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Abstract
In this paper the abstract of the thesis ”New Interior Point Al-

gorithms in Linear Programming” is presented. The purpose of the
thesis is to elaborate new interior point algorithms for solving lin-
ear optimization problems. The theoretical complexity of the new
algorithms are calculated. We also prove that these algorithms are
polynomial. The thesis is composed of seven chapters. In the first
chapter a short history of interior point methods is discussed. In the
following three chapters some variants of the affine scaling, the projec-
tive and the path-following algorithms are presented. In the last three
chapters new path-following interior point algorithms are defined. In
the fifth chapter a new method for constructing search directions for
interior point algorithms is introduced, and a new primal-dual path-
following algorithm is defined. Polynomial complexity of this algo-
rithm is proved. We mention that this complexity is identical with
the best known complexity in the present. In the sixth chapter, using
a similar approach with the one defined in the previous chapter, a new
class of search directions for the self-dual problem is introduced. A
new primal-dual algorithm is defined for solving the self-dual linear
optimization problem, and polynomial complexity is proved. In the
last chapter the method proposed in the fifth chapter is generalized for
target-following methods. A conceptual target-following algorithm is
defined, and this algorithm is particularized in order to obtain a new
primal-dual weighted-path-following method. The complexity of this
algorithm is computed.
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Introduction

In this thesis we discuss interior point methods (IPMs) for solving linear
optimization (LO) problems. Linear optimization is an area of mathemati-
cal programming dealing with the minimization or maximization of a linear
function, subject to linear constrains. These constrains can be expressed
by equalities or inequalities. There are many applications of linear optimiza-
tion. For the important applications of LO in economics Kantorovich [75] and
Koopmans [82] received the Nobel Price in Economics in 1976. Dantzig pro-
posed in 1947 the well-known simplex method for solving LO problems. The
simplex algorithm has been continuously improved in the past fifty years, and
one has been convinced of the practical efficiency of the algorithm. Although
the simplex algorithm is efficient in practice, no one could prove polyno-
mial complexity of the algorithm. This property of polynomial complexity
is important from the theoretical point of view. For different variants of the
simplex algorithm were constructed examples illustrating that in the worst
case the number of iterations required by the algorithm can be exponential.
Khachiyan developed in 1979 the first polynomial algorithm for solving the
LO problem. The ellisoid method of Khachiyan is an important theoretical
result, but the practical implementation was not a competitive alternative
of the simplex method. Karmarkar proposed his polynomial algorithm in
1984. Karmarkar’s algorithm uses interior points of the polytope to approxi-
mate the optimal solution. The complexity of this algorithm is smaller than
Khachiyan’s and the implementation of Karmarkar’s algorithm proved to be
efficient in practice too, especially when the size of the problem is large. As
a consequence the research in the area of LO became very active, and the
field of IPMs remained an important research topic in the present too.

The purpose of the thesis is to elaborate new interior point algorithms for
solving LO problems, to calculate the theoretical complexity of the new al-
gorithms and to prove that these algorithms are polynomial.

The thesis is composed of seven chapters. In the first chapter a short history
of IPMs is presented. Although we can not separate these methods into
classes, because of the strong connection between different methods, we can
delimit three main directions: affine scaling methods, projective methods
with a potential function and path-following methods. This chapter contains
many references to articles and books written in the area of IPMs. There
is a very extensive bibliography in this theme, therefore only a part of the
available articles were cited. In spite of this fact a special effort was made
to include the most part of the important articles dealing with interior point
algorithms for solving LO problems.
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In the following three chapters we present the affine scaling, the projective
and the path-following methods. In Chapter 2 we consider two variants of
the primal affine scaling algorithm and a dual affine scaling algorithm. The
primal algorithm is generalized for the case when the objective function is
continuously differentiable. In this chapter we study also two methods of
finding the starting interior point.

In Chapter 3 we consider the LO problem in Karmarkar’s form. We prove
that using a projective transformation the LO problem can be transformed
to this form. The potential function is defined and two variants of Kar-
markar’s algorithm are discussed. Using the potential function we prove the
polynomiality of Karmarkar’s algorithm.

In Chapter 4 we deal with path-following methods. The central path, and
the optimal partition is defined and Newton’s method is presented. In the
final part of this chapter a path-following primal-dual algorithm is studied.

In Chapter 5, 6 and 7 new path-following interior point algorithms are de-
fined. In Chapter 5 we present a new method for constructing search di-
rections for interior point algorithms. Using these results we define a new
primal-dual path-following algorithm. We prove that this algorithm is poly-
nomial, and it’s complexity is the same as the best known complexity.

In Chapter 6 we consider the self-dual embedding technique. Using a similar
method with the one defined in Chapter 5 we introduce a new class of search
directions for the self-dual problem. A new primal-dual algorithm is defined
for solving the self-dual LO problem, and the polynomiality of this algorithm
is proved. This method provides an elegant technique for finding the starting
interior point of the algorithm.

In Chapter 7 we generalize the method proposed in Chapter 5 for target-
following methods. We define a conceptual target-following algorithm, and
we particularize this algorithm in order to obtain a new primal-dual weighted-
path-following method. The complexity of this algorithm is computed.
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Iosif for his careful guidance to complete my work. I thank also the generous
support of my colleagues from the Faculty of Mathematics and Computer Sci-
ence of the ”Babeş-Bolyai” University of Cluj-Napoca, and from the Eötvös
Loránd University of Budapest. I wish to express my thanks also to Prof.
dr. Klafszky Emil from the ”Tehnical University” of Budapest, and to the
late Prof. dr. Sonnevend György. I am also grateful to Prof. dr. Terlaky
Tamás, from the McMaster University, Hamilton, Canada.
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1 Preliminaries

In the first chapter a history of interior point methods is presented. We
discuss the relation between the simplex method and IPMs [25, 79, 53, 20, 92,
74, 49, 3, 111, 78, 67], the ellipsoid method [77, 108, 130, 131], Karmarkar’s
method, and the impact of his algorithm on the area of optimization [76, 83,
84, 102, 38, 39, 40, 44, 66, 42].
IPMs are classified as affine scaling algorithms [38, 39, 40, 1, 21, 119, 17, 116,
26], projective algorithms [76, 11, 13, 14, 15, 45, 46, 43, 47, 48, 50, 51, 52,
58, 114, 124, 125, 126, 127, 12, 16, 54, 62, 61, 64, 113] and path-following
algorithms [109, 99, 57, 105, 91, 81, 35, 36, 71, 88, 89, 59, 60, 104, 90, 65, 70].
The case when there is no strictly feasible starting point led to infeasible
start IPMs [97, 22, 120, 121, 122, 123]. An alternative technique is the self-
dual embedding method [129, 90, 118, 69]. The results in the area of IPMs
for solving LO problems have been published in recent books on the subject
[7, 8, 103, 123, 128, 118, 17, 27, 29]. We also deal with the following topics:
convex optimization and semidefinite programming [93, 72, 63, 9, 10, 23, 98,
5, 6], multiobjective optimization [18, 19, 115, 2, 30, 33], implementation of
IPMs [87, 85, 86, 4, 24, 56, 28, 31, 32, 34] and subspace methods [110, 73].

2 Affine-Scaling Algorithms

2.1 Geometric Approach

We consider the LO problem in the following standard form:

min cTx,

Ax = b, (P )

x ≥ 0,

where A ∈ <m×n, rank(A) = m, b ∈ <m and c ∈ <n. The dual of this
problem can be written in the following form:

max bTy,

ATy + s = c, (D)

s ≥ 0.

In this section we point out that the solving procedure of the LO problem
with an interior point algorithm can be split up in three different subprob-
lems: finding a starting interior point, generating the next iterate, and deter-
mining the stopping procedure. We discuss geometric aspects of the second
subproblem.
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2.2 Affine-Scaling Primal Algorithm

We consider two variants of the affine-scaling primal algorithm for solving
LO problems. We obtain also a generalized form of the primal algorithm.
In this case the objective function can be any continuously differentiable
function. We discuss the technique of scaling, the step size, the question of
how to start the algorithm, and the stopping criterion. We also deal with the
minimization of a linear objective function on the intersection of an affine
space with an ellipsoid.

2.3 Affine-Scaling Dual Algorithm

In this section the affine-scaling dual algorithm is studied. The dual algo-
rithm is in fact the affine-scaling algorithm applied for the dual problem. We
deduce this algorithm in a similar way as the primal algorithm. We discuss
the same topics: scaling, step size, stopping criteria. At each step of the
algorithm an estimate of the primal problem is computed.

3 Projective Algorithms with

Potential Function

3.1 Karmarkar’s Form

Karmarkar’s paper [76] had an important effect on research in the area of op-
timization. His method is the first polynomial projective method for solving
the LO problem. The algorithm has many variants. A common feature of
these algorithms is that the LO problem is considered in the following special
form:

min cTx,

Ax = 0,

eTx = n,

x ≥ 0,

(K)

where A ∈ <m×n and e = [1, . . . , 1]T is the n-dimensional all-one vector. Let
us consider the LO problem in standard form. We prove that if the set of
optimal solutions of the primal problem is not empty, and this set is bounded,
then the primal problem can be transformed in the equivalent form (K). We
present two different methods of constructing the problem (K).
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3.2 Optimal Value

We prove that if the set of optimal values of both the primal, and the dual
problems is not empty, then the primal-dual pair is equivalent to the following
problem:

min x1,

A1x = b1, (P1)

x ≥ 0,

and the optimal value is zero. Moreover, in this case there is a strictly feasible
starting solution, and we observe that the objective function is reduced to
the first component of x.

3.3 Projective Transformation

We apply a projective transformation to problem (P1). We prove that if
the set of optimal solutions of both the primal and the dual problems is
non-empty and bounded, then the primal-dual pair is echivalent to

min x1,

Ax = 0,

eTx = n,

x ≥ 0,

(K1)

and the optimal value of problem (K1) is zero.

3.4 Potential Function

Consider the problem (K) and suppose that the optimal value is zero. The
potential function is defined in two different situations: first in the case when
x is feasible but not optimal solution, and secondly in the case when x is not
feasible. Some properties of the potential function are discussed.

3.5 Variants of Karmarkar’s Algorithm

We discuss two variants of Karmarkar’s algorithm. The first one is obtained
by applying the generalized form of the affine-scaling algorithm to the prob-
lem:

min ϕ(x),

Ax = 0,

x ≥ 0,
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where ϕ is the potential function. This variant is based on the papers of
Karmarkar [76], Todd-Burell [114] and Gonzaga [62]. To obtain the second
variant we transform the original problem (K) using a function τ . The
strictly feasible solution x0 is transformed in the vector e = [1, . . . , 1]T , and
the condition eTx = n is satisfied in the scaled space too. We apply a
scaled variant of Dikin’s algorithm to this problem, with the following slight
modification: returning to the original space will be done by using the inverse
function τ−1. Thus we obtain the second variant of Karmarkar’s algorithm.
This method was studied by Karmarkar [76], Roos [100], Terlaky [112] and
Schrijver [107]. In the next section we shall prove that this algorithm is
polynomial.

3.6 Polynomiality of Karmarkar’s Algorithm

In this section two technical lemmas are presented. These are due to Schrijver
[107]. We use these lemmas to prove that Karmarkar’s algorithm solves the
LO problem in polynomial time. We obtain the following final result. Let
ρ = 1

2
and σ = 1 − ln 2 > 0. Moreover, let ε > 0. If the optimal value

of problem (K) is zero, and we apply the second variant of Karmarkar’s
algorithm using the initial point x0 = e, then after no more than

k ≥ n

σ
ln
cT e

ε
,

iterations the algorithm stops, and the value of the objective function is not
greater than ε.

4 Path-Following Algorithms

4.1 Introduction

Consider the standard primal-dual pair. Let

P = {x ∈ <n | Ax = b, x ≥ 0},

D = {(y, s) ∈ <m ×<n | ATy + s = c, s ≥ 0},

be the set of strictly feasible solution of the primal, and the dual problem
respectively. Suppose that both problems have at least one feasible solution,
which is also interior point. Thus

∃ x > 0, x ∈ P ,
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∃ (y, s) ∈ D, s > 0.

This condition is called the interior point condition (IPC). We mention that
instead of (y, s) ∈ D we shall often write simply s ∈ D. We have the following
lemma.

Lemma 4.1 Let x̃ ∈ P and s̃ ∈ D. Then we have xT s = s̃Tx + x̃T s − x̃T s̃
for each x ∈ P and s ∈ D.

From this lemma we obtain the following consequence.

Consequence 4.2. For every K > 0, the set {(x, s) ∈ P ×D | xT s ≤ K}
is bounded.

Let us consider the function:

ψ : Rn
++ ×Rn

++ → Rn
++, ψ(x, s) = xs,

where Rn
++ = {x ∈ <n | x > 0} and xs = [x1s1, . . . , xnsn]T . It is well-known

the following theorem. An elegant proof was done by Roos and Vial [106].

Theorem 4.3 For every w ∈ <n
++ there is exactly one pair (x, s) ∈ P ×D,

x > 0, s > 0 such that ψ(x, s) = w.

4.2 Central Path

The central path is discussed in this section. We point out that if the IPC
holds, then the primal-dual central path is formed by the unique solutions of
the following system:

Ax = b, x ≥ 0,

ATy + s = c, s ≥ 0,

xs = µe,

where xs is the coordinatewise product of the vectors x and s, the n-dimen-
sional all-one vector is denoted by e, and µ > 0. Let (x(µ), s(µ)) be the
solution of the above system. Then we have the following lemma.

Lemma 4.4 The following assertions hold.
a) We have x(µ)T s(µ) = nµ.
b) The set formed by the points (x(µ), s(µ)) has at least one accumulation
point for µ→ 0 and this point is optimal solution of the pair (P )-(D).

In the following section we use this lemma to prove the Goldman-Tucker [55]
theorem.
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4.3 Optimal Partition

Let P∗ and D∗ be the set of optimal solutions of the primal and the dual
problem respectively. We introduce the notations:

B = {i | ∃ x ∈ P∗, xi > 0, 1 ≤ i ≤ n},

N = {i | ∃ s ∈ D∗, si > 0, 1 ≤ i ≤ n}.

We have the following theorem.

Theorem 4.5 (Goldman, Tucker) There exists a pair of optimal solutions
(x∗, s∗) of the primal and dual problems, such that x∗ + s∗ > 0.

From this theorem results that the sets B and N form a partition of the
index set.

4.4 Newton’s Method

Let f : <n → <n be a continuously differentiable function, and let J(x) be
the Jacobi matrix attached to f . Consider the system:

f(x) = 0.

Suppose we are given the vector x0. Then we obtain a sequence of points
using the formula:

xk+1 = xk − J(xk)−1f(xk).

If we introduce a step direction vector ∆xk, thus

xk+1 = xk + ∆xk,

and we have
J(xk)∆xk = −f(xk).

If x0 is sufficiently close to a solution of f , then this sequence is convergent.
The analysis of Newton’s method is very important from the point of view
of IPMs. We shall use these results later in the thesis to develop new IPMs.

4.5 Primal-Dual Path-Following Algorithm

Consider the LO problem in standard form, and suppose that the IPC holds
for a starting strictly feasible pair. In this section we develop the standard
primal-dual path-following algorithm. We apply Newton’s method to the
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system which defines the central path. Thus, we obtain step direction vec-
tors, by solving a system of linear equations. To guard against hitting the
boundary, by violating the nonnegativity constraints, we determine the max-
imum allowable step size. We perform a step by taking a fraction of this step
size. Hence we obtain a new interior point. We repeat the above procedure
till a stopping condition will be satisfied.

5 A New Class of Search Directions

5.1 Introduction

In this chapter we introduce a new method for finding search directions for
interior point methods in linear optimization. For some particular cases
we obtain the directions defined recently by Peng, Roos and Terlaky. We
develop a new short-update primal-dual interior point algorithm based on
one particular member of the new family of search directions. We prove that
this algorithm has also the best known iteration bound for interior point
methods.

Let us consider the LO problem in standard form, and suppose that the IPC
is satisfied. It is well known that using the self-dual embedding technique we
can always construct a LO problem in such a way that the IPC holds. Thus,
IPC can be assumed without loss of generality. Furthermore, the self-dual

embedding model yields x0 = s0 = e, and hence µ0 = (x0)T s0

n
= 1.

Finding the optimal solution of the primal-dual pair is equivalent to solving
the system:

Ax = b, x ≥ 0,

ATy + s = c, s ≥ 0, (1)

xs = 0,

where xs is the coordinatewise product of the vectors x and s, i.e.

xs = [x1s1, x2s2, . . . , xnsn]T .

We shall use also the notation

x

s
=

[
x1

s1

,
x2

s2

, . . . ,
xn

sn

]T

,

for each vector x and s such that si 6= 0, for all 1 ≤ i ≤ n. In fact for an
arbitrary function f , and an arbitrary vector x we will use the notation

f(x) = [f(x1), f(x2), . . . , f(xn)]T .
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The first and the second equations of system (1) are called the feasibility con-
disions. They serve for maintaining feasibility. The last equation is named
the complementarity condition. Primal-dual IPMs generally replace the com-
plementarity condition by a parameterized equation. Thus we obtain:

Ax = b, x ≥ 0,

ATy + s = c, s ≥ 0, (2)

xs = µe,

where µ > 0, and e is the n-dimensional all-one vector, i.e. e = [1, 1, . . . , 1]T .
If the IPC holds, then for a fixed µ > 0 the system (2) has a unique solution,
called the µ-center (Sonnevend [109]). The set of µ-centers for µ > 0 formes a
well-behaved curve, the central path. Polynomial-time IPMs generally follow
the central path approximately by using Newton’s method to obtain search
directions. In the following section we present a new method for constructing
search directions for IPMs.

5.2 A New Class of Directions

In this section we define a new method for finding search directions for IPMs.
Let <+ = {x ∈ < | x ≥ 0}, and let us consider the function

ϕ ∈ C1, ϕ : <+ → <+,

and suppose that the inverse function ϕ−1 exists. We observe that the system
of equations which defines the central path (2) can be written in the following
equivalent form:

Ax = b, x ≥ 0,

ATy + s = c, s ≥ 0, (3)

ϕ(xs) = ϕ(µe).

Now we can use Newton’s method for the system (3) to obtain a new class
of directions. An alternative variant is the following. The system (2) is
equivalent to

Ax = b, x ≥ 0,

ATy + s = c, s ≥ 0, (4)

ϕ

(
xs

µ

)
= ϕ(e),
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and we can use Newton’s method for the system (4). Thus we can define
new search directions. In the remaining part of this section we deal with the
system (4). The advantage of this variant is that we can introduce the vector

v =

√
xs

µ
,

and we can use it for scaling the linear system obtained by applying Newton’s
method.
Now assume that we have Ax = b, and ATy + s = c for a triple (x, y, s)
such that x > 0 and s > 0, i.e. x and (y, s) are strictly feasible. Applying
Newton’s method for the non-linear system (4) we get

A∆x = 0,

AT ∆y + ∆s = 0, (5)

s

µ
ϕ′

(
xs

µ

)
∆x+

x

µ
ϕ′

(
xs

µ

)
∆s = ϕ(e)− ϕ

(
xs

µ

)
.

We introduce the notations

dx =
v∆x

x
, ds =

v∆s

s
.

We have
µv(dx + ds) = s∆x+ x∆s, (6)

and

dxds =
∆x∆s

µ
. (7)

Consequently the linear system (5) can be written in the following form

Ādx = 0,

ĀT ∆y + ds = 0, (8)

dx + ds = pv,

where

pv =
ϕ(e)− ϕ(v2)

vϕ′(v2)
,

and Ā = Adiag(x
v
), where for any arbitrary vector ξ, we denote by diag(ξ)

the diagonal matrix having the elements of the vector ξ on the diagonal, and
in the same order.
We mention that ϕ(t) = t yields pv = v−1 − v, and we obtain the standard
primal-dual algorithm. Recently Peng, Ross and Terlaky [96] observed, that
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a new search direction can be obtained by taking pv = v−3 − v. The same
authors analysed in [95] the case pv = v−q − v, where q > 1. They have
introduced also a class of search directions based on self-regular proximities
(Peng, Ross and Terlaky [94]). Our general approach can be particularized
in such a way as to obtain, the directions defined in [95] and [96]. For

ϕ(t) = t2 we get pv = 1
2
(v−3− v), and for ϕ(t) = t

q+1
2 , where q > 1 we obtain

pv = 2
q+1

(v−q−v). We conclude that these search directions differ from those

defined in [95] and [96] only by a constant multiplier. In the following section
we use a different function to develop a new primal-dual algorithm.

5.3 A New Primal-Dual Algorithm

In this section we take ϕ(t) =
√
t, and we present a new primal-dual interior-

point algorithm based on the appropriate search directions. We have

pv = 2(e− v), (9)

We define a proximity measure to the central path

σ(xs, µ) =
‖pv‖

2
= ‖e− v‖ =

∥∥∥∥e−√
xs

µ

∥∥∥∥ ,
where ‖ · ‖ is the Euclidean norm (l2 norm). We introduce the notation

qv = dx − ds.

Note that from (8) we have dT
x ds = 0, thus the vectors dx and ds are orthog-

onal, and this implies
‖pv‖ = ‖qv‖.

As a consequence we mention that the proximity measure can be expressed
also with the vector qv, thus

σ(xs, µ) =
‖qv‖

2
.

We have

dx =
pv + qv

2
and ds =

pv − qv
2

,

hence

dxds =
p2

v − q2
v

4
. (10)

Now we are ready to define the algorithm.
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Algorithm 5.1 Let ε > 0 be the accuracy parameter, 0 < θ < 1 the update
parameter (default θ = 1

2
√

n
), and 0 < τ < 1 the proximity parameter (default

τ = 1
2
). Suppose that for the triple (x0, y0, s0) the interior point condition

holds, and let µ0 = (x0)T s0

n
. Furthermore, suppose σ(x0s0, µ0) < τ .

begin
x := x0; y = y0; s = s0;
µ := µ0;
while xT s > ε do begin
µ := (1− θ)µ;
Substitute ϕ(t) =

√
t in (5) and compute (∆x,∆y,∆s)

x := x+ ∆x;
y := y + ∆y;
s := s+ ∆s;

end
end.

In the next section we shall prove that this algorithm is well defined, thus
feasibility is maintained strictly and the condition σ(xs, µ) < τ is satisfied
throughout the algorithm. We shall obtain that this algorithm solves the
linear optimization problem in polynomial time.

5.4 Convergence Analysis

In the following lemma we give a condition which guarantees the feasibility
of the full Newton step. Let x+ = x + ∆x and s+ = s + ∆s be the vectors
obtained after a full Newton step.

Lemma 5.1 Let σ = σ(xs, µ) < 1. Then

x+ > 0 and s+ > 0,

thus the full Newton step is strictly feasible.

In the next lemma we analyse under which circumstances the Newton process
is quadratically convergent.

Lemma 5.2 Let σ = σ(xs, µ) < 1. Then

σ(x+s+, µ) ≤ σ2

1 +
√

1− σ2
.
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Thus the full Newton step provides local quadratic convergence of the prox-
imity measure.

In the following lemma we investigate the effect of the full Newton step on
the duality gap.

Lemma 5.3 Let σ = σ(xs, µ) and suppose that the vectors x+ and s+ are
obtained after a full Newton step, thus x+ = x + ∆x and s+ = s + ∆s. We
have

(x+)T s+ = µ(n− σ2),

hence (x+)T s+ ≤ µn.

In the next lemma we analyse the effect on the proximity measure of a Newton
step followed by an update of the parameter µ. Suppose that µ is reduced
by the factor (1− θ) in every iteration.

Lemma 5.4 Let σ = σ(xs, µ) < 1 and µ+ = (1 − θ)µ, where 0 < θ < 1.
Then

σ(x+s+, µ+) ≤ θ
√
n+ σ2

1− θ +
√

(1− θ)(1− σ2)
.

Moreover, if σ < 1
2
, θ = 1

2
√

n
and n ≥ 4 then we have σ(x+s+, µ+) < 1

2
.

A consequence of Lemma 5.4 is that the algorithm is well defined. Indeed,
the conditions (x, s) > 0 and σ(xs, µ) < 1

2
are maintained throughout the

algorithm. In the next lemma we analyse the question of the bound on the
number of iterations.

Lemma 5.5 Suppose that the pair (x0, s0) is strictly feasible, µ0 = (x0)T s0

n

and σ(x0s0, µ0) < 1
2
. Let xk and sk be the vectors obtained after k iterations.

Then for

k ≥
⌈

1

θ
log

(x0)T s0

ε

⌉
,

we have (xk)T sk ≤ ε.

We know that using the self-dual embedding we can assume without loss
of generality that x0 = s0 = e, hence µ0 = 1. In this case we obtain the
following lemma.

Lemma 5.6 Suppose that x0 = s0 = e. Then Algorithm 5.1 performs at
most ⌈

1

θ
log

n

ε

⌉
,
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interior point iterations.

Now using the default value for θ we obtain the following theorem.

Theorem 5.7 Suppose that x0 = s0 = e. Using the default values for θ
and τ Algorithm 5.1 requires no more than

O
(√

n log
n

ε

)
,

interior point iterations. The resulting vectors satisfy xT s ≤ ε.

5.5 Implementation of the Algorithm

We have implemented the new algorithm using object oriented techniques in
the C++ programming language. We obtained that if a starting strictly fea-
sible solution is available, then the new algorithm is generally more efficient
than the standard primal-dual algorithm.

5.6 Conclusion

In this chapter we have developed a new class of search directions based
on an equivalent form of the central path (2). The main idea was that we
have introduced a function ϕ, and we have applied Newton’s method for the
system (4). We have shown that particularizing the function ϕ accordingly
we obtain the directions defined in [95] and [96]. Using ϕ(t) =

√
t we have

defined a new primal-dual interior-point algorithm. We have proved, that this
short-update algorithm has also the iteration bound O(

√
n log n

ε
), the best

known iteration bound for IPMs. We have implemented the new algorithm,
and if a starting interior point was known, then generally we obtained better
results than with the standard primal-dual algorithm.

6 A New Method for Solving

Self-Dual Problems

6.1 Introduction

In the previous chapter, and in the paper [36] we have defined a new method
for finding search directions for IPMs in LO. Using one particular member
of the new family of search directions we have developed a new primal-dual
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interior point algorithm for LO. We have proved that this short-update algo-
rithm has also the O(

√
n log n

ε
) iteration bound, like the standard primal-dual

interior point algorithm. In this chapter we describe a similar approach for
self-dual LO problems. This method provides a starting interior feasible
point for LO problems. We prove that the iteration bound is O(

√
n log n

ε
) in

this case too.

Let us consider the LO problem in canonical form

min cT ξ

s.t. Aξ ≥ b, (CP )

ξ ≥ 0,

where A ∈ <m×k with rank(A) = m, b ∈ <m and c ∈ <k. The dual of this
problem is:

max bTπ

s.t. ATπ ≤ c, (CD)

π ≥ 0.

It is well-known the following theorem.

Theorem 6.1 (strong duality) Let ξ ≥ 0 and π ≥ 0 so that Aξ ≥ b and
ATπ ≤ c, in other words ξ is feasible for (CP ) and π for (CD). Then ξ and
π are optimal if and only if cT ξ = bTπ.

This theorem implies that if (CP ) and (CD) have optimal solutions then

Aξ − z = b, ξ ≥ 0, z ≥ 0,

ATπ + w = c, π ≥ 0, w ≥ 0, (11)

bTπ − cT ξ = ρ, ρ ≥ 0

has also a solution, where z ∈ <m, w ∈ <k and ρ ∈ < are slack variables.
Furthermore, every solution of (11) provides optimal solutions of (CP ) and
(CD). Let us introduce the matrix M̄ and the vectors x̄ and s̄(x̄) as

M̄ =

 0 A −b
−AT 0 c
bT −cT 0

 , x̄ =

 π
ξ
τ

 , and s̄(x̄) =

 z
w
ρ

 ,
where τ ∈ <. Consider the following homogeneous system

s̄(x̄) = M̄x̄, x̄ ≥ 0, s̄(x̄) ≥ 0. (12)

67



We mention that system (12) is the so-called Goldman-Tucker model [55, 117].
Let n̄ = m+k+1 and observe that the matrix M̄ ∈ <n̄×n̄ is skew-symmetric,
i.e. M̄T = −M̄ . Now we can state the following theorem.

Theorem 6.2 Consider the primal-dual pair (CP ) and (CD). Then we
have

1. If ξ and π are optimal solutions of (CP ) and (CD) respectively, then
for τ = 1 and ρ = 0 we obtain that x̄ is a solution of (12).

2. If x̄ is a solution of (12), then we have τ = 0 or ρ = 0, thus we cannot
have τρ > 0.

3. If x̄ is a solution of (12) and τ > 0, then ( ξ
τ
, π

τ
) is an optimal solution

of the primal-dual pair (CP )-(CD).

4. If x̄ is a solution of (12) and ρ > 0, then at least one of the problems
(CP ) and (CD) are infeasible.

In the next section we shall use the system (12) to accomplish the self-dual
embedding of the primal-dual LO pair.

6.2 Self-Dual Embedding

In this section we investigate a generalized form of the system (12). Our
approach follows the method proposed in [103]. Let us consider the LO
problem

min q̄T x̄

s.t. M̄ x̄ ≥ −q̄, (SP )

x̄ ≥ 0,

where M̄ ∈ <n̄×n̄ is a skew-symmetric matrix, q̄ ∈ <n̄ and q̄ ≥ 0. Moreover,
let

s̄(x̄) = M̄x̄+ q̄.

We are going to solve (SP ) with an IPM, thus we need starting feasible
solutions, so that x̄ > 0 and s̄(x̄) > 0. We say that in this case the problem
(SP ) satisfies the interior point condition (IPC). Unfortunately such starting
feasible solution for the problem (SP ) does not exist, but we can construct
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another problem equivalent to (SP ) which satisfies the IPC. For this purpose
let

r = e− M̄e and n = n̄+ 1,

where e denotes the all-one vector of length n̄. Furthermore, introduce the
notations

M =

[
M̄ r
−rT 0

]
, x =

[
x̄
ϑ

]
and q =

[
0
n

]
,

and consider the problem

min qTx

s.t. Mx ≥ −q, (SP )

x ≥ 0.

Observe that the matrix M is also skew-symmetric, and problem (SP ) sat-
isfies the IPC. Indeed, we have

M

[
e
1

]
+ q =

[
M̄ r
−rT 0

] [
e
1

]
+

[
0
n

]
=

[
M̄e+ r
−rT e+ n

]
=

[
e
1

]
.

We have used that the matrix M̄ is skew-symmetric, thus eTM̄e = 0, and
this equality yields

−rT e+ n = −(e− M̄e)T e+ n = 1.

In order to solve the problem (SP ) we use an IPM. Let

s = s(x) = Mx+ q,

and consider the path of analytic centers [109], the primal-dual central path

Mx+ q = s,

xs = µe,
(13)

where µ > 0, and xs is the coordinatewise product of the vectors x and s. It is
well-known that if the IPC holds for the problem (SP ), then the system (13)
has a unique solution for each µ > 0. IPMs generally follow the central path
by using Newton’s method. In the next section we are going to formulate an
equivalent form of the central path, and we shall apply Newton’s method to
obtain new search directions.
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6.3 A New Class of Directions

New search directions have been studied recently by Peng, Roos and Terlaky
[96, 95, 94]. In a recent paper [36], and in the previous chapter we have
proposed a different approach for defining a new class of directions for LO.
In this section we propose a similar approach for the self-dual problem (SP ).
Thus, we introduce a new class of directions for the problem (SP ). Let
<+ = {x ∈ < | x ≥ 0}, and let us consider the function

ϕ ∈ C1, ϕ : <+ → <+,

and suppose that the inverse function ϕ−1 exists. Then the system of equa-
tions which defines the central path (13) is equivalent to

Mx+ q = s,

ϕ

(
xs

µ

)
= ϕ(e).

(14)

Using Newton’s method for the system (14) we obtain new search directions
for the problem (SP ). Denote

v =

√
xs

µ
,

and assume that (x, s) > 0 and Mx + q = s, thus x is an interior feasible
solution of the problem (SP ). Applying Newton’s method for the system
(14) we get

M∆x = ∆s, (15a)

s

µ
ϕ′

(
xs

µ

)
∆x+

x

µ
ϕ′

(
xs

µ

)
∆s = ϕ(e)− ϕ

(
xs

µ

)
(15b)

We introduce the notations

dx =
v∆x

x
, ds =

v∆s

s
.

We have
µv(dx + ds) = s∆x+ x∆s, (16)

and

dxds =
∆x∆s

µ
. (17)

Consequently (15b) can be written in the following form

dx + ds = pv, (18)
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where

pv =
ϕ(e)− ϕ(v2)

vϕ′(v2)
.

Now using that M is skew-symmetric we get

∆xT ∆s = ∆xTM∆x = −∆xTM∆x,

hence ∆xT ∆s = 0. Moreover, from (17) follows

dT
x ds = eT (dxds) =

1

µ
eT (∆x∆s) =

1

µ
∆xT ∆s = 0,

thus dx and ds are orthogonal. We shall use this relation later in this chapter.
We conclude that in this section we have defined a class of search directions
for the problem (SP ). For this purpose we have used a function ϕ to trans-
form the system (13) in an equivalent form. In the next section we shall
consider a particular member of this class of search directions. Thus we shall
develop a new polynomial algorithm for the self-dual problem (SP ).

6.4 The Algorithm

In the remaining part of this chapter we assume that ϕ(x) =
√
x. Using this

function we present a new primal-dual interior-point algorithm for solving
the problem (SP ). Consequently, we obtain also a solution of (CP ) and
(CD). In this case applying Newton’s method for the system (14) yields

M∆x = ∆s,√
s

µx
∆x+

√
x

µs
∆s = 2

(
e−

√
xs

µ

)
.

(19)

For ϕ(x) =
√
x we have

pv = 2(e− v), (20)

and we can define a proximity measure to the central path by

σ(x, µ) =
‖pv‖

2
= ‖e− v‖ =

∥∥∥∥e−√
xs

µ

∥∥∥∥ ,
where ‖ · ‖ denotes the Euclidean norm (l2 norm). Let us introduce the
notation

qv = dx − ds

Now using that the vectors dx and ds are orthogonal we obtain

‖pv‖ = ‖qv‖,
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therefore the proximity measure can be written in the form

σ(x, µ) =
‖qv‖

2
.

Moreover, we have

dx =
pv + qv

2
, ds =

pv − qv
2

and dxds =
p2

v − q2
v

4
. (21)

The algorithm can be defined as follows.

Algorithm 6.1 Let ε > 0 be the accuracy parameter and 0 < θ < 1 the
update parameter (default θ = 1

2
√

n
).

begin
x := e; µ := 1;
while nµ > ε do begin
µ := (1− θ)µ;
Compute ∆x using (19);
x := x+ ∆x;

end
end.

In the next section we shall prove that this algorithm solves the linear opti-
mization problem in polynomial time.

6.5 Complexity analysis

In this section we are going to prove that Algorithm 6.1 solves the problem
(SP ) in polynomial time. In the first lemma we investigate under which
conditions the feasibility of the full Newton step is assured. Let x+ = x+∆x
and

s+ = s(x+) = M(x+ ∆x) + q = s+M∆x = s+ ∆s.

Using these notations we can state the lemma.

Lemma 6.3 Let σ = σ(x, µ) < 1. Then the full Newton step is strictly
feasible, hence x+ > 0 and s+ > 0.

In the following lemma we formulate a condition which guarantees the quad-
ratic convergence of the Newton process. We mention that this requirement
will be identical to that one used in Lemma 6.3, namely σ(x, µ) < 1.
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Lemma 6.4 Let σ = σ(x, µ) < 1. Then

σ(x+, µ) ≤ σ2

1 +
√

1− σ2
.

Hence, the full Newton step is quadratically convergent.

From the self-dual property of the problem (SP ) follows that the duality gap
is

2(qTx) = 2(xT s),

where x is a feasible solution of (SP ), and s = s(x) is the appropriate slack
vector. For simplicity we also refer to xT s as the duality gap. In the following
lemma we analyse the effect of the full Newton step on the duality gap.

Lemma 6.5 Let σ = σ(x, µ) and introduce the vectors x+ and s+ such that
x+ = x+ ∆x and s+ = s+ ∆s. Then we have

(x+)T s+ = µ(n− σ2).

Thus (x+)T s+ ≤ µn.

In the following lemma we investigate the effect on the proximity measure of
a full Newton step followed by an update of the parameter µ. Assume that
µ is reduced by the factor (1− θ) in each iteration.

Lemma 6.6 Let σ = σ(x, µ) < 1 and µ+ = (1− θ)µ, where 0 < θ < 1. We
have

σ(x+, µ+) ≤ θ
√
n+ σ2

1− θ +
√

(1− θ)(1− σ2)
.

Furthermore, if σ < 1
2

and θ = 1
2
√

n
then σ(x+, µ+) < 1

2
.

From Lemma 6.6 we conclude that the algorithm is well defined. Indeed, the
requirements x > 0 and σ(x, µ) < 1

2
are maintained at each iteration. In

the following lemma we discuss the question of the bound on the number of
iterations.

Lemma 6.7 Let xk be the k-th iterate of Algorithm 6.1, and let sk = s(xk)
be the appropriate slack vector. Then, for

k ≥
⌈

1

θ
log

n

ε

⌉
,
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we have (xk)T sk ≤ ε.

For θ = 1
2
√

n
we obtain the following theorem.

Theorem 6.8 Let θ = 1
2
√

n
. Then Algorithm 6.1 requires at most

O
(√

n log
n

ε

)
iterations.

6.6 Conclusion

In this chapter we have developed a new class of search directions for the
self-dual linear optimization problem. For this purpose we have introduced a
function ϕ, and we have used Newton’s method to define new search di-
rections. For ϕ(x) =

√
x these results can be used to introduce a new

primal-dual polynomial algorithm for solving (SP ). We have proved that
the complexity of this algorithm is O

(√
n log n

ε

)
.

7 Target-Following Methods

7.1 Introduction

In Chapter 5 and in the recent paper [36] we have introduced a new method
for finding search directions for IPMs in LO, and we have developed a new
polynomial algorithm for solving LO problems. It is well-known that using
the self-dual embedding we can find a starting feasible solution, and this point
will be on the central path. In the previous chapter we have proved that this
initialization method can be applied for the new algorithm as well. However,
practical implementations often don’t use perfectly centered starting points.
Therefore it is worth analysing the case when the starting point is not on
the central path. In this chapter we develop a new weighted-path-following
algorithm for solving LO problems. This algorithm has been introduced in
[37]. We conclude that following the central path yields to the best iteration
bound in this case as well.

It is well known that with every algorithm which follows the central path
we can associate a target sequence on the central path. This observation
led to the concept of target-following methods introduced by Jansen et al.
[71]. A survey of target-following algorithms can be found in [103] and
[68]. Weighted-path-following methods can be viewed as a particular case
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of target-following methods. These methods were studied by Ding and Li
[41] for primal-dual linear complementarity problems, and by Roos and den
Hertog [101] for primal problems. In this chapter we consider the LO prob-
lem in standard form, and we assume that the IPC holds. Using the self-dual
embedding method a larger LO problem can be constructed in such a way
that the IPC holds for that problem. Hence, the IPC can be assumed without
loss of generality. Finding the optimal solutions of both the original problem
and its dual, is equivalent to solving the following system

Ax = b, x ≥ 0,

ATy + s = c, s ≥ 0, (22)

xs = 0,

where xs denotes the coordinatewise product of the vectors x and s. The
first and the second equations of system (22) serve for maintaining feasibility,
hence we call them the feasibility conditions. The last relation is the comple-
mentarity condition, which in IPMs is generally replaced by a parameterized
equation, thus we obtain

Ax = b, x ≥ 0,

ATy + s = c, s ≥ 0, (23)

xs = µe,

where µ > 0, and e is the n-dimensional all-one vector, thus e = [1, 1, . . . , 1]T .
If the IPC is satisfied, then for a fixed µ > 0 the system (23) has a unique
solution. This solution is called the µ-center (Sonnevend [109]), and the
set of µ-centers for µ > 0 formes the central path. The target-following
approach starts from the observation that the system (23) can be generalized
by replacing the vector µe with an arbitrary positive vector w2. Thus we
obtain the following system

Ax = b, x ≥ 0,

ATy + s = c, s ≥ 0, (24)

xs = w2,

where w > 0. If the IPC holds then the system (24) has a unique solution.
This feature was first proved by Kojima et al. [80]. Hence we can apply New-
ton’s method for the system (24) to develop a primal-dual target-following
algorithm. In the following section we present a new method for finding
search directions by applying Newton’s method for an equivalent form of
system (24).
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7.2 New Search-Directions

In this section we introduce a new method for constructing search directions
by using the system (24). Let <+ = {x ∈ < | x ≥ 0}, and consider the
function

ϕ ∈ C1, ϕ : <+ → <+.

Furthermore, suppose that the inverse function ϕ−1 exists. Then, the system
(24) can be written in the following equivalent form

Ax = b, x ≥ 0,

ATy + s = c, s ≥ 0, (25)

ϕ(xs) = ϕ(w2),

and we can apply Newton’s method for the system (25) to obtain a new class
of search directions. We mention that a direct generalization of the approach
defined in [36] would be the following variant. The system (24) is equivalent
to

Ax = b, x ≥ 0,

ATy + s = c, s ≥ 0, (26)

ϕ
(xs
w2

)
= ϕ(e),

and using Newton’s method for the system (26) yields new search directions.
For our purpose it is more convenient the first approach, hence in this chapter
we use the system (25). Let us introduce the vectors

v =
√
xs and d =

√
xs−1,

and observe that these notations lead to

d−1x = ds = v. (27)

Suppose that we have Ax = b, and ATy + s = c for a triple (x, y, s) such
that x > 0 and s > 0, hence x and s are strictly feasible. Applying Newton’s
method for the system (25) we obtain

A∆x = 0,

AT ∆y + ∆s = 0, (28)

sϕ′ (xs) ∆x+ xϕ′ (xs) ∆s = ϕ(w2)− ϕ (xs) .

Furthermore, denote

dx = d−1∆x, ds = d∆s,
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and observe that we have

v(dx + ds) = s∆x+ x∆s, (29)

and
dxds = ∆x∆s. (30)

Hence the linear system (28) can be written in the following equivalent form

Ādx = 0,

ĀT ∆y + ds = 0, (31)

dx + ds = pv,

where

pv =
ϕ(w2)− ϕ(v2)

vϕ′(v2)
, (32)

and Ā = Adiag(d). We also used the notation

diag(ξ) =


ξ1 0 . . . 0
0 ξ2 . . . 0
. . . . . . . . . . . .
0 0 . . . ξn

 ,
for any vector ξ. In the following section we will develop a new primal-dual
weighted-path-following algorithm based on one particular search direction.

7.3 The Algorithm

In this section we let ϕ(x) =
√
x, and we develop a new primal-dual weighted-

path-following algorithm based on the appropriate search directions. Thus,
making the substitution ϕ(x) =

√
x in (32) we get

pv = 2(w − v). (33)

Now for any positive vector v, we define the folowing proximity measure

σ(v, w) =
‖pv‖

2 min(w)
=
‖w − v‖
min(w)

, (34)

where ‖ · ‖ is the Euclidean norm (l2 norm), and for every vector ξ we denote
min(ξ) = min{ξi | 1 ≤ i ≤ n}. We introduce another measure

σc(w) =
max(w2)

min(w2)
,
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where for any vector ξ we denote max(ξ) = max{ξi | 1 ≤ i ≤ n}. Observe
that σc(w) can be used to measure the distance of w2 to the central path.
Furthermore, let us introduce the notation

qv = dx − ds,

observe that from (31) we get dT
x ds = 0, hence the vectors dx and ds are

orthogonal, and thus we find that

‖pv‖ = ‖qv‖.

Consequently, the proximity measure can be written in the following form

σ(v, w) =
‖qv‖

2 min(w)
, (35)

thus we obtain

dx =
pv + qv

2
, ds =

pv − qv
2

,

and

dxds =
p2

v − q2
v

4
. (36)

Making the substitution ϕ(x) =
√
x in (28) yields

A∆x = 0,

AT ∆y + ∆s = 0, (37)√
s

x
∆x+

√
x

s
∆s = 2(w −

√
xs).

Now we can define the algorithm.

Algorithm 7.1 Suppose that for the triple (x0, y0, s0) the interior point con-
dition holds, and let w0 =

√
x0s0. Let ε > 0 be the accuracy parameter, and

0 < θ < 1 the update parameter (default θ = 1

5
√

σc(w0)n
),

begin
x := x0; y := y0; s := s0;
w := w0;
while xT s > ε do begin
w := (1− θ)w;
Compute (∆x,∆y,∆s) from (37)
x := x+ ∆x;
y := y + ∆y;
s := s+ ∆s;
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end
end.

In the next section we shall prove that this algorithm is well defined for the
default value of θ, and we will also give an upper bound for the number of
iterations performed by the algorithm.

7.4 Convergence Analysis

In the first lemma of this section we prove that if the proximity measure
is small enough, then the Newton process is strictly feasible. Denote x+ =
x+ ∆x and s+ = s+ ∆s the vectors obtained by a full Newton step, and let
v =

√
xs as usual.

Lemma 7.1 Let σ = σ(v, w) < 1. Then x+ > 0 and s+ > 0, hence the full
Newton step is strictly feasible.

In the next lemma we prove that the same condition, namely σ < 1 is
sufficient for the quadratic convergence of the Newton process.

Lemma 7.2 Let x+ = x+ ∆x and s+ = s+ ∆s be the vectors obtaind after
a full Newton step, v =

√
xs and v+ =

√
x+s+. Suppose σ = σ(v, w) < 1.

Then

σ(v+, w) ≤ σ2

1 +
√

1− σ2
.

Thus σ(v+, w) < σ2, which means quadratic convergence of the Newton step.

In the following lemma we give an upper bound for the duality gap obtained
after a full Newton step.

Lemma 7.3 Let σ = σ(v, w). Moreover, let x+ = x+ ∆x and s+ = s+ ∆s.
Then

(x+)T s+ = ‖w‖2 − ‖qv‖2

4
,

hence (x+)T s+ ≤ ‖w‖2.

In the following lemma we discuss the influence on the proximity measure of
the Newton process followed by a step along the weighted-path. We assume
that each component of the vector w will be reduced by a constant factor
1− θ.
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Lemma 7.4 Let σ = σ(v, w) < 1 and w+ = (1 − θ)w, where 0 < θ < 1.
Then

σ(v+, w+) ≤ θ

1− θ

√
σc(w)n+

1

1− θ
σ(v+, w).

Furthermore, if σ ≤ 1
2
, θ = 1

5
√

σc(w)n
and n ≥ 4 then we get σ(v+, w+) ≤ 1

2
.

Observe that σc(w) = σc(w
0) for all iterates produced by the algorithm.

Thus, an immediate result of Lemma 7.4 is that for θ = 1

5
√

σc(w0)n
the con-

ditions (x, s) > 0 and σ(v, w) ≤ 1
2

are maintained throughout the algorithm.
Hence the algorithm is well defined. In the next lemma we calculate an upper
bound for the total number of iterations performed by the algorithm.

Lemma 7.5 Assume that x0 and s0 are strictly feasible, an let w0 =
√
x0s0.

Moreover, let xk and sk be the vectors obtained after k iterations. Then, for

k ≥
⌈

1

2θ
log

(x0)T s0

ε

⌉
,

the inequality (xk)T sk ≤ ε is satisfied.

For the default value of θ specified in Algorithm 7.1 we obtain the following
theorem.

Theorem 7.6 Suppose that the pair (x0, s0) is strictly feasible, an let
w0 =

√
x0s0. If θ = 1

5
√

σc(w0)n
then Algorithm 7.1 requires at most

⌈
5

2

√
σc(w0)n log

(x0)T s0

ε

⌉
iterations. For the resulting vectors we have xT s ≤ ε.

7.5 Conclusion

In this chapter we have developed a new weighted-path-following algorithm
for solving LO problems. Our approach is a generalization for weighted-paths
of the results presented in Chapter 5. We have transformed the system (24)
in an equivalent form by introducing a function ϕ. We have defined a new
class of search directions by applying Newton’s method for that form of the
weighted-path. Using ϕ(x) =

√
x we have developed a new primal-dual
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weighted-path-following algorithm, and we have proved that this algorithm
performs no more than ⌈

5

2

√
σc(w0)n log

(x0)T s0

ε

⌉
iterations. Observe, that this means that the best bound is obtained by
following the central path. Indeed, we have σc(w

0) = 1 in this case, and we
get the well-known iteration bound

O

(√
n log

(x0)T s0

ε

)
.

If the starting point is not perfectly centered, then σc(w
0) > 1 and thus the

iteration bound is worse.
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47(1):15–26, 2002.

[36] Zs. Darvay. A new class of search directions for linear optimization. In
Proceedings of Abstracts, McMaster Optimizations Conference: The-
ory and Applications held at McMaster University Hamilton, Ontario,
Canada, page 18, August 1-3, 2002. Submitted to European Journal of
Operational Research.

[37] Zs. Darvay. A weighted-path-following method for linear optimiza-
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Elsevier Science Publisher B.V., Amsterdam, The Nederlands, 1989.

[105] C. Roos and J.-Ph. Vial. A polynomial method of approximate centers
for linear programming. Mathematical Programming, 54:295–305, 1992.

[106] C. Roos and J.-Ph. Vial. Interior-point methods for linear program-
ming. Technical Report 94-77, Faculty of Technical Mathematics and
Informatics, TU Delft, The Netherlands, 1994.

[107] A. Schrijver. Theory of Linear and Integer Programming. John Wiley
and Sons, 1986.

[108] N.Z. Shor. Convergence rate of the gradient descent method with di-
latation of the space. Cybernetics, 6(2):102–108, 1970.

[109] Gy. Sonnevend. An ”analytic center” for polyhedrons and new classes
of global algorithms for linear (smooth, convex) programming. In
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