near
optimal solution to changes in the values of the parameters of
the system is analyzed.

Key words and phrases : volume flexible manufacturing system,
deteriorating item, stock-dependent demand rate, constrained
optimization, sensitivity anlysis.

¶¶ Professor, Dept. of Maths. Jadavpur University, Cal- 32, India.

¶ Dept. of Maths. Bhangar Mahavidyalaya, University of Calcutta, India.

197



Introduction

In the Classical Economic Production Lot Size(EPLS) model, the pro-
duction rate of a machine is regarded to be pre-determinded and inflexible1.
Alder and Nanda2, Sule3,4, Axsater and Elmaghraby5, Muth and Spearmann6

extended the EPLS model to situations where learning effects would induce
an increase in the production rate. Proteus7, Rosenblat and Lee8 and Cheng9

considered the EPLS model in an imperfect production process in which the
demand would exceed the supply.

Schweitzer and Seidmann10 adopted, for the first time, the concept of
flexibility in the machine production rate and discussed optimization of pro-
cessing rates for a FMS (flexible manufacturing system). Obviously, the
machine production rate is a decision variable in the case of a FMS and
then the unit production cost becomes a function of the production rate.
Khouja and Mehrez11 and Khouja12 extended the EPLS model to an im-
perfect production process with a flexible production rate. Silver13, Moon,
Gallego and Simchi-Levi14 discussed the effects of slowing down production
in the context of a manufacturing equipment of a family of items, assuming a
common cycle for all the items. Gallego15 extended this model by removing
the stipulation of a common cycle for all the items.

But the above studies did not consider the demand rate to be variable.
It is a common belief that large piles of goods displayed in a supermarket
lead the customers to buy more. Silver and Peterson16 and Silver17 have
also noted that sales at the retail level tend to be proportional to the in-
ventory displayed. Baker and Urban18 and Urban19 considered an inventory
system in which the demand rate of the product is a function of the on-hand
inventory. Goh20 discussed the model of Baker and Urban18 relaxing the as-
sumption of a constant holding cost. Mandal and Phaujder21 then extended
this model to the case of deteriorating items with a constant production rate.
Datta and Pal22 presented an inventory model in which the demand rate of
an item is dependent on the on-hand inventory level until a given inventory
level is achieved, after which the demand rate becomes constant. Giri , Pal
, Goswami and Chaudhuri24 extended the model of Urban[19] to the case
of items deteriorating overtime. Ray and Chaudhuri25 discussed an EOQ
(economic order quantity) model with stock-dependent demand, shortage,
inflation and time discounting of different costs and prices associated with
the system. Ray, Goswami and Chaudhuri26 studied the inventory problem
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with a stock-dependent demand rate and two levels of storage, rented ware-
house (RW) and own warehouse (OW). Giri and Chaudhuri27 extended the
model of Goh20 to cover an inventory of a deteriorating item and discussed
both the case of nonlinear time-dependent and stock-dependent holding costs.

Volume flexibility is a major component in a FMS. The manufacturing
flexibility which is capable of adjusting the production rate with the vari-
ability in the market demand is known as volume flexibility28. In the present
paper, we consider a volume flexible manufacturing system for a deteriorating
item with an inventory-level-dependent demand rate. In reality, the demand
rate remains stock-dependent for some time and then becomes a constant
after the stock falls down to a certain level. Several factors like limited num-
ber of potential customers and their goodwill, price and quality of the goods,
locality of shop, etc. can be accounted for the change in the demand pattern.

Fundamental Assumptions and Notations

Assumptions:

1. The inventory system involves only one item and is a self-production
system.

2. Lead time is zero.

3. No shortages are permitted.

4. The time-horizon is infinite.

5. The production cost per unit item is a function of the production rate.

6. The production rate is considered to be a decision variable.

Notations:

P - The production rate per unit time ;

I(t) - On-hand inventory at time ‘t’ ≥ 0 ;

R(I) - Demand-rate function varying with I(t) ;
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S0 - The stock-level, beyond which the demand rate becomes constant;

θ - Constant deterioration rate of the On-hand inventory,0 < θ < 1;

Ch - Holding cost per unit per unit time;

Cs - Setup cost per production run;

η(P ) - The production cost per unit item ;

Sp - Salvage cost per unit item;

T - The duration of the production cycle;

∇ - Gradient operator.

Formulation of the Model

We consider a self-manufacturing system in which the items are manufac-
tured in a machine and the market demand is filled by these manufactured
items. The demand rate is dependent on the on-hand inventory down to a
level S0, beyond which it is assumed to be a constant, i.e.,

R(I) = D + γI(t), I > S0

= D + γS0, 0 ≤ I ≤ S0,

where D and γ are non-negative constants and D < P . The production cost
per unit is

η(P ) = r +
g

P
+ αP

where r, g, α are all positive constants. This cost is based on the following
factors:

1. The material cost r per unit item is fixed.

2. As the production rate increases, some costs like labour and energy
costs are equally distributed over a large number of units. Hence the
production cost per unit(g/P ) decreases as the production rate(P ) in-
creases.
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3. The third term(αP ), associated with tool/die costs, is proportional to
the production rate.

The production cycle begins with zero stock. Production starts at t = 0
and the stock reaches a level S0 at time t = t1 after meeting demands.
The demand rate in the interval (0, t1) is (D+γS0). In the interval (t1,t2),
production continues uninterruptedly and the demand rate depends on the
instantaneous stock level. Production is stopped at time t = t2. The de-
mand rate continues to depend on the instanteneous inventory level until t =
t3 when the stock falls down to the level S0 again. The inventory falls to the
zero level at the end t = T of the production cycle. This cycle of production
is repeated over and over again. Therefore, the governing equations of this
model are

dI(t)

dt
+ θI(t) = P − (D + γS0), 0 ≤ t ≤ t1, I ≤ S0; (1)

with I(0) = 0 and I(t1) = S0;

dI(t)

dt
+ (θ + γ)I(t) = P −D, t1 ≤ t ≤ t2, I > S0; (2)

dI(t)

dt
+ (θ + γ) I(t) = −D, t2 ≤ t ≤ t3 , I > S0 (3)

with I(t3) = S0 ;

dI(t)

dt
+ θ I(t) = −(D + γ S0), t3 ≤ t ≤ T, I ≤ S0 (4)

with I(T ) = 0.

From equation (1), we have

∫ t
0 d(I eθs) = (P −D − γ S0)

∫ t
0 eθs ds,

i.e.,

I(t) =
(

P−D−γ S0

θ

)
(1− e−θt), 0 ≤ t ≤ t1. (5)

Now the condition I(t1) = S0 gives us
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P − D −γ S0

θ
(1 − e−θt1) = S0

⇒ e−θt1 = 1 − θ S0

P − D − γ S0
,

i.e.,

t1 = − 1

θ
ln

[
1 − θ S0

P − D − γS0

]
, (6)

where P > D + (θ + γ)S0.

Also from equation (2) , we have

∫ t
t1

d[I e(θ+γ)s] = (P −D)
∫ t
t1

e(θ+γ)s ds ,
i.e.,

I(t) =
(

S0 − P − D
θ + γ

)
e(θ+γ)(t1−t) +

(
P − D
θ + γ

)
, t1 ≤ t ≤ t2 . (7)

Therefore,

I(t2) =
(

S0 − P − D
θ + γ

)
e(θ+γ)(t1−t2) +

(
P − D
θ + γ

)
. (8)

Similarly, the equation (3) gives us

∫ t
t2

d[Ie(θ+γ)s] = −D
∫ t
t2

e(θ+γ)sds

⇒ I(t)e(θ+γ)t − I(t2)e
(θ+γ)t2 = − D

θ+γ
[e(θ+γ)t − e(θ+γ)t2 ]

⇒ I(t) = I(t2)e
(θ+γ)(t2−t) − D

θ+γ
[1− e(θ+γ)(t2−t)],

i.e.,

I(t) =
(

I(t2) + D
θ+γ

)
e(θ+γ)(t2−t) − D

θ + γ
, t2 ≤ t ≤ t3 (9)

Since I(t3) = S0, we have

S0 = [ I(t2) + D
θ+γ

] e(θ+γ)(t2−t3) − D
θ+γ

⇒ e(θ+γ)(t2−t3) = [ S0+D/(θ+γ)
I(t2)+D/(θ+γ)

]

⇒ t2 − t3 = 1
θ+γ

ln [ S0+D/(θ+γ)
I(t2)+D/(θ+γ)

] ,
i.e.,

t3 = t2 − 1

θ + γ
ln

[
S0+D/(θ+γ)

I(t2)+D/(θ+γ)

]
, (10)
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where I(t2) > S0 .

Again the equation (4) becomes

∫ t
t3

dI(Ieθs) = − (D + γS0)
∫ t
t3

eθs ds

⇒ I(t) eθt − S0 eθt3 = − (D+γ S0

θ
) ( eθt − eθt3)

⇒ I(t) = S0 eθ(t3−t) − D+γS0

θ
{ 1− eθ(t3−t)} ,

i.e.,

I(t) =
(

S0 + D+γS0

θ

)
eθ(t3−t) −

(
D+γS0

θ

)
, t3 ≤ t ≤ T. (11)

Now I(T ) = 0 implies

(S0 + D+γS0

θ
) eθ(t3−T ) − D+γS0

θ
= 0

⇒ eθ(t3−T ) = D+γS0

D+(γ+θ)S0
,

i.e.,

T = t3 − 1

θ
ln

[
D+γS0

D+(γ+θ)S0

]
. (12)

Let Inv1 , Inv2 , Inv3 , Inv4 be the total inventories in the intervals 0 ≤
t ≤ t1, t1 ≤ t ≤ t2, t2 ≤ t ≤ t3, t3 ≤ t ≤ T respectively. Then

Inv1 =
∫ t1
0 I(t) dt

=
∫ t1
0 (P−D−γS0

θ
) ( 1− e−θt) dt

= (P−D−γS0

θ2 ) ( θt1 + e−θt1 − 1);

Inv2 =
∫ t2
t1

I(t) dt

= { S0 − P−D
θ+γ

} e(θ+γ)t1
∫ t2
t1

e−(θ+γ)t dt + (P−D
θ+γ

)
∫ t2
t1

dt

= 1
(θ+γ)

{ S0− P−D
θ+γ

} { 1− e−(θ+γ)(t2−t1 }+ (P−D
θ+γ

)(t2− t1);

Inv3 =
∫ t3
t2

I(t) dt

= [I(t2) + D
θ+γ

]e(θ+γ)t2
∫ t3
t2

e−(θ+γ)tdt− ( D
θ+γ

)
∫ t3
t2

dt

= 1
(θ+γ)

{I(t2) + D
θ+γ

}{1− e(θ+γ)(t2−t3)} − ( D
θ+γ

)(t3 − t2);

Inv4 =
∫ T
t3

I(t)dt

= ( S0 + D+γS0

θ
)eθt3

∫ T
t3

e−θt dt− (D+γS0

θ
)
∫ T
t3

dt

= 1
θ2 (θS0 + D + γS0)( 1− eθ(t3−T ))− (D+γS0

θ
)(T − t3)
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= S0

θ
+ D+γS0

θ2 ln [ D+γS0

D+(γ+θ)S0
] , by (12).

The values of θ, S0 and (D +γS0) must be such that Inv4 >0 is satisfied.
Now the total deteriorated item (Id) is

Id = θ{
∫ t1
0 I(t) dt +

∫ t2
t1

I(t) dt +
∫ t3
t2

I(t) dt +
∫ T
t3

I(t) dt}
= θ(Inv1 + Inv2 + Inv3 + Inv4).

Therefore, the total demand in (0, T ) becomes DT = (Pt2 − Id). Then
the average profit during time (0, T ) takes the form

π(P, t2) =
1

T
[(Pt2 − Id)Sp − {Cs + Ch(Inv1 + Inv2 + Inv3 + Inv4)

+(r +
g

P
+ αP )Pt2}] (13)

Therefore, we have to Maximize π(P, t2);

subject to the constraints :

D + (θ + γ)S0 − P < 0 ,

−Inv1 < 0 ,

−Inv2 < 0 ,

−Inv3 < 0 ,

−I(t2) + S0 < 0 ,

−t2 + t1 < 0 .

The condition D+(θ+γ)S0−P < 0 ⇒ 0 < θS0

P−D−γS0
< 1 which is necessary

for the value of t1 in eqn. (6) to be real.

The three conditions −Inv1 < 0, −Inv2 < 0 and −Inv3 < 0 ensure that
Inv1, Inv2 and Inv3 must be positive.

The condition −I(t2)+S0 < 0 implies that I(t2) , the inventory level at time
t2 , is higher than S0.

The condition −t2 + t1 < 0 ensures that t2 is greater than t1 .
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This problem can be solved by Zoutendijk′s Method23 whose Algorithm
is discussed below.

General Problem : Minimize {−π(X̄)}
subject to the constraints : Gj(X̄) < 0, where X̄ ∈ Rn , j = 1, 2...........m.

Algorithm:

1. Start with an initial feasible point X̄1, evaluate π(X̄1) and Gj(X̄1),
j = 1, 2, ........m. Set the iteration number as i = 1.

2. If Gj(X̄i) < 0, j = 1, 2, .......,m. (i.e., X̄i is an interior feasible point),
set the current search direction as S̄i = −∇π(X̄i). Normalize S̄i in a
suitable manner.

3. Find a suitable step length λi along the direction S̄i and obtain a new
point X̄i+1 as X̄i+1 = X̄i + λiS̄i .

4. Evaluate the objective function π(X̄i+1).

5. Test for the convergence of the method . If | π(X̄i)−π(X̄i+1)
π(X̄i)

|≤ ε where

ε is a preassigned small positive quantity, terminate the iteration by
taking X̄opt ≈ X̄i+1. Otherwise, go to next step.

6. Set the new iteration number as i = i + 1 , and repeat from step 2
onwards.

Numerical Example

We take the parameter values as D = 50, θ = 0.05,γ = 0.1, S0 = 100, Cs

= 300, Ch= 0.1, Sp = 6.0, r = 1.0, g = 250, α = 0.01 in appropriate units.
We obtain the optimum results t∗1 = 1.258883, t∗2 = 6.696204, t∗3 = 10.07596,
T ∗ = 11.67682, P ∗= 141.9617, π∗ = 41.93613.

Sensitivity Analysis

Using the same numerical example, the sensitivity of each variable t∗1 , t∗2,
t∗3, T ∗, P ∗ and π∗ to changes in the values of each of the parameters θ, γ, S0,
Cs, Ch, Sp, r, g, α is examined which is shown in Table 1 . In the proposed
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model, t∗1 changes by 10.28 % , 03.27 % , 06.64 % , -12.67 % respectively with
50 % , 20 % , -20 % , -50 % changes in the value of θ. t∗2 changes by 1787.29
% , 44.52 % , -24.76 % , -37.03 % respectively with 50 % , 20 % , -20 % , -50
% changes in the value of γ. t∗3 changes by -14.14 % , -06.30 % , 00.46 % ,
11.70 % respectively with 50 % , 20 % , -20 % , -50 % changes in the value of
S0. T ∗ changes by 39.74 % , 14.36 % , -14.63 % , -36.63 % respectively with
50 % , 20 % , -20 % , -50 % changes in the value of Cs . π∗ changes by -92.74
% , -38.01 % , 39.89 % , 106.62 % , respectively with 50 % , 20 % , -20 % ,
-50 % changes in the value of ′r′. Similarly P ∗ changes by (152.99 % , 11.64
% , -04.35 % , -04.46 % ); (23.40 % , 09.38 % , -10.98 % , -04.01 % ); (-22.42
% , -11.60 % , 13.83 % , 64.83 % ) for 50 % , 20 % , -20 % , -50 % changes
in the value of Sp , g and α respectively. In a similar manner, the changes in
the solution variables for changes in other parameters can be computed. It
is seen that t∗1, t∗2 , t∗3 , T ∗, P ∗ and π∗ are moderately sensitive to changes in
the parameters θ, γ, S0, Cs, Ch, Sp, r, g, α. P ∗ is insensitive to changes in
S0; but P ∗ is fairly sensitive to the changes in the parameters Sp, g and α.
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Table 1: Sensitivity Analysis

Changing t∗1 t∗2 t∗3 T ∗ P ∗ π∗

parameter
in(%)
θ +50 1.3883 4.8833 7.0585 8.6290 135.8456 24.6350

+20 1.3001 5.6528 8.4405 10.0290 139.9558 34.3048
-20 1.3424 9.5264 13.6156 15.2291 136.5070 50.7171
-50 1.0993 123.4375 130.5588 132.1917 152.2191 74.5473

γ +50 1.1375 126.3767 130.3652 131.8474 155.4316 73.7782
+20 1.2217 9.6771 13.4629 15.0141 146.3745 50.7842
-20 1.2478 5.0385 8.0524 9.7062 140.6663 34.5639
-50 1.2790 4.2163 7.0012 8.7415 135.7072 25.1930

S0 +50 2.0531 6.2040 8.6511 10.8351 141.8735 44.6257
+20 1.5592 6.4515 9.4408 11.2882 141.9970 42.8400
-20 0.9817 6.5000 10.1227 11.4565 141.5000 41.1946
-50 0.5808 6.9485 11.2549 12.1440 142.3439 40.5015

Cs +50 1.3704 10.7304 14.7161 16.3170 135.4992 30.9589
+20 1.2917 8.0744 11.7522 13.3530 139.9434 37.1254
-20 1.2130 5.3606 8.3671 9.9679 144.9651 47.4783
-50 1.2120 3.6595 5.7987 7.3996 145.0331 57.8428

Ch +50 1.2618 5.2080 8.0330 9.6339 141.9800 32.8058
+20 1.2744 6.0152 9.1276 10.7284 140.9916 38.0860
-20 1.2554 7.7621 11.4545 13.0554 142.1793 46.1549
-50 1.2076 10.2054 14.5382 16.1390 145.3308 53.5354

Sp +50 0.6465 291.8469 299.8896 301.4904 217.1918 394.8986
+20 1.0419 270.1158 276.0579 277.6588 158.4912 147.9354
-20 1.3651 4.5496 6.8570 8.4579 135.7813 -39.8138
-50 1.3678 3.2075 4.7591 6.3600 135.6360 -156.0006

r +50 1.3253 4.8981 7.4475 9.0483 137.9794 3.0430
+20 1.2890 5.8232 8.8309 10.4318 140.1007 25.9964
-20 1.2364 8.2314 12.0896 13.6905 143.4028 58.6627
-50 1.1649 15.8558 20.9309 22.5317 148.3684 86.6486
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Changing t∗1 t∗2 t∗3 T ∗ P ∗ π∗

parameter
in(%)

g +50 0.8876 3.2432 5.96640 7.5672 175.1753 -18.9558
+20 1.0781 4.6696 7.71267 9.3135 155.2737 15.3291
-20 1.5664 13.6505 17.5322 19.1331 126.3721 73.6078
-50 1.3561 81.9617 86.8966 88.4974 136.2690 137.1216

α +50 2.1010 6.5581 8.5022 10.1030 110.1384 -5.0713
+20 1.5884 6.4549 9.0780 10.6788 125.4862 20.7892
-20 1.0093 8.1195 12.6550 14.2559 161.5913 68.1260
-50 0.5831 292.7949 301.3344 302.9353 233.9999 153.9163
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