
107

OBJECT-ORIENTED MODELING BY VIEWPOINT
 USING UML

Hair Abdellatif
Faculté des Sciences et Techniques

B.P. 523 Beni-Mellal, Maroc
Tél : +212 23485112 – Télécopie : +212 3485201

– Mél : a.hair@fstbm.ac.ma

Sbihi Boubker
ENSIAS

B.P. 713, Agdal Rabat Maroc
Tél: +212 61556588 – Télécopie : +212 7777230

– Mél : Sbihi7@Hotmail.com
Ettalbi Ahmed

ENSIAS
BP 713, Rabat, Maroc

Tél: +212 377773 1 – Télécopie : +212 7777230
 – Mél : Ettalbi@ensias.ma

Abstract : The aims of this work is, firstly to propose a new assimilation of the visibility relationship of
VBOOL in the UML (Unified Modeling Language) standard language for modeling and specifying object-
oriented systems. Secondly, to complete UML by an oriented viewpoint method to get a complete software
engineering process. U_VBOOM method represent an adaptation of VBOOM (View Based Object-Oriented
Method) integrating the UML notation. The new U_VBOOM method keeps main VBOOM concepts and
integrates to its development process strong points of UML such as use cases and a new stereotype
<<interpreted>> that allows with the aggegation relationship to implemente the visibility relationship. This new
approach encourages the multi-targets code generation and improve the process of development proposed by the
VBOOM method.

Key-words: Method, Analysis/Design, View et Viewpoint, Use case, UML (Unified Modeling Language),
Visibility Relationship

108

AMO – Advanced Modeling and Optimisation, Volume 5, Number 2, 2003

1. Introduction

Recently, two aspects have received a lot of attention in object-oriented development: the emergence of the
Unified Modeling Language (UML) as a unified notation for object-oriented analysis and design, and integrating
viewpoint approaches to software development.

The UML [Jacobson and al., 1999][Omg, 2001] can be seen as the successor of the wave of object-oriented
analysis and design methods that appeared in the late 80s and early 90s. It unifies the methods of Booch [Booch,
1994], Rumbaugh (OMT) [Rumbaugh and al., 1995], and Jacobson (OOSE) [Jacobson and al., 1992]. The UML
is a standard language for modeling and specifying object-oriented systems. It gives notations for describing a
system in various views, but does not define any specific process for software development, beyond some
preliminary process description reported, for instance, in [Jacobson and al., 1999].

The introduction of viewpoint approaches to software development provides several improvements in
complex system modeling [Bardou, 1998][Carré and al., 1991][Finkelstein and al., 1990][Mili and al., 1999]. In
fact, it enables the users to build a unique model accessible by different users with various viewpoints, instead of
building several sub-system whose management is too hard to complete. The concept of viewpoints was first
introduced by Shilling and Sweeny [Shiling and al., 1989] as a filter of a global interface of the class, but the
views are not separable or separately reusable. Harrison and Ossher proposed subject-oriented programming as a
way to build integrated “multiple view” applications by composing application fragments, called subjects, which
represent compilable and possibly executable functional slices [Harrison and al., 1993][Kaplan and al., 1999].
The approach proposed by S. Marcaillou that interest us more especially consists to define a new language
VBOOL (language that extend Eiffel) which integrate the new relation “the visibility” and its derived
mechanisms [Marcaillou, 1995]. To implement those concepts in object-oriented methodology, VBOOM (View
Based Object Oriented Method) has been defined which extends the BON's method [Coulette and al.,
1996][Kriouile, 1999].

The aims of this work is, firstly to propose a new assimilation of the visibility relationship of VBOOL in the
UML (Unified Modeling Language) [Jacobson and al., 1999][Omg, 2001][Rumbaugh and al., 1999]. Secondly,
to complete UML by an oriented viewpoint method to get a complete software engineering process.

This article is organised as follows: in section 2, we will present briefly the assimilation visibility
relationship and its derived concepts in UML. The section 3 deal present principles of the about VBOOM
method under the UML standard (named thereafter U_VBOOM). We conclude by a survey of work done and a
presentation of its perspectives after a presentation of the relative works.

In this paper, we are going to illustrate our subjects with the Media library Management example. The
specifications of this example are more explained in [Lopez and al., 1998]. The Media library system must
allow its members to consult and to borrow various types of support: books, video and audio disks, audio CD,
etc. Only one member of the library can borrow books, reviews, etc. The borrow is limited in time. The potential
users of the Media library system are: the librarian who manages the loans, the person in charge of
adhesions who will add and withdraw members, the person in charge of examplaries who will seize the new
examplaries and to withdraw those damaged, and finally the system engineer who ensures the good exploitation
of the system for the users. According to the use types, the Media library system will be considered, as a set of
ADHERENTS ACCOUNTS, or of EXEMPLARIES, or a means to facilitate the LOANS. Thus, we identify 4
classes of the system: Media_Library, Loans, Exemplaries and Counts_Adherents.

We are going to illustrate the implementation code in C++ language [Stroustrap, 1997]but this remained
valid for other object-oriented language.

2. The visibility relationship and its derived concepts in UML

By visibility, we mean that an entity can be seen upon several angles. It’s well the fact of a Media Library
which can be seen under the loans, exemplaries, adherents accounts, etc. angle. Several solutions of
implementation and assimilation has been proposed for example the S. Marcaillou proposition. This proposition
consists to assimilate the visibility relationship to selective multiple inheritance in VBOOL object-oriented
language [Marcaillou, 1995]. The VBOOL language proposes the flexible class concept (multiview class). This
is a class that declares more than two visibility ties with other classes named its “views”. A view is an
abstraction of the model. It constitutes the unity of visibility, it is the result of factorizing user's needs. The
instantiation of flexible class consists to specify a particular viewpoint which takes various appearances. In the
figure 1, the Media_Library class is a flexible class which owns 3 views (Loans, Exemplaries,
Counts_Adherents). But, this assimilation suffers mainly from the non availability and implementation of the
VBOOL compiler.

109

Figure 1: Visibility relationship in VBOOL

We propose a new assimilation of the visibility relationship in UML in order to make object-oriented
modeling by viewpoint based on UML and to take advantages of the object-oriented languages like C++, Eiffel,
Java, etc. This approach is inspired mainly from the one proposed by M. Nassar [Nassar, 1999] and S.
Marcaillou [Marcaillou, 1995] to compile the VBOOL code by an intermediate generation of the Eiffel code
[Meyer, 1995].

2.1. Visibility relationship

The approach adopted by M. Nassar [Nassar, 1999] et S. Marcaillou [Marcaillou, 1995] to implement the
visibility relationship consists mainly in transforming this relation in selective multiple inheritance. The new
approach consists firstly to use the aggregation/delegation relationship instead of the inheritance. Indeed, the
delegation mechanism used jointly to the aggregation relationship allows a class to delegate the request
treatment to another class. Like the inheritance, the under-class delegue to the sub-class the inherited methods
treatment. In the inheritance case, the delegation mechanism is treated automatically by the language while for
the aggregation the customer object has access automatically to receiving object through the intermediary of the
self reference (or by this in the C++ case). Secondly, to permit the possible representation evolutivity for object
because this last, in some cases, can intervene and evolve in several processes according to the use type played
in these processes.

for our example of the Media library management, the Media library system can be used and to undergo a
different evolution in the management of loans process, in the management of exemplaries and in the
management of members one. That is, the Media library system is not discerned by a customer that through an
use. It comes back to say that, the Media library system can be used under the differents use types: Management
of Loans, Management of Exemplaries and Management of Members. Thus, the Media_Library multiview class
delegue the Media library system use as a means of loans to the LOANS class. It’s in the same way of the other
views, as Exemplaries and Counts_Adherents (Figure 2).

include <Loans.h> // include Loans class
include <Exemplaries.h> // include Exemplaries class
include < Counts_Adherents.h> // include Counts_Adherents class
 ….
Class Media_Library
public:
 loans_view: Loans
 exemplaries_view: Exemplaries
 counts_adherents _view: Counts_Adherents
 ….
End; // end of class

Figure 2: Views declaration in a multiview class in C++

The aggregation relationship used in our approach, so much in its realization that in its conceptual
taxonomies, is not modified but it is stereotyped by the <<interpreted>> word (Figure 3). This stereotype is
added to signal that it is necessary to add to the aggregation class (Media_Library mutiviews class), the
primitives who have the export statute restraints to the instances having a specific viewpoint on the aggregation
class (Media_Library mutiviews class).

Media_Library

Loans

Counts_Adherents

Exemplaries

Class

Flexible class

Visibility

Legend

110

Figure 3: Visibility relationship representation in UML

In the VBOOL language, the multiview class instanciation consist in specifying a particular viewpoint. For
example Media_library_librarian: Media_Library (Loans, Exemplaries, Counts_Adherents) is an instance of
Media_Library having the viewpoint (Loans, Exemplaries, Counts_Adherents). The multiview class instance
according to a particular viewpoint in the new proposed approach is transformed to a simple declaration as all
other class. But, it is necessary to specify (to activate) the views constitute the viewpoint. For that, we propose to
add a mother class, named View, of all the classes representing the views of the system. This class has a boolean
attribute view_state (Figure 4) who return the view state and 2 operations activate_view and desactivate_view
(Figure 4) that permit respectively to activate and to disactivate a view (viewpoint is a combination of the active
views).

Figure 4: Interface of the View class

The Media_Library multiview class instanciation according to the Media_library_librarian viewpoint amount
to the declaration Media_library_librarian: *Media_Library and the activation of the three views Loans,
Exemplaries and Counts_Adherents by calling the three instructions (the views are initially all disactivated):

Media_library_librarian -> loans_view. activate_view();
 Media_library_librarian -> Exemplaries_view. activate_view();

Media_library_librarian -> Counts_Adherents_view. activate_view();

2.2. Mutual exclusion views

The object to use the viewpoint is to define access rights to the model. If we consider librarian's access for
example to our model the views Loans, Exemplaries and Counts_Adherents concern him. Contrary to the the
person in charge of members, the librarian must not have the right to change the adherent's feature
“block_count_adherent”, so to call this feature of the Counts_Adherents view. To solve this problem, the
“mutual exclusion views” concept has been introduced, that means to specify the views that cannot be
simultaneously in the same viewpoint. Thus, in the Media library Management example, we can create two
views inheriting from Counts_Adherents: the views Mod_Counts_Adherents and Not_Mod_ Counts_Adherents.
These two views are in mutual exclusion (Figure 5): that is to say Mod_Counts_Adherents view that will have
access the the person in charge of examplaries and Not_Mod_Counts_Adherents view that will have access
the librarian. Of the same way, the librarian must not have the right to change the
“number_available_exemplary” feature of a Exemplaries view, contrary to the the person in charge of
examplaries who can add new exemplary or to withdraw the damaged exemplaries by invocation the two
features “add_exemplary” or “withdraw_exemplary” of the Exemplaries view. Thus, we can also create two
views inheriting from Exemplaries, Mod_Exemplaries view that will have access the the person in charge of
examplaries and Not_Mod_Exemplaries view that will have access the librarian (Figure 5).

In order to not specify simultaneously in the same viewpoint two Mod_Exemplaries (=V1) and
Not_Mod_Exemplaries (=V2) views in mutual exclusion, we add a mutual reference in the two views. With the
mutual reference of V1 we can reach to the V2 view and can know the active or disactivate state of V2 and vice
versa. To achieve this, we add a mother class, named Exclusion_View, of all the classes representing the views
of the system. This class has a exclusion_view feature of View type to maintain the view reference in exclusion.

<<interpreted>>

Media_Library

<<interpreted >>
<<interpreted >>

Loans Exemplaries Counts_Adherents

View

 view_state : BOOL

 void activate_view()
 void desactivate_view()

111

Mod_ Exemplaries.exclusion_view = Not_Mod_ Exemplaries;
Not_Mod_ Exemplaries. exclusion_view = Mod_ Exemplaries;

Figure 5: Oriented diagram viewpoint in UML

2.3. Viewpoint evolution Dynamic

The view declaration is static of multiview class, but the viewpoint mechanism is dynamic. The features
(attributes and methods) meentioned in the paragraph (II.2) permit the viewpoint evolution applicable to the
objects. These features are evidently submitted to strict rules. The use of such primitive allows the user to make
evolve dynamically the viewpoints of the objects and give him the possibility therefore to make evolve his
access rights on the model. These features will be declared in the View class having the public visibility.

3. U_VBOOM method

VBOOM is a method of analyse/design which integrates the multiview approach in a coherent and deductive
method [Coulette and al., 1996][Kriouile, 1999]. VBOOM permits to lead specific partial designs to the
different use types of the system. Every use type of the system is associated to a sub-system of the global
system. These sub-systems (named as model’s view) are melted thereafter as a model global multiview,
accessible according to several viewpoints.

Like what has been made for the OMT[Rumbaugh and al., 1995], OOSE[Jacobson and al., 1992],
BOOCH[Booch, 1994] methods, the VBOOM method must take in account the standard UML, i.e to integrate
the concepts and the notations used in the unified modeling language in the VBOOM method, by using its
possibilities of specialization and extension (notably the stereotypes) [Hair, 2000][Hair and al., 2001][Hair and
al., 2002]. The U_VBOOM method presents an adaptation of VBOOM to UML. The development model of
U_VBOOM is iterative, incremental, and piloted by the use case of UML [Jacobson and al., 1992][Jacobson and
al., 1999]. In considering only one iteration, we can divide the analyse/design of a system in three stages.

3.1. Stage1: global analysis

The object of the first stage is to definie model components. It is a stage of global specification of
development by U_VBOOM. It consists in providing a precise description of the different needs of the system
users.

To express the users needs through the system, U_VBOOM proposes the use cases of UML (Figure 6). The
views elaboration of the system is supported by the use cases description technique in actions [Hair and al.,
2001][Hair and al., 2002]. This technique consists to describe the use cases as an action sequence wich will
make an actor to achieve his goal. An action is an effect produced by an actor acting in way given on the system
or by the system itself [Dano and al., 1997]. Every action has a number and a label who are indicated in the
“Decomposition in actions” column (Figure 7).

The use cases identified for the actors and the intersection of their actions are going to permit to cut the
viewpoints in views. A view corresponds to actions list to a given viewpoint or result of actions intersection of
viewpoints group (Figure 8).

View Exclusion_view
exclusion_view

<<interperted>>
<<interpreted>> <<interpreted>>

Media_Library

<<interpreted>>

<<interpreted>>

ExemplariesCounts _Adherents

Loans

Mod_
Exemplaries

Mod_ Counts
_Adherents

Not_Mod_
Counts _Adherents

Not_Mod _
Exemplaries

112

Figure 6: Use case diagram of MEDIA LIBRARY system

Actors Use case Decomposition in actions

Loan

a1: To identify an adherent
a2: Count adherent (To check right loan for member)
a3: To seek for an exemplary
a4: To treat an exemplary (to validate the output of an
exemplary)
a5: To treat adherent (to indicate the loan by adherent)

Reservation

a1: To identify an adherent
a2: Count adherent (To check right loan for member)
a3: To seek for an exemplary
a6: To reserve an exemplary

Restitution

a1: To identify adherent
a3: To seek for an exemplary
a4: To treat an exemplary (to validate the input of exemplary)
a5: To treat adherent (to indicate the return of an exemplary)

Loan if counts blocked a1: To identify adherent
a2: Count adherent (To check right loan for member)

Librarian

Identification member a1: To identify adherent
New adherent a 2: Adherent account (to Add adherent)Person in

charge of
adherents Litigation

a1: To identify adherent
a2: Count adherent (Blocked count adherent)
a 7: To inform adherent

Exemplary addition a 3: To seek for an exemplary
a 8: To add copy

Person in
charge of

exemplaries Exemplary withdrawal a 3: To seek exemplary
a 9: To withdraw the damage exemplary

Figure 7: Decomposition of the different use cases in actions

Figure 8: Viewpoint diagrams of the MEDIA LIBRARY system

The global analysis stage continues to identify objects and classes belong to the with problem domain. The
classes are discovered, scenarios after scenarios, by means of objects who, in collaborating, achieve use cases. It
leads to the development of the class diagrams (Figure 9) and the object diagrams.

Person in
charge of
adherents

New member

Identification member

reservation

restitution

Loan

litigation

Librarian

uses uses
uses

Extend

Loan if count blocked

Exemplary addition

Exemplary
withdrawal

Person in
charge of

exemplaries

<<viewpoint >>
Management of Loans

V2V1 V3

<< viewpoint>>
Management of Members

V1

<< viewpoint>>
Management of Exemplaries

V2

Counts_Adherents =V1={ a1, a2, a7 }
Exemplaries=V2 ={ a3, a8, a9}
Loans =V3={ a4, a5, a6}

113

Finally, the packages can be identified to organise the modeling elements. The identified packages are gotten
by according to the logical criteria use type of an actor. These packages are going to become thereafter the sub-
system (named model’s view) during the second stage of the U_VBOOM method (Figure 10).

The classes constituting a package represent a part of class diagram of the system. This part is defined in
respecting the following rules:

- The only views (classes) of the package are those of its associated viewpoint;

- The classes joined by the customer relationship to one of the package classes;

- The classes jointed by inheritance of each package classes.

Figure 9: Initial class diagram of the MEDIA LIBRARY system

Figure 10: The 3 packages of the MEDIA LIBRARY system

3.2. Stage2: The sub-systems design

The global analysis of the U_VBOOM method is elaborated and it will be enriched in second stage. The
design of sub-systems (packages identified in the global analysis stage, named model’s view) permits the
translation of the analysis model. These sub-systems constitute an essential artifact of the second stage of the
U_VBOOM method. Indeed, the cutting out the solution space of the problem in sub-systems permits to land the
global system design to sub-systems designs. The design of sub-systems can be made in a disparate and
autonomous way and be led in parallel or sequential.

The second stage of U_VBOOM has for object to achieve the partials class diagrams and to define the
partials classes interfaces of every sub-systems (the class interface contains the list of its features). The designer
must come back toward to realise the use cases. The scenarios, the collaborations between analysis objects and
the class diagrams are refined to get the design classes constituting the partial dictionary of every sub-system.
The figure 11 represent the class diagram (partial) of the Management of Loans sub-system.

<<model’view >>
Management of

Loans

<<model’s view>>
Management of

Exemplaries

<<model’s view>>
Management of Members

<<interpreted>>

<<interpreted>>
<<interpreted>>

<<interpreted>>

<<interpreted>>

Media_Library

Works

Exclusion_view
Exclusion_View

LocaIn
 BePublishedIn

View

1

1

Emplacement

Loans

Not_Mod_
Exemplaries

Not_Mod_
Counts_ Adherents

Exemplaries Counts_ Adherents

Mod_
Exemplaries

Mod_Counts
_Adherents

Support

AudioCD VideoCassetteAudioCassette

Author *

SaveIn

Book

114

Figure 11: Class diagram of the Management of Loans sub-system

3.3. Stage3: Global model design

The third stage of the U_VBOOM method provides to the process designers to melt the differents partials
class diagrams and the differents partials class interfaces of the sub-systems obtainde from the second stage of
the method. The melting process proposes to the designers the heuristic to manage the conflicts appeared during
of this stage (polysemys, synonymies, homonymies...) (Figure 12). In our example, the global model is relatively
close to the Management of Loans sub-system because this last is predominant in the system, but this situation
is not evidently a generality. The sub-systems obtained are tested and validated in order to be coded in the
implementation activity.

Figure 12: Class diagram of the Media library management

Exclusion_view Exclusion_View

BePublishedIn

View

Timer

1

* Write *

WorksAuthor

Variety Opera Film Book

AudioCD

Book

AudioCassette

VideoCassette

Support
LocaIn

1

1

Emplacement

Loans

SaveIn

<<interpreted>>
<<interpreted>> <<interpreted>>

Media_Library

Mod_
Exemplaries

*
Adherent

Not_Mod_
Counts_Adherents

Counts_AdherentsExemplaries

Interpreted_Work Not_Interpreted_Work

Variety Opera Film
Works

AudioCD

Book

AudioCassette

VideoCassette

support

Exclusion_view Exclusion_View

<<interpreted>> <<interpreted>>

Adherent

*

View

Timer

SituTo

1

1

Emplacement

Loans

Not_Mod_
Exemplaries

Not_Mod_
Counts_Adherents

Exemplaries Counts_Adherents

Mod_
Exemplaries

<<interpreted>>
<<interpreted>>

Media_Library

<<interpreted>> Mod_Counts
_Adherents

BePublishedIn

1

 * Write *

WorkAuthor

DistributedOn

115

4. Conclusion

The assimilation of relationship visibility of VBOOM in UML to an interpreted aggregation encouraged the
integration of UML in VBOOM. The U_VBOOM method that represents the result of the VBOOM adaptation
under the UML standard is incremental, iterative and piloted by the use cases.

The decomposition of the system in packages, who became the sub-system, by the logical cutting based on
use type permitted to land the global system design to the sub-systems designs. The new approach presented, in
this article, of relationship visibility assimilation permitted to solve the multi-targets code generation problem as
(C++, Java, Eiffel,etc.) from the UML classes gotten by an oriented viewpoint modeling.

The work describes herein is part of a project which define a methodology of development of components
multiview objects. Among the tasks remaining to achieve in this project, we can mention:

- the definition of the composing multi-views notion as regrouping of multiview classes,

- the development of a basis of design pattern supporting the viewpoints approach,

- the realization of an environment support of U_VBOOM.

References
[Bardou, 1998] Bardou, D., (1998) Etude de langages à prototypes, du mécanisme de délégation et de son rapport à la notion de point de
vue. Doctorate Thesis in Computer Science, LIRMM, Université de Montpellier2.
[Booch, (1994] Booch, G., (1994) Object-Oriented Analysis and Design with Applications. (Second edition), Benjamin/Cummings,
Redwood City.
[Carré and al., 1991] Carré, B., And Geib, J.M., (1991) The Point of View notion for Multiple Inheritance. In Proceedings of the
ECOOP/OOPSLA.
[Coulette and al.,1996] Coulette, B., Kriouile, A., and Marcaillou, S., (1996) L’approche par points de vue dans le développement orientée
objet de systèmes complexes. L’Objet vol. 2, nr. 4, pp. 13-20.
[Dano, and al.1997] Dano, B., Briand, H., and Barbier, F., (1997) An Approach Based on the Concept of Use Cases to Produce Dynamic
Object-Oriented Specifications. In Proceedings of the Third IEEE International Symposium on Requirements Engineering.
[Finkelstein and al.,1993] Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., and Nuseibeh, B., (1993) Inconsistency Handling in Multi-
Perspective Specifications. In Proceedings of the ESEC'93, Garmish-Paternkirchen (D), pp. 84-99.
[Finkelstein and al.,1990] Finkelstein, A., Kramer, J., and Goedicke, M., (1990) Viewpoint Oriented Software Development. Génie Logiciel
& Application, Toulouse, pp. 337-351.
[Hair, 2000] Hair, A., (2000) Vers une démarche unifiée basée sur le concept point de vue. Scientific conference on the systems engineering,
NîmeTIC2000, Nîme.
[Hair and al., 2001] Hair, A., Kriouile, A., and Coulette, B., (2001) VUML : Une méthode d'analyse et de conception orientée objet, intégrant
UML et le concept de point de vue. International Conference on Systems, Software Engineering and their applications, ICSSEA'2001, Paris,
France, vol. 3.
[Hair and al., 2002] Hair, A., Kriouile, A., and Coulette, B., (2002) Un processus d'analyse et de conception unifié basé sur le concept de
point de vue. Proceeding of the Acte 6th Africain Conference on Research in Computer Science, CARI'02, Yaoundé, Cameroun, pp. 229-
237.
[Harrison and al., 1993] Harrison, W., and Ossher, H., (1993) Subject-oriented programming: a critique of pure objects, in Proceedings of
OOPSLA’93 ; Washington D.C., pp. 411-428.
[Jacobson and al., 1999] Jacobson, I., Booch, G., and Rumbaugh, J., (1999) The Unified Software Development Process. Addison Wesley,
Inc..
[Jacobson and al., 1992] Jacobson, I., Christerson, M., Jonsson, P., and Overgaard, G., (1992) Object-Oriented Software Engineering, A Use
Case Driven Approach. Addison-Wesley.
[Kaplan and al., 1995] Kaplan, H.M., Harrison, W., Katz, A., and Kruskal, V., (1995) Subject-oriented composition rules. In Proceedings of
OOPSLA’95, Austin, TX, pp. 235-250.
[Kriouile,1995] Kriouile, A., (1995) VBOOM, une méthode d’analyse et de conception par objet fondée sur les points de vue. Thesis in
Computer Science, faculté des sciences de Rabat, Maroc.
[Lopez and al., 1998] Lopez, N., Migueis, J., and Pichon, E., (1995) Intégrer UML dans vos projets. Eyrolles Edition.
[Marcaillou, 1995] Marcaillou, S., (1995) Intégration de la notion de points de vue dans la modélisation par objets ; Le langage VBOOL.
Thèses de l’université Paul Sabatier, Toulouse, France.
[Meyer, 1995] Meyer, B., (1995) Object success - A managers’s guide. Prentice Hall - The Object-Oriented Series.
[Mili and al., 1999] Mili, H., Dargham, J., Mili, A., Cherkaoui, O., and Godin, R., (1999) View programming of OO applications. TOOLS,
USA.
[Nassar, 1999] Nassar, M., (1999) Vers une programmation orientée objet par point de vue - Conception et réalisation d’un compilateur pour
le langage VBOOL -. Thesis in Computer Science, universite Mohamed V, ENSIAS, Rabat, Maroc
[Omg, 2001] Omg, (2001) Unified Modeling Language (UML), version 1.4. OMG Document formal/2001-09-07, http://www.omg.org/cgi-
bin/doc?formal/01-09-67.
[Rumbaugh and al.1995] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W., (1995) OMT : Modélisation et conception
orientées objet. Prentice Hall.
[Rumbaugh and al.1999] Rumbaugh, J., Jacobson, I., and Booch, G., (1999) The Unified Modeling Language Reference Manual. Addison
Wesley.
[Shilling and al.,1989] Shilling, J., and Sweeny, P., (1989). Three Steps to Views. In Proceedings of OOPSLA’89, New Orleans, LA, pp.
353-361.
[Stroustrup, 1997] Stroustrup, B., (1997) The C++ Programming Language. (Third Edition), Addison-Wesley.

	AMO – Advanced Modeling and Optimisation, Volume 5, Number 2, 2003
	1. Introduction
	2. The visibility relationship and its derived concepts in UML
	2.1. Visibility relationship
	2.2. Mutual exclusion views
	2.3. Viewpoint evolution Dynamic

	3. U_VBOOM method
	3.1. Stage1: global analysis
	
	
	
	
	Actors
	Decomposition in actions

	3.2. Stage2: The sub-systems design
	3.3. Stage3: Global model design

	4. Conclusion
	References€

