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Abstract

A method is presented for defining a variable connectivity of a massively
parallel architecture. This variable connectivity permits an increased amount
of interconnection in order to reduce the convergence time to stable solutions
while preserving the accuracy of the results. The method of parallel summa-
tion for a finite-difference approximation is described and results are discussed.
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I. INTRODUCTION

A massively parallel architecture for computing multiple paths for route generation
systems has been developed [1]. The architecture is based upon a massively parallel approach
to computing a numerical solution [2, 3, 4] to a partial differential equation (Laplace’s equa-
tion) which describes the electrostatic potential field ¢ over a non-uniformly conductive
medium. This equation is found in electrostatics theory [5, 6] and was shown to be a useful
model for generating the multiple path solutions for the route generation problem [7].

The massively parallel architecture is an artificial neural network which computes the
numerical solution to Laplace’s equation. This is accomplished by assigning values to the
synaptic weights of the network which correspond to the coefficients [8, 9] of a finite dif-

ference approximation. A rectangular grid is formed over the problem space. The 5-point
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approximation equation for the potential field ¢ at grid location P is
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where o is the inverse cost function, C, = 0,/0, and Q;,7 = 1,2,3,4 are the four nearest

neighbors of the point P in the grid. For the neural network implementation, the neuron

input function wu; ; is defined as
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The non-linear neuron output function v; ; is defined as
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I1. VARIABLE CONNECTIVITY ARCHITECTURE

A method to implement a variable connectivity of the architecture is desired. The
concept of variable connectivity means that rather than solving the partial differential equa-
tion with each node of the grid using inputs from only four immediate neighboring nodes
of the 5-point approximation, additional nodes can be connected to improve the conver-
gence rate. The hypothesis is that increased connectivity will lower the convergence time of
the architecture. This increase in architecture complexity should not outweigh the benefits
obtained in convergence time, or accuracy of the results.

The Taylor-series based approach (described in Appendix B of [1]) was used to develop
template definitions for increasing sizes of templates. This was an intuitive approach for
increased connectivity because it had a sound mathematical basis for defining approximation
templates. Given a template pattern, it seemed straightforward to enlarge the pattern from
five points to templates with nine, 13, 25, or 41 points, for example. Unfortunately, this
approach failed to provide the accuracy and convergence results which were anticipated.
Increasing connectivity by using larger templates actually decreased the convergence rate.
The next section gives the detailed results of this approach and discusses why it failed to
produce the anticipated improvements in convergence rate.

With the failure of this approach, a new method was needed to achieve the desired variable
connectivity in the artificial neural network. A solution was found in a parallel summation
method which uses the 5-point finite difference approximation and expands upon the Euler
method of integration into multidimensional templates. The method is described first for

one dimension, both unidirectional, and bidirectional, and then extended to two dimensions.
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Considering only one dimension, a first-order differential equation can be solved nu-
merically using the Euler method. The Euler method can be viewed as a recurrence relation.
In expanding the recurrence relation for each successive solution point, all of the summations
arrived at by the recurrence relation can be seen. Considering the terms of the summation
for each solution point, and comparing to the total summation of previous solution points,
previous solution points for these terms can be substituted in a systolic fashion. There are
many ways to partition these summation terms, which in effect varies the parallelism of the
architecture and thus the connectivity of the neural network. The following discussion de-
fines the equations and illustrates the architecture of this approach. A good approximation
is retained over the entire problem space, because the fundamental approximation to the
derivative is unchanged. The variable connectivity is accomplished by collecting computa-
tions of the numerical approximation into different groupings which may be implemented
in parallel without altering the basic approximation to the derivative. The conncctivity
is variable in a straightforward manner, with computational speed results apparent from
the inherent serial or parallel combinations of the architecture. These connection equations
(summation formula) are developed from first-order one-dimensional to two-dimensional for
their use in the architecture.

Consider the differential equation

d
Ir (z) = g(x), with initial condition f(zo) = fo (4)

Substitute the numerical approximation for the derivative and obtain

f(xﬁli; f(z:) = g(z:) (5)

Solving for f(z;+1) results in the Euler forward integration equation[4]

flzip1) = f(z) + Azig(x;) (6)

Let h = Ax; be used as the grid size in a parallel architecture.

Recursive application of Equation 6 can be used to solve for any value f(z,):

flzn) = f(zno1) 4+ hg(zn-1)

This concept is illustrated in Figure 1.
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Figure 1: Spatial lllustration of the Euler Integration Concept
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If the definition of the f(z;) terms on the right hand side of the above set of equations

are expanded, this gives

f(zo) = f(0)

f(z1) = f(0)+ hg(zo)

flza) = f(0)+ R [g(zo) + g(z1)]

flxs) = f(0)+h[g(zo) + g(x1) + g(z2)]

For the nth term this is

The summation in Equation 7 can be split into two summations:

n k 1 n—1

flea) = f0)+ > hglz) + > hgl;)

i=0 j=n—k
The first two terms of Equation 8 is f(x,_y), so this becomes

n—1

f@n) = f(@n-x) + D hg(z;)

j=n—k

(9)

The conncctivity will be shown later to be the fan-in K = k + 1 to the neuron. Equa-

tion 9 gives a definition for the variable connectivity in the parallel summation for the Euler
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integration. This variable connectivity encompasses varying degrees of parallelism via the
fan-in, and has the effect of varying the amount of serial delay in computing its results. The
first term of Equation 9 is the serially cascaded computation. The second term is the parallel
(in addition to the serial input) computation. Of course, it will have a valid output only after
the cascaded serial summation delay. The connectivity is derived as follows. Equation 9 is
spatially constructed for parallel summations. So how many summations are there? The
last term has (n — 1) — (n — k) + 1 addends, for a total of k inputs to the parallel summer.
Including the input for the first term, this is £ + 1 = K total inputs to the summer.

Use of Equation 9 for specifying the conncctivity of the network architecture will be
illustrated. This illustration uses ten points of the function (n = 10).

Figure 2 illustrates the summation equation with a fan-in of 2, which is

f(an) = f(zn-1) + hg(2n1) (10)
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Figure 2: K=2 Connectivity of the Parallel Summation Equations

Each output on the left side of the equations in the figure picks up two terms, the
previous output term, and the last input term on the right hand side of the equations. This
architecture, as shown in Figure 3 is parallel in space, but serial in time. It has the minimum
number of connections, and the maximum time to settle because of the cascaded ripple wave

computations.
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Figure 3: K=2 Interconnections for the Parallel Summation Architecture

The next illustration is Figure 4 for the fan-in of 3. Its equation is

n—1

flzn) = f(za-2) + > hg(z) (11)

i=n—2

Each output on the left side of the equations of the figure picks up three terms, the second
output term preceeding this output, and the last two input terms on the right hand side.
This architecture shown in Figure 5 is the next step in adding more connectivity, which has
a corresponding decrease in the time required for the cascaded serial computational wave.

In Figure 6 the fan-in for the complete connectivity of n + 1 is shown. The equation

describing this is
n—1

flaa) = f(0)+ >_ hg(x:) (12)

=0

Here no serial terms are picked up from the cascade ripple wave. All of the input terms
are from the right hand side of the equation. This architecture is parallel in space, and also
parallel in time. This has the maximum number of connections and minimum time because
there is no ripple wave for the computation due to no cascading structure. The architecture
is shown in Figure 7.

The construction of the bidirectional parallel summation is the next step. Since the ob-
jective of the parallel summation architecture is to have a variable amount of connections for

a multidimensional problem space, the summation technique must not have a unidirectional
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Figure 4: K=38 Connectivity of the Parallel Summation Equations
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Figure 5: K=38 Interconnections for the Parallel Summation Architecture
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Figure 6: K=n+1 Connected Grouping of the Parallel Summation Equations
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Figure 7: K=n+1 Interconnection for the Parallel Summation Architecture
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flow to the computation. This requirement is necessary because the local connection archi-
tecture must be robust enough to support the processing of data arriving from any direction
within the architecture. Therefore a bidirectional parallel summation is needed to eliminate
the unidirectional computation flow of the previous architecture.

To develop a bi-directional formula, the backward difference formula first needs to be

derived. Begin again with the differential equation

d

In () = g(x), with initial condition f(xyi1) = fnvi1 (13)

The backward difference approximation to Equation 13 is

f(xiga) — flm)
A$i

= g(ri41) (14)

Letting h = Az be the grid size, and solving Equation 14 for f(z;) gives

f(@) = fzit1) — hg(ziy) (15)
The general expression then is
j+k
f(@i) = fzjme) — Z hg(;) (16)
i=j+1

As should be expected, this architecture compared with Figure 1 is inverted along the single
dimension.

Now a central difference formula is derived by combining the forward and backward
difference formulas.

Recall the forward difference expression as

7—1

fla) = flzj—x)+ > hglx) (17)

i=j—k

and the backward difference is Equation 16. Adding these together and solving for f(z;)

yields
_ _ i-1 itk
flagy = L) S0 5 ) 5 Pyt (18)
i=j—k i=j+1

Figure 8 shows the architecture for Equation 18 with £ = 1.

There is a pattern to the increasing parallelism (k) in the summation equations and the
architectural configuration. This is illustrated as shown in Figure 9 where the right side of the
figure shows the pattern after increasing the parallel connections to the example on the left.
When increasing the parallelism of the summation, the input to neuron C' is increased. This
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Figure 8: Illustration of the Central Difference Parallel Summation Architecture

is done by disconnecting the output Og of neuron B, and adding connections from the input
Ig of neuron B directly as additional inputs to neuron C. This will include connecting the
output Q4 of neuron A to the input of neuron C. Thus the pattern of increasing parallelism
in the summation equations incrementally bypasses neurons by adding connections from

their inputs directly to those neurons which they were connected to by their original output.
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Figure 9: Recursive Ezpansion of the Parallel Summation Architecture

Oa= A(l4, X4) (19)
Op = B(Ip,04) (20)
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On = B(Ip, 10, X2) (21)
Oc = C(Ic,0p) (22)
Oc = Cle, I3, 04) = C(Io. B(I5, 04)) = C(Ie, Op) (23)

Thus, the recursive expansion by substitution. This substitution is valid since all neuron
outputs converge to the linear portion of the neural output function[7]. Figure 10 illustrates

the architecture of this observation for the central difference formula.
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Figure 10: Ezpansion of Central Difference Approzimation for Parallel Summation

With the development of the central difference formula for bidirectional parallel summa-
tion, and the observation of the recursive expansion, the final step in the construction of
multidimensional parallel summation can be accomplished. Using the five point approxima-
tion template as a kernel, the template can be “unfolded” as many times as desired in a
recurrent fashion, obtaining a larger connection neighborhood, which takes into account the

local Cy(z,y) and Cy(x,y) in the solution. Different kernels generate different connection

patterns.
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The synaptic weight expressions for the model can be written as the following equations

. 17 Oz . ]
wi(%]):i 1+%(Z=J) (24)
. 17 Oz . ]

. 17 Oy, . ]
wy (4,5) = 7 |1+ 5. (6.7) (26)
. 17 Oy, ]
wy (6,9) = 3 |1 =50 7) (27)

The general equation for the neuron input function is

uld, ) = wy (i, (i +1, ) +wy (4 Jo( — 1, 7) Fwy (6 5)v(i, 5+ 1) +w, (@ v, j —1) (28)

which upon recursive expansion (for k = 2) is

u(i, J)

+ + + + + + 4

wy (1, J)[wy (i + 1, Hv(i +2,5) +w (i + 1, j)v(i, j)

wy(i+ 1L, v +1,74+1) +w, (i +1,7)v(i+1,5 —1)]

w, (i, )wy (i = 1, 7)v(i, 5) +w, (i — 1, j)v(i — 2, 5)

wy (i =1, v —1,74+1) +w, (i —1,5)v(i — 1,5 —1)]

wy (4, 0)wy (4,5 + (i + 1,5+ 1) +wy (4,7 + Lv(i — 1,5 + 1)

wy (1,7 + 1)v(i, j +2) +wy, (4,7 + 1)v(i, j)]

wy (4, Hwi (4,7 — v+ 1,5 — 1) +w, (4,5 — Lv(i — 1,5 — 1)

wy (1,5 — Do(i, j) +w, (4, — 1)o(i, j — 2)] (29)

Figure 11 shows the first two expansions for a 5-point mesh architecture. In this manner,

new connection weight values are defined. This expansion continues until the desired amount

of conncctivity is achieved. The maximum conncctivity is obtained when the expansion for

each node has recursively used all other nodes. This will scale directly with the length of

the largest dimension of the multidimensional space.

ITII. D1sCcussIiON OF RESULTS

Connectivity curves show the convergence of the Taylor series based templates and the

parallel summation technique templates at various degrees of conncctivity in the neural

network. These curves show that the parallel summation technique templates converge

faster with higher connectivity.
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Table 1: Neural Network Simulation Iterations Using Taylor Series Templates

Template Cycles per Case
Size A B C
5 point | 4,000 | 3,484 | 5,460
13 point | 3,647 | 2,251 | 4,015
95 point | 3,621 | 2,612 4,518
41 point | 6,947 | 15,000 | 10,140

Several test cases were used to experiment with the architecture simulations in this
research and are described in [1]. Table 1 shows the number of cycles for each simulation run
of the neural network using the templates generated using the Taylor Series method. These
runs were executed on a VAX 8600 until the convergence input parameter was satisfied at
the end of each iteration of the simulation. The sum-squared difference of all neuron outputs
is checked against the input parameter to test for convergence. For the simulation runs, the
convergence input parameter was set to 0.001.

In each case, it can be seen that fewer cycles of the parallel algorithm are required for
convergence using the 13 point template over the 5 point template. While this improvement
continues marginally for the 25 point template of Case A, in the other cases the number
of cycles to achieve convergence increased. Continued expansion to the 41 point template
resulted in a further, and rather significant degradation in convergence for all cases. Table 2
contains data for the final minimum cost path value at the end of the algorithm execution.
Each larger template failed to provide more accurate (smaller) cost values in each case.
In fact, the cost values increase with the larger templates using the Taylor series method.

The results reported here illustrate the failure of the Taylor series template method which

Table 2: Least Cost Path Values Using Taylor Series Templates

Template | Path Cost per Case
Size A B C

5 point | 0.329 | 7.672 | 0.840
13 point | 0.331 | 7.599 | 0.937
25 point | 0.331 | 7.631 | 1.006
41 point | 0.333 | 7.826 | 1.068

was reported in the previous section and led to the development of the parallel summation
template method.
In this research, over 135 simulations were run and their results were plotted. These plots

show the value of the minimum cost path found by the neural network during each cycle
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of the run. This was repeated for the more connected pattern, and each run was plotted
for a particular test case. A family of curves results which shows the computed cost over
computation time for the varying connectivity. These plots show the impact of increased
connectivity on the quality of the computation results. Figure 12 illustrates the minimum
cost of successive algorithm iteration for the four increasingly complex Taylor series template
connectivity patterns. Upon close inspection of the plots, the desired result of improvement
from using a more complex template connectivity pattern does not occur. Indeed, as the
template connectivity is increased, there is actually a decrease in the convergence, exhibited

by a higher final cost of the minimum cost path.

"
Zg
™M
@ 0./001437 Spt
o 06./083736 13pt
e s 0./007184 25pt
” + 0.011782 41pt

3.53

Dol e

3.46

3.3

Cost of the mininum cost path

o~
" =+
o B 5
8- & =
g N
" " ’e —t * be * ’* " 1
-34.20 20.10 74.40 128. 70 183. 00 237.30 291. 60 345.90 ~ 400.20
Time (number of cycles) 18 '

Figure 12: Least Cost Path Connectivity Curves Using Taylor Series Templates

However, these connection patterns are very small on the scale of conncctivity. In order
to get more significant results at larger connectivity, much larger templates are required.
Additional constraints are added to convert the template coeflicient equations from an un-
derdetermined system. These constraints are intuitive, but yet somewhat ad hoc, trying to
account for behavior farther from the approximation point at the center of the template.

As the connectivity increases with the larger templates, it was hoped that the cost plot
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could be predicted to drop sooner for each increase in connectivity, reaching the minimum
cost in faster time. The larger templates use more of the network node outputs. As changes
to node outputs occur in a remote region of the network more distant from a local node of
interest, these larger templates facilitate propagation of the remote changes to each local
node’s output computation. However, plots of the simulation results show that the larger
templates are not providing a better approximation. An examination of Figure 12 reveals
that the higher connective templates are not, in general, converging faster.

The template defines the differential operator for the approximation. Expansion of the
template would seem to be counter to the definition of a derivative in the limit, which would
lead to contracting the template instead of expanding the template. As the cost function
varies more, less accurate approximations appear with the larger templates, and argues for
smaller templates in order to have more accurate approximations of the derivatives with
higher frequency cost function variation.

The parallel summation method provided a solution to the convergence and accuracy
problems of the Taylor series templates of larger connectivity. The solution did not change
the underlying accuracy of the five-point approximation to the derivative, but rather achieved
increased conncctivity through the computation architecture of the template.

Figure 13 illustrates the minimum cost of successive algorithm iteration for the increas-
ingly complex template connectivity patterns derived using the parallel summation architec-
ture.

The convergence pattern is similar for each template. However, unlike the previous
template patterns derived from the Taylor series, these template patterns exhibit the im-
provement expected from using increased connectivity as originally hypothesized. As the
template connectivity is increased through more parallelism in the approximation summa-
tion, the network architecture accomplished a more rapid decrease in minimum cost paths.
In each plot, the increased conncctivity is indicated by a larger index, k. Each test case has
a similar behavior. The higher the connectivity index, the faster the minimum cost drops

during the algorithm iteration.

IV. CONCLUSION

The electrostatic model provided a sound mathematical basis for the research [7]. This
was due to the nonhomogeneous partial differential equation (Laplace) of the electrostatic
potential field. With the boundary conditions applied, the flux lines could be extracted
by a gradient descent over the potential surface from the source node (maximum potential

boundary condition) to the sink node (minimum potential boundary condition). Therefore,
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Figure 13: Least Cost Path Connectivity Curves Using Parallel Summation Templates

the challenge was to compute a solution to the partial differential equation using an artificial
neural network.

The means to accomplish this was a finite difference approximation to the partial differ-
ential equation. A study of the finite difference approximation formulas revealed a striking
similarity to the familiar equations for the artificial neural network. Thus, by an appropriate
mapping of the coeflicients of the finite difference approximation formulas into the weights
of the artificial neural network, the neurons could compute the numerical solution to the
partial differential equation.

A significant result of this approach is that the resulting design benefits from the classical
numerical analysis of finite difference approximations for partial differential equations. Since
the artificial neural network directly implements the finite difference approximation (in a
truly parallel architecture), it retains the convergence and accuracy properties of the finite
difference approximation. Additionally, the artificial neural network scales directly with
the size of the problem just as is the case with the finite difference approximation. With
this architecture design in place, the influence of the amount of interconnections could be

investigated.

The finite difference approximation formulas map into simple interconnections between
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adjacent neurons in the artificial neural network. Improvements to the convergence of the
network were conjectured to result from increasing the interconnections between neurons
beyond the locally adjacent neurons to larger regions of the network. This required a way
to increase the number of input connections to each neuron from other neurons, and yet
preserve the integrity of the finite difference approximation.

The solution was found in the parallel summation technique that was developed in Sec-
tion III. This approach preserved the fundamental finite difference approximation formula
as a template kernel so that the approximation of the derivative would be consistent in
larger interconnection patterns. The technique consisted of recursively unfolding the kernel
to rewire the input connections of each neuron directly to those neurons whose outputs were
directly connected to the neuron whose outputs were the source of the input connections.
Each recursive unfolding of the approximation template resulted in a higher amount of inter-
connections. This was shown to successfully reduce the convergence time and yet preserve
the accuracy of the approximation. The benefit of the variable connectivity is to give the
neural network designer tradeoffs between the convergence time, accuracy, and network costs
(measured in terms of the implementation complexity through connectivity). For a given
accuracy and time requirement, this tradeoft then specifies the amount of interconnectivity
that is necessary in the artificial neural network. Conversely, for an embedded implementa-
tion of an artificial neural network with a given amount of connectivity, the design tradeoff

can be used to project the accuracy obtainable from the network in a specified time interval.
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