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A STOCHASTIC EOQ POLICY IN A FAMILY OF
COLD-DRINKS -FOR A RETAILER

Shibsankar Sana ¶

ABSTRACT. This paper presents a stochastic EOQ ( economic
order quantity ) model both for discrete and continuous distri-
bution of demands of multi-item products. A general character-
ization of the optimal inventory policy is developed analytically.

1. Introduction

A well-known stochastic extension of the classical EOQ ( economic order
quantity ) model bases the re-order decision or the stock level ( see Hadley
and Whitin[1], Wagner[2] ). Models of storage systems with stochastic supply
and demand have been widely analysed in the models of Faddy[3], Harrison
and Resnick[4], Miller[5], Moran[6], Pliska[7], Meyer, Rothkopf and Smith[8],
Teisberg[9], Chao and Manne[10], Hogan[11] and Devarangan and Weiner[12].

In this paper, we present a general characterization of the optimal inven-
tory policy and interpret it in economic terms. An optimal inventory policy
is characterized by conditions: (a) demand rate are partly stochastic and
partly deterministic of multi-items with different inventory costs and short-
age costs, (b) supply rate is instanteneously infinite and order is placed in
the begining of the cycle.
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2. Fundamental Assumptions and Notations

1. Model is developed on multi-items products.

2. Lead time is negligible.

3. Demand is uniformly over the period and a function of temperature
that follows a probability distributions.

4. production rate is instanteneously infinite.

5. Reorder-time is fixed and known. Thus the set-up cost is not included
in the total cost.

Let the holding cost per i-th item per unit time be Chi, the shortage
cost per i-th item per unit time be Csi at any time t , the inventory
level be Qi of i-th item, ri is the demand over the pariod, Pi is the
selling price per unit of i-th item, T is the cycle length.

3. The Model

In this model, we consider n - numbered cold drinks those demands are
ri ( i = 1, 2, ..........n) that depends upon temperature and selling price of
i-th item. Temperature follows probability distribution over period. Here ,

ri = aiτ +
Ci

∑n
j=1,j 6=i Pj

(n− 1)Pi

where,

ai = ∂ri

∂τ
(≥ 0) = marginal response of i-th cold-drink consumption to a

change in τ(temperature) [

∑n

j=1,j 6=i
Pj

(n−1)Pi
is constant ]

Ci = ∂ri

∂(

∑n

j=1,j 6=i
Pj

(n−1)Pi
)

(≥ 0) =marginal response of i-th cold-drink consump-

tion to a change in

∑n

j=1,i6=i
Pj

(n−1)Pi
( the ratio of the average selling price of

(j = 1, 2, ......i − 1, i + 1, ...n) items to the selling price of i-th item) [τ
is constant] that depends upon the choice of the consumers. Now, the gov-
erning equations are as follows :
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Case 1: When Shortage does not occur

dQi

dt
= −ri

T
, 0 ≤ t ≤ T (1)

(2)

with Qi(0) = Qi0 , for i = 1, 2, ......n.

From equ.(1) , we have

Qi(t) = Qi0 −
ri

T
t , 0 ≤ t ≤ T

Here Qi(T ) ≥ 0 ⇒ Qi0 − ri

T
T ≥ 0 ⇒ Qi0 ≥ ri , i = 1, 2, .....n. Therefore,

the inventory of i-th item is∫ T

0
(Qi0 −

ri

T
t)dt = (Qi0 −

ri

2
)T,

for ri ≤ Qi0 where i = 1, 2, .....n.

When Shortage occurs :

dQi

dt
= −ri

T
, 0 ≤ t ≤ t1 (3)

(4)

with Qi(0) = Qi0 , and Qi(t1) = 0 , for i = 1, 2, ......n.

and

dQi

dt
= −ri

T
, t1 ≤ t ≤ T (5)

(6)

with Qi(T ) < 0 , for i = 1, 2, ......n.
From equation (2), we have

Qi(t) = Qi0 −
ri

T
t , 0 ≤ t ≤ t1

Now Qi(t1) = 0 ⇒ t1 = Qi0T
ri

. The equation(3) gives us

Qi(t) = −ri

T
(t− ti) , t1 ≤ t ≤ T.
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So Qi(T ) < 0 ⇒ − ri

T
(T − t1) < 0 ⇒ T > t1 ⇒ T > Qi0T

ri
⇒ Qi0 < ri .

Therefore, the inventory during (0, t1) is

∫ t1

0
(Qi0 −

ri

T
t) dt = Qi0t1 −

ri

2T
t21

=
1

2

Q2
i0

ri

T , ri > Qi0, for i = 1, 2, ...., n

The shortage during (t1 , T ) is

∫ T

t1
−Qi(t) dt =

ri

2T
(T − t1)

2

=
1

2
riT (1− Qi0

ri

)2, ri < Qi0, for i = 1, 2, ...., n

Since , Qi0 ≥ ri

⇒ Qi0 ≥ aiτ + Ci

n−1

∑n

j=1,i6=j
pj

pi

⇒ τ ≤ 1
ai

(Qi0 − Ci

n−1

∑n

j=1,i6=j
pj

pi
) = τ ∗ ( say). i.e., Qi0 = aiτ

∗ + Ci

n−1

∑n

j=1,i6=j
pj

pi
.

Also, Qi0 < ri ⇒ τ > τ ∗ and Qi0 ≥ ri ⇒ τ ≤ τ ∗

Case 1 : Uniform demand and discrete units.
τ is random variable with probability p(τ) such that

∑∞
τ=τ0

p(τ) = 1 and
p(τ) ≥ 0.
Therefore the expected average cost is
Eac(τ ∗) = 1

T

∑n
i=1{Chi

∑τ∗

τ=τ0
(Qi0 − ri

2
)Tp(τ) + 1

2
Csi

∑∞
τ=τ∗+1

Qi0

ri
p(τ)T

+1
2
Csi

∑∞
τ=τ∗+1 riT (1− Qi0

ri
)2p(τ)}

=
∑n

i=1 Chi{
∑τ∗

τ=τ0
(aiτ

∗ + Ci

n−1

∑n

j=1,i6=j
pj

pi
−

aiτ+
Ci

n−1

∑n

j=1,i6=j
pj

pi

2
)p(τ)}

+1
2

∑n
i=1 Chi{

∑∞
τ=τ∗+1(aiτ

∗ + Ci

n−1

∑n

j=1,i6=j
pj

pi
)2 p(τ)

aiτ+
Ci

n−1

∑n

j=1,i6=j
pj

pi

}

+1
2

∑n
i=1 Csi{

∑∞
τ=τ∗+1(aiτ + Ci

n−1

∑n

j=1,i6=j
pj

pi
)(1−

aiτ
∗+

Ci
n−1

∑n

j=1,i6=j
pj

pi

aiτ+
Ci

n−1

∑n

j=1,i6=j
pj

pi

)2p(τ)}

Now,

Eac(τ ∗ + 1) = Eac(τ ∗) +
∑n

i=1(Chi + Csi)ai(
∑τ∗

τ=τ0
p(τ))

+
∑n

i=1

∑∞
τ=τ∗+1{(Chi + Csi)ai(aiτ

∗ + Ci

n−1

∑n

j=1,i6=j
pj

pi
) p(τ)

aiτ+
Ci

n−1

∑n

j=1,i6=j
pj

pi
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+1
2
(Chi + Csi)a

2
i

p(τ)

aiτ+
Ci

n−1

∑n

j=1,i6=j
pj

pi

} −∑n
i=1 Csiai

In order to find the optimum value of Q∗
i0 i.e., τ ∗ so as to minimize Eac(τ ∗),

the following conditions must hold: Eac(τ ∗ + 1) > Eac(τ ∗) and Eac(τ ∗ −
1) > Eac(τ ∗) i.e., Eac(τ ∗+1)−Eac(τ ∗) > 0 and Eac(τ ∗−1)−Eac(τ ∗) > 0.
Now, Eac(τ ∗ + 1)− Eac(τ ∗) > 0 implies

τ∗∑
τ=τ0

p(τ) +
n∑

i=1

∞∑
τ=τ∗+1

{(Chi + Csi)ai(aiτ
∗ +

Ci

n− 1

∑n
j=1,i6=j pj

pi

)
p(τ)

aiτ + Ci

n−1

∑n

j=1,i6=j
pj

pi

+
a2

i

2
(Chi + Csi)

p(τ)

aiτ + Ci

n−1

∑n

j=1,i6=j
pj

pi

} 1∑n
i=1(Chi + Csi)ai

>

∑n
i=1 Csiai∑n

i=1(Chi + Csi)ai

Similarly Eac(τ ∗ − 1)− Eac(τ ∗) > 0 implies

τ∗−1∑
τ=τ0

p(τ) +
n∑

i=1

∞∑
τ=τ∗

{(Chi + Csi)ai(aiτ
∗ − ai +

Ci

n− 1

∑n
j=1,i6=j pj

pi

)
p(τ)

aiτ + Ci

n−1

∑n

j=1,i6=j
pj

pi

+
a2

i

2
(Chi + Csi)

p(τ)

aiτ + Ci

n−1

∑n

j=1,i6=j
pj

pi

} 1∑n
i=1(Chi + Csi)ai

<

∑n
i=1 Csiai∑n

i=1(Chi + Csi)ai

Therefore for minimum value of Eac(τ ∗) , the following condition must be
satisfied:

F (τ ∗ − 1) <

∑n
i=1 Csiai∑n

i=1(Chi + Csi)ai

< F (τ ∗) (7)

Where,

F (τ ∗) =
τ∗∑

τ=τ0

p(τ) +
n∑

i=1

∞∑
τ=τ∗+1

{(Chi + Csi)ai(aiτ
∗ +

Ci

n− 1

∑n
j=1,i6=j pj

pi

)

p(τ)

aiτ + Ci

n−1

∑n

j=1,i6=j
pj

pi

+
a2

i

2
(Chi + Csi)

p(τ)

aiτ + Ci

n−1

∑n

j=1,i6=j
pj

pi

} 1∑n
i=1(Chi + Csi)ai

Case 2: Uniform demand and continuous units.
When uncertain demand is estimated as a continuous random variable , the
cost equation of the inventory involves integrals instead of summation signs.
The discrete point probabilities p(τ) are replaced by the probability differ-
ential f(τ) for small interval. In this case

∫∞
0 f(τ) dτ = 1 and f(τ) ≥ 0.
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Proceeding exactly in the same manner as in Case 1, The total expected
average cost during period (0 , T ) is

Eac(τ ∗) =
1

2

n∑
i=1

Chi[
∫ τ∗

τ=τ0
(2aiτ

∗ +
Ci

n− 1

∑n
j=1,i6=j pj

pi

− aiτ)f(τ) dτ

+ (aiτ
∗ +

Ci

n− 1

∑n
j=1,i6=j pj

pi

)2
∫ ∞

τ=τ∗

f(τ) dτ

aiτ + Ci

n−1

∑n

j=1,i6=j
pj

pi

]

+
1

2

n∑
i=1

Csi

∫ ∞

τ=τ∗

(aiτ − aiτ
∗)2

aiτ + Ci

n−1

∑n

j=1,i6=j
pj

pi

f(τ)dτ (8)

Now ,

dEac(τ ∗)

dτ ∗
=

n∑
i=1

Chiai

∫ τ∗

τ=τ0
f(τ)dτ

+
n∑

i=1

Chiai(aiτ
∗ +

Ci

n− 1

∑n
j=1,i6=j pj

pi

)
∫ ∞

τ∗

f(τ)dτ

aiτ + Ci

n−1

∑n

j=1,i6=j
pj

pi

−
n∑

i=1

Csia
2
i

∫ ∞

τ∗
(τ − τ ∗)

f(τ)dτ

aiτ + Ci

n−1

∑n

j=1,i6=j
pj

pi

and

d2Eac(τ ∗)

dτ ∗2
=

n∑
i=1

(Chi + Csi)a
2
i

∫ ∞

τ∗

f(τ) dτ

aiτ + Ci

n−1

∑n

j=1,i6=j
pj

pi

> 0

For minimum value of Eac(τ ∗), dEac(τ∗)
dτ∗

= 0 and d2Eac(τ∗)
dτ∗2

> 0 must be
satisfied.

4.Conclusion

From physical phenomenon, it is true that the demand of cold drinks depends
upon the increase of temperature. As , in the market, there is various types of
cold drinks and their selling price is different, so their consumption depends
upon their selling price. That is why we consider the consumption of i-th cold
drink is a function of temperature and selling price. Generally the procure-
ment cost of the cold drinks is smaller than their selling price. Consequently,
supply of cold drinks to a retailer is sufficiently large. In reality, the discrete
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case is more realistic than the continuous one. But we discuss both the cases.
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