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ABSTRACT

This paper presents a stable technique for obtaining the maximum
likelihood estimator of parameters of exponential distribution of M
components that form 1) series system 2) paraldl system and 3) s out of
M :G system. The data consists of lifetime of the system only, that isit is not
known which component caused the system failure and can be applied not
only for complete data but for randomly censored data also. The log
likelihood function presented can be used for the estimation of two
parameter Weibull distribution in all the three cases.
Key words : Maximum likelihood estimator-Exponential distribution-
Reliability models-iterative method.
1. INTRODUCTION

In parameter estimation, the most interesting methods are MLE,

graphical procedure Cran [2] moments method Fals [3] and Weighted

Abbreviated title : MLE of rdiability systems
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|east-square method Cheng and Fu [1]. It is widely known that maximum
likelihood estimator is asymptotically unbiased and has minimum variance
and it is the commonly used technique for parameter estimation. With the
wide use of computersit is worthwhile to calculate the maximum likelihood
estimator and it has become the maor tool for parameter estimation of
reliability models. Finite mixture distributions have been used widdly in
medicine, psychology, and botany as referred in Titterington, Smith and
Markov [11]. The research on parameter estimation was done on the mixed
normal, exponential, binomia distributions. For postmortem data Sinha [10]
extended the approach of Mendenhall and Hader [6] for the MLE of mixed
exponential to mixed-Weibull distributions. For nonpostmortem data
Kaylan and Harris [5] extended the approach of Hasselbald [ 4] for the MLE
of the mixture from the exponential family to the mixed-Weibull distribution
when the data are ungrouped and censored. Olsson [8] directly searched the
maximum of the log likelihood function of the mixed Weibull distribution
through the Nelder -Mead simplex procedure given by Olsson and Nelson

[ 7] and that procedure applies only to the 2-Weibull mixture.

In this paper Maximum Likelihood Estimator of exponentia

parameters is presented without concomitant indicators. The estimation
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technique studied in this paper facilitates the estimation of the parameters of
the life distribution of each component in a 1) series system 2) paralé
system and 3) sout of M system. The algorithm is not new but the attempt to
use it to estimate MLE in reliability models is very effective and it resultsin
minimum variance of parameters. The Broyden—Fletche— Goldfarb -
Shanno (BFGS) method for multivariate optimization is used to provide
absolute maximum of the likelihood function and this method is easy to

understand and program.

ASSUMPTIONS

A, A, ...,Ay formaM- component system and

(i) even if one component fails the system failsin a series system
(i) if all the M components fail the system fails in a parallel system
(iii) if M-s+1 components fail the system failsin the more general s-out-
of-M system.
Component failures are statistically independent but not necessarily
identical in all the above three cases and failed components are not
replaced.
The life distribution of each component is exponential

Only the system-level life times are recorded. There are no concomitant

indicators
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Notation

t time

N samplesize of life test

k kind of component k=1or 2 or 3...... orM

h ~exponential parameter for component k
t; faluretimei 0O<t <t, <.... <t,,

fi (), F(), Re() pdf, cdf, sf of component k
f (), F (), R () pdf,cdf, sf of system

2. SERIESSYSTEM

If the system has N components connected in series viz aN—out—of— N : G
system then the systemfails evenif one component fails. Regardless of

component distribution the pdf and reliability of the system are

& 0
M G M -
f(t)= ac¢fi() C Rj()~ (1)
i=1 j=1 T
Jti 2
M
R(t) = CR; (t) (2

i=1
The likelihood function of randomly censored datais
N
L@) = c_cl(f @ RGFE 3
1=

whereC isa constant and
_ 1% if the system has failed

d; =
1710, otherwise
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Substituting (1) and (2) in (3), the likelihood function of the series systemis

é i U

N §|<\)/| ? . 9.l dy a
L@)=CO&a ¢f (tk)C R (tk)_ 9C Rjt)I U4

k:1‘3=1§ j=1 T &= g U

R ;

Thelog likelihood function of the above is

é > o0 U
N @& QM C M =
InL@) =InC+g &, In¢3 ¢f; (t)C R j )+ dk)a InR; (tk)U
k=1€ é 1§ j=1 i j=1 )
e jri 157} g

The 2-parameter Waelbull distribution or 1-parameter exponential
distribution can be examined as the fallure distribution. Let us assume

lifetimes follow exponential distribution with parameters hj,h,,...h, .
Differentiation of InL(Q) with respect to h (i = 1,2...,M) gives the

following likelihood equations

0 & 60 u
B ae""l(tk ER () -+ dk’mk)g Qf.(tk)CR(tk) 105
é N e v
agl dk)ﬂRl(tk) R(t)%
é o) u
fnL@) _ N S L) M o (t)@ % ;
D=3 &, M ¢ g (1) g, Tl gf(tk) C Rty [ f()0
fih, k= & "¢ Th, i fih, |_1§ a
e o - il2 Jl|2 gg ]
e € 1%} u

+ agl dk) ﬂRz(tk) R(t )g
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N g ge 2 geM ge
TinL@) _ ) §dk9 () M CR (t)* < TRy (tk)gé Cf, (t,) CR (tk)
fhm k=1 € gﬂhM j= T Thw §:= g j=1
8 M5 : M
N MRy () 0
+ 8§ dy) oMK fR)2
& gl 40 B R

Since a closed form solution does not exists for finding the roots of these
likelihood equations the equations must be solved by iteration method given

in section 5.

3. PARALLEL SYSTEM

If the system has N components connected in paralld, viz. a 1-out-of-N : G
system and the system fails only if al the N components fail then the system
pdf and reliability, regardless of component distribution is

S0 O F0° ad ©
18 =1t g

QJ°Z

f(t) =

R(t) = a‘?R (t) OF (t)‘ (6)
i=1 =1t g

The likelihood function of paralel system with randomly censored data if

results (5) and (6) are substituted in (3) are
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=) di . 1-d; O
ce @ ou'e ou -
N céM ¢ 0 em¢ uo+
L(q)=CO<;éa9f|(tk)OF (t)u éacR (tk)OF (M
k=19§1=1§ =1~ D @:1§ j=1 @I+
cé I a e i a -
a
The above can also be written as
) i g O
ge 2 guu e u -
u -
L@)= Coge %f (tk)OF(tk)_u gl JC:)lF](tk) - (M
,1. A 8 g =
(%]
Thelog likelihood function of (7) is
e é @ o é uu
N é emM¢e U é M
InL@) = |nC+a§dk|néa9f.(tk)OF (t)u+@- d)Ind- OF, (tk)uu
k=16 ej:% = Rl g j=an
g e jti A e ug

Differentiation of InL(q) with respect to hq,ho, .....h gives the

following likelihood equations

é ®e &
InL@) _ Y ¢ t Fr(t) ¥ &
o= o e Rt Fu 02 T2 EA G
hy 5 e hy 2 1 §:z§ j=2
8 B
23 0

N C -
+Q ¢(l- dk)ée ﬂFlr(]tk)OC = (tk)/R(t)f
k=1§ Thy  gj=> B

%]
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e & g
InL N & t F, (t ‘?M‘? M '
TinL@) _ 5 gﬂk‘ﬂ (k)Fl(thg(tk) FM(tk>— d, 2(k)<;a<;f.(t)c:F (tk)
Th, k=1 © éz g j=L :
é 1 j1i,2 .
B :
o a2 F-(t 0 B
r A 60 dof Tol)OC F ) /R
k:1§ ﬂhz ﬂj =1 B
jr2 7]
N g 88 M 2 8eM ge M ® ;
InL o € fo (t N Fa (t o . u
L@ = 3 e M%) C F g =ra T g Crw) CR im0/ f
Thy k=1 @ é Thw = x Thy gzl é j=1 ol (
8 1M p Y j1i,M f
- 6

- & - A0F o (‘k)oc Fy ) /R(t)?
kzjé M gj=1 B

j*M 7]

Since a closed form solution does not exists for finding theroots of these
likelihood equations the equations must be solved by iteration methods. To

solve these equations iteration method given in section 5 is used.

4.(s, M) RELIABILITY SYSTEM

Thes-out - of - M : G systems are more general than purely series or
paralel systems. Let M components be connected in such a way that the
system fails if M-s+1 components fail. In this when an operating component
fails, standby component becomes active and at least s out of M components
must be good for the system to be good. It isequivalent to a (M-s+1) — out
- of — M: F-system. There are two main advantages of using the system. It
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usually has much higher reliability than series system and is often less
expensive than the parallel system.

The likelihood function using pdf and reliability function of (2,5) systemin

equation ( 3) is

'f R )éBé_"Ls(tk)':2(tk)Fs('f|<)':4('fk)+R4(tk)Fz('[k)Fs(tk)':5(tk)*'94_@0"‘i

TR, () Fa(ti) Fa () Fs (t) + Ra(t) Falti)Fat) Fs(t) G

; (tk)&RS(tk)Fl(tk)FS(tk)F4(tk)+R4(tk)Fl(tk)F4(tk)F5(tk)+9+H

? gR?:(tk)Fl(tk)F4(tk)F5(tk)+Rl(tk)F3(tk)F4(tk)F5(tk) g U

aRS(tk)Fl(tk)FZ(tk)F4(tk)+R4(tk)F1(tk)F2(tk)F5(tk)+9+3

ERZ(tk)Fl(tk)F4(tk)F5(tk)+Rl(tk)FZ(tk)F4(tk)F5(tk) 53 *

f, (tk)eQS(tk)Fl(tk)Fz (te)F3(ty) + Ra(t ) Fr(t ) Fo (te ) Fs(ty) 6, 3
gRZ(tk)Fl(tk)FS(tk)FS(tk)+Rl(tk)FZ(tk)FS(tk)FS(tk) g 0

f5(tk)aR4 (te ) Fa(ti ) Fa (b ) Fa(ty) + Rt )Fr(ti ) Fo (t ) Fa (B ) +g+
ng(tk)':l(tk)':s(tk)':zt(tk)+R1(tk)':2(tk)':3(tk)':4(tk) @

L@)=C f3(ty)

T Oz

|_\
MD: D> D> D> D> D> D> D> D> D D> D> D D> D D (D> D

=~

[ el el Y e Y e

eRy (t )Rx (T ) + R (t) Re(ty) R (t ) + R (ti) Re(tic) Fa () +

ERa (ti) Ra (ti) Fi (1) Fa(ti) + Ro () Ra (i) Fi(ti) F (t)

2” Ry (t)Ra(ti )P (ti ) Fa(ti) + Ralti ) Rs (e ) Fy (ti ) Fo (b ) Fa(ti) +

8Ra (ti) Rs (ti ) Fo(ti) Fo (i) Fa(t) + Ro(tic) R (ti )Fo(ti) Fa(ti ) Fa(tic) +
&R (1 )Rs (t ) F2 (tic) Fa (t ) Fa (i)

[ e e e e\ @]

c

s
s

e

Differentiation of InL(q) withrespecttoh,h,, ...,h; givesthe

following likelihood equations
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Thy

finL _ A _di €ffy (t) 885 (L) Fa (i) Fa(t) Faltic) +Ra (tk) P2 (t) Fa(t) Fs (tk) + &

+

Ve

u

+
u
u

u

i
u

a

ke TMe Thy gR’s(tk)Fz(tk)F4(tk)F5(tk)+R2(tk)F3(tk)F4(tk)F5(tk) Py
+

TPy (ty) éfz(R5(tk)F3(tk)F4(tk) + Ry (k) Fa(t) Fs (tk) + Ra(tk ) Fa (ti ) Fs (tk)

Thy gfs(R5(tk)F2(tk)F4(tk) + Ry (t) Fo (te) Fs () + Ro (ti ) Fa (t ) Fs ()
f(t) gf4(R5(tk)F2(tk)F3(tk) + R (tx) F2 (tk ) Fs(tk) + Ro(ti) Fa(t) Fs(tk)
&f5(Ra (t)Fa(tk ) Fa (t) + R (ti) F2 (tk )Fa (tk ) + Ra (ti) Fa (t ) Fa (t)

~— N e

N
a g
k=1

TRy (ty)
Thy  efa(t)Fs(ti)Falti)Fa(t) + f3(t) Fati ) Fa(t)Fs(te) +a

N
TR &F 4 (ti )F2 (t )Fa(ti)Fs (t) + Fs(ti) Fa (ti) Fa (ti) Fatic) +8

k=1

\ MR ()
A ( -dﬂ%‘?&
ER> (tk )Rs(ty ) F3 (tk )Fa (ty )
G

Thy  Ra(tyk) + Raltk)Fa(tk) + Ra(t )P (tk) Falti) + Rs(ti ) Fa(t ) F3 (tk) Fa (ti)u
i

R (1 )Ra(tk) + Ra(ti )Ry (tk) F2 (tk) + Ra (ti ) Ra (tk ) Fa(ti)u
(ti)Rs (t) F (ti) Fa (ti ) + Ra (ti )Rs (ti ) Fa (tk ) Fatic) + g+
H

k=1

TRy ()

N
a (- di)weé

d_i§ﬂf5(tk)&R4(tk)F1(tk)F2(tk)F3(tk)+R3(tk)F1(tk)F2(tk)F4(tk)+gg+
f()e Ths gRZ(tk)Fl(tk)FS(tk)F4(tk)+Rl(tk)FZ(tk)FS(tk)F4(tk) 2

finL _ &
Ths kazl
TFs(ty) 6f1(Ra(ti) Fa(ti )Fati) + Ra(ti )F2 (ti)Fa (ti) + Ra (t ) F2 (i) Fa(ti)) +u
éN_d fhs  af2(Ru(ti) Fa(ti)Fatic) + Re(ti JFr(ti) Fa(tic) + Ra(tic) Fi(ti) Fa (tic)) + 3+
ke T ng(Rl(tk)FZ(tk)F4(tk) + Ry (ti )Pt ) Fa(tic) + Ra(tic) Fa(ti )2 (ti)) + 3
&f 4 (Ru(ti) Fa(t) Fa (t ) + Re (tk ) Fa(ti) F2 (ty) + Ra(ti) Fu(tk)Fa(ti)) @
MR (tk)
Ia°\|_d- Ths gfl(tk)FZ(tk)F3(tk)F4(tk)+ fz(tk)Fl(tk)FS(tk)F4(tk)+g
o1 T Efa(t)Fa(t) Fa(t) Falti) + f4(ti) Frlte) Fa(te ) Fa(t) +0
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TFs (t) €Ry (t )Ry (t ) + Ry (ti )Ra(ty) Fo (tk) + Ra(ti )Ra (ti ) Fa(ti)u

N
a @- d), gzts) SR4(tk)R5(tk)F2(tk)F3(tk) + Rtk )Rs (te )Fo(ti ) F4(t) + 3+
= 8Ro (1 )Rs (1) Fa(ti) Fa (t) ;
MRs(ty)
& - d), s Rt RtIF2(0)Fat) + Ra(ti)Fa i) P2 (i) Falt) +u
k=1 "R &Ro(t) Ptk ) Falti ) Fa(t) + Ry (te) Fo (t )Fa(ti ) Fa (ty) &

The estimation technique studied in this paper facilitates the estimation of
the parameters of the life distribution of each component in a series, parallel
and sout-of-M systems. Here the likelihood estimation is done using the
Broyden - Fletcher — Goldfarb - Shanno Method (BFGS) agorithm Rao [9].
The BFGS method can be considered as a quasi- Newton conjugate gradient,
and variable metric method. In this method the inverse of the Hessian matrix

Is approximated and so can be called an indirect update method. Let us
summarize the steps involved in the estimation of parametershq,ho, ...hp
in the next section.
5. Algorithm for MLE
Step 1

Assume the initial parameter vector be h(l) :{hl,hz,hg, ...... ,hM}

and aMxM negative definite symmetric matrix [B,| asan initiad estimate of
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the inverse of the Hessian matrix of L and let [B;] =-[I] (‘unit matrix) for
I=1 Thelog likelihood is calculated as

L=InLh®) and AL, =NinLh®) =1

Step 2

With the gradient of the functionNL; at the point h) st

s =-[BNL, i=1
Step 3

Find the optimal step length | i* inthe direction of § and set
h0*D = ® 4| "+ g

|, is the optimal step length which satisfiesMax In L(h () +1;S)
Step 4

Test the point h® for optimality. If |NInL;,;|£e where e isasmall pre

defined quantity, take h "= hj +1 and stop the process. Otherwise, go to step
S.

Step 5
d =h_hO=1"5 and g =RNLOD)- NinLO®)

Mi=didT M,=di' g My=dg’ M, = gid;"

Mg = giT[Bi]gi Mg =digiT[Bi] M, :[Bi]digiT

MSQMI MG M?
MZBMZ MZ MZ

[Bm]:[B.1+§+
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Step 6
Set the new iteration number as | =i +1 and go to step 2

In step 3 to find the optimal step size cubic interpolation method is

used. It finds the minimizing step length |~ using the cubic equation

f(l)=a+bl +cl?+d 3 asfollows

(i) Usenormalized § given in step 2 and minimize

InL(h® +1,3)

(i) To establish lower and upper bound on the optimal step size I*,

assuming initial step size be tg and incrementing step size find two points A

dinL
d

and B at which the dope has different sign.

At A=tg find fand f, and
a B =ty find fg and f|'3 (f'A and f|'3 are of opposite sign)
(iii) To find optimal step length | 1 we compute

Z:—S(;A_;B)+f,;+fg and Q=.22- f,f;

Using the results we get

|* — A+ l(fA+ZiQ)\(B_ A)
(fa+ fs +22)

(iv) Usethe convergence criteriaand
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STNL

[SINY

defined small numbers whose value depend on the accuracy desired. If we

test it |11 O ang

_ £x, where X1 and X» are pre-
" L0) " X3 1 2 P

*
|

reached the optimal 1" valuegoto step 3esegoto (i) and set A =1 ’

If the step lengths | are found accurately, the matrix [3] retains its

positive definiteness as the value of i increases. However, in practica
applications, the matrix [3] might become indefinite or even singular if | i*

are not found accurately. As such, periodical resetting of the matrix [3] to
the identity matrix is desirable. However, numerical experience indicates

that BFGS method is less influenced by errorsin | ; than other methods.

NUMERICAL RESULTS

A Simulation procedure is adopted to generate the life of series of 5
components that are from exponential distributions with

h© ={115, 2, 22,3 3.2}. The procedure is programmed in TURBO C and
estimation in each case takes about 40 to 50 seconds with double precision
computation on a personal computer with TURBO C OS. 1000 smulation
runs are performed with N=500. Table 1 summarizes the mean and standard

deviation of h, inall thethree cases. The standard deviation of estimated
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values of the exponential parameters are greatly reduced. The estimates vary
randomly around the input parameters used for data generation. The author

could not make a comparative study of the results since no similar work is

avallable.
Table 1

N Thi sdh,) |he stdb,)| h; stdh,) [h, stdh,) [ hs std(hs)
system
Series 19 001(24 00236 0001 |34 0012 |4.0 0.002
Parallel 20 00323002340 0043 (43 012 |4.7 0.032
soutof M | 1.1 001228 0.12 |3.7 0.014 |28 0.043 |31 0.105
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