
AMO - Advanced Modeling and Optimization, Volume 5, Number 1, 2003

ON THE GENERATION OF P-SEQUENCES ∗

H. AHRABIAN

Department of Mathematics and Computer Science,

Faculty of Science, University of Tehran,

Tehran, Iran.

ahrabian@khayam.ut.ac.ir

and

A. NOWZARI-DALINI

Department of Mathematics and Computer Science,

Faculty of Science, University of Tehran,

Tehran, Iran.

nowzari@khayam.ut.ac.ir

Abstract

An efficient algorithm for the generation of P-sequences is presented. P-sequences

are integer sequences characterizing all shapes of n-noded binary trees. This algo-

rithm generates each sequence in B-order with constant average time O(1). The

sequences are generated in lexicographical orders. The ranking and unranking algo-

rithms with O(n) time complexity are also described. Finally, an algorithm for the

construction of a binary tree with a linked structure from P-sequence is presented.

Keywords: Binary tree, Recursion, P-sequences, B-order.

∗This research is supported by University of Tehran.

27

1. Introduction

Binary trees are of fundamental importance in computer science and one the most basic

and simple data structures. It can be used to maintain any ordered set that must be

accessed and updated. The problem of coding binary trees has received much attention

because of its practical relevance. There have been many coding schemes proposed in

the literature [Ahrabian and Nowzari, 1999; Bultena and Ruskey, 1998; Gupta, 1991;

Pallo and Racca, 1985; Ruskey and Hu, 1977; Vajnovszki, 1998; Zaks, 1980]. In some

of these papers binary trees are represented by integer sequences and the corresponding

sequences are generated [Ahrabian and Nowzari, 1999; Gupta, 1991; Pallo and Racca,

1985; Vajnovszki, 1998; Zaks, 1980].

P-sequences introduced by Pallo and Racca [1985] are integer sequences characterizing

all shapes of n-noded binary trees. The P-sequence of a binary tree T is an integer

sequence PT = (p1, p2, · · · , p|T |), where pi is the number of visited internal nodes before

the ith external node in the preorder traversal of T , and |T | denotes the number of internal

nodes in the binary tree, it is noted that the assigned value to the |T | + 1 external node

is always equal to p|T | = n and therefore it is discarded. We present here an efficient

algorithm that generates each sequence in constant average time O(1). Our algorithm

generates the corresponding binary trees in B-order. Recall from Pallo and Racca [1985],

given two trees T and T
′
with n nodes, T < T

′
are in B-order if PT is lexicographically

less that PT ′ (for the other B-order generation algorithms see [Ruskey and Hu, 1977; Zaks,

1980]).

The previous algorithms presented by Pallo and Racca [1985] and Gupta [1991] also

generate the P-sequences in B-order and Ballot-order respectively in constant average

time O(1). It should be noted that Ballot-order is an order for the codes not for binary

trees and this order is the same as Ballot-sequence order [Rotem, 1975; Rotem and Varol,

1978]. Our algorithm can be modified to generates the P-sequences in Ballot-order.

The ranking and unranking algorithms with O(n) time complexity are also presented.

The time complexity of previous ranking and unranking algorithms presented in [Pallo

and Racca, 1985] is O(n2). In addition to the generation algorithm, an algorithms for the

construction of a binary tree with a linked structure from a P-sequence is discussed.

28

2. The Generation Algorithm

In this section we describe an algorithm for the generation of P-sequences. Clearly, for

the given binary tree T denoted in Figure 1, the P-sequence of T is the integer sequence

PT = (3, 3, 3, 5, 5, 7, 7), where each integer in position i shows the number of visited

internal nodes before the ith external node in a preorder traversal.

The algorithm GenP-Seq given in Figure 2, generates P-sequences in the reverse order

of the B-order. This algorithm is recursive and has four parameters: ′P ′, ′k′, ′l′ and ′q′,

where ′P ′ is an integer array of size n and initially is equal to (n, n, · · · , n). The parameter
′k′ is used for constructing the sequence and initially is equal to n. The two parameters
′l′ and ′q′ control the number of recallings of the algorithm from the two underlying re-

cursions in the algorithm. The initial value of ′l′ is equal to n − 1, and ′q′ is equal to 1.

The algorithm produces each code by decrementing the elements of ′P ′ by 1, from the

leftmost element, one by one. The generation starts from P = (n, n, · · · , n) and all the

elements of ′P ′ become n − 1 except the nth element, then the decrementation restarts

from the beginning.

m
m m

m 3 m m
m5 753 3

7 7

�
�

�
�

�

Z
Z

Z
Z

Z

�
�

�
�

l
l

l
ll

�
�

�
�

@
@

@
@

%
%

%%

e
e

ee

%
%

%%

e
e

ee

e
e

ee

%
%

%%

e
e

ee

Figure 1. A 7-node binary tree.

29

Procedure GenP-Seq (P : Pseq ; k, l, q : Integer) ;

Begin

If (k < n) Then

pn−k := pn−k − 1 ;

WritePseq (P) ;

If (k > 1) Then Begin

GenP-Seq (P , k − 1, 1, l) ;

If (l < k) And (l < q) Then

GenP-Seq (P , k, l + 1, q) ;

End ;

End ;

Figure 2. P-sequences generation algorithm in the reverse order of B-order.

The construction process for n = 4 is demonstrated in Figure 3.a by a recursion binary

tree Tn. This recursion tree is a binary tree. As we can see, the decrementation of the

adjacent element of the previous decremented element in a sequence causes moving to the

left child of the recursion tree and decrementation of the same element causes moving to

the right child.

Now, the verification and the analysis of the algorithm are discussed. Obviously, the

number of nodes in the recursion tree is equal to the number of times that GenP-Seq is

recalled, and in each recall the next sequence is generated. With regard to the generation

algorithm GenP-Seq, the number of times that GenP-Seq is recalled can be obtained from

the following recurrence formula:

GP (k, l, q) =


1 if k = 1,

1 + GP (k − 1, 1, l) + GP (k, l + 1, q) if k > l and q > l,

1 + GP (k − 1, 1, l) otherwise.

Where GP (k, l, q) denotes the number of times that algorithm GenP-Seq is recalled with

the parameters ′P ′, ′k′, ′l′ and ′q′. Here, 1 stands for the unique generated code in each

recalling of the algorithm GenP-Seq. Since the first time the algorithm is called with

k = n, l = n− 1 and q = 1, therefore we can write: GP (k, l, 1) = 1 + GP (k − 1, 1, l).

30

�
��

�
��

�
�

�
�

�

@
@@

@
@

@
@
@

�
�

�
�

�

�
��

�
��

@
@@

�
��

�
��

@
@@

�
��

1244

4444

3444

3344

3334 2344 1444

2444

134422442334

13342234

1234

4444

3444 2444

3344 2344 2244 1344

1444

1334

���
���

��

HHH
HHH

HH

J
J

J
J

1244

@
@

@
@

12343334 2334 2234

(a) (b)

Figure 3. For n = 4, a) the recursion binary tree Tn,

b) the equivalent transformed recursion tree T′
n.

Lemma 1. For k ≥ 1 and l ≤ k,

GP (k, l, 1) = 1 +
l∑

j = 1
j < k

GP (k − 1, j, 1).

Since the third parameter in GP (k, l, 1) is a constant value, therefore we denote it

with Gk
l . So we can write:

Gk
l = 1 +

l∑
j = 1
j < k

Gk−1
j ,

where G1
1 is equal to 1. Now, if we show that Gn

n−1 is equal to Cn the verification of the

algorithm is proven.

Theorem. The total number of codes generated by GenP-Seq(P, n, n − 1, 1) is equal

to Cn.

31

Proof. By the definition of G, we can write: Gk
l = Gk

l−1 + Gk−1
l , where Gk

0 = 1. It can

be easily proved

Gk
l =

(
k + l

l

)
k − l + 1

k + 1
.

Clearly

Gn
n−1 = Cn =

1

n + 1

(
2n

n

)
. 2

The time required for the generation algorithm can be also obtained by the previous

theorem . In order to generate Cn sequences, the algorithm is repeated Cn times, and each

time one code is generated. Therefore the algorithm generates each sequence in constant

average time O(1).

The algorithm needs stack space to implement recursion. Since the ordering of the

generation is according to the preorder traversal of the tree Tn, therefore this space is

equal to the depth of Tn. For any n, the depth of this tree is equal to n, hence this

algorithm requires a stack space of O(n).

3. Ranking and Unranking Algorithms

Rank of a binary tree with respect to some ordering is the number of binary trees that

come before it in the ordering. Ranking algorithms which return a unique integer from

the interval [1, Cn] related to a binary tree are used as a tool for data compression. An

unranking algorithm determines the binary tree having a particular rank. Unranking

algorithms are often used as a method of generating a random binary tree: a random

integer r ∈ [1, Cn] is extracted in a uniform way and the operation of unranking is per-

formed [Zaks, 1980]. To represent a binary tree as an integer, we need to know its index

with respect to the generation scheme of the procedure GenP-Seq. This is achieved by the

ranking algorithm. The ordering of the generation is according to the preorder traversal

of the recursion binary tree Tn (for n = 4 is denoted by Figure 3.a). This recursion binary

tree can be transformed to an equivalent recursion tree [Knuth, 1973]. The equivalent

recursion tree T′
n to the recursion binary tree Tn for n = 4 is illustrated in Figure 3.b.

Clearly, preorder traversal of the recursion binary tree is the same as the depth-first search

of the equivalent recursion tree, hence moving to the left children of the recursion tree Tn

32

is equivalent to moving down on the levels of recursion tree T′
n, and moving to the right

children is equal to move on the adjacent subtrees.

As it is mentioned earlier, Gn
n−1 denotes the number of nodes in the recursion binary

tree Tn. Since the recursion binary tree Tn is equivalent to the transformed recursion

tree T′
n, therefore Gn

n−1 also denotes the number of nodes in the recursion tree T′
n. From

the previous equations we have:

Gn
n−1 = 1 + Gn−1

1 + Gn−1
2 + · · ·+ Gn−1

n−1,

where 1 counts the root of the recursion tree T′
n and Gn−1

j counts the number of nodes in

the jth subtree of the recursion tree T′
n. In order to compute the rank of a tree, we count

the number of generated trees before this tree. Let Sk
l be the number of all P-sequences

of length k, beginning with k − l + 1. Therefore we define:

Sk
l =


0 if l > k,

1 if l = 1,

Gk−1
l−1 if l ≤ k and k > 1 .

Lemma 2. For k > 1 and l ≤ k,

Sk
l =

l∑
j = 1
j < k

Sk−1
j .

Clearly Cn = Gn
n−1 = Sn+1

n =
∑n

j=1 Sn
j . By definition of Gk

l and by considering the

recursion tree, we can easily observe that Sn
j ’s for 2 ≤ j ≤ n count the number of nodes

in the (j − 1)th subtree of the recursion tree, and Sn
1 denotes the root of recursion tree.

This relation can be expanded recursively for all the subtrees.

Now, for computing the rank of a tree, by utilizing the above results, it is enough

to specify the position of its corresponding code in the recursion tree. The position of a

code is equal to the position of the corresponding node in the recursion tree. In order to

specify the position of the following code PT = (p1, p2, · · · , pn), the difference sequence,

(m1, m2, · · · , mn−1), where mi = n− pi (1 ≤ i ≤ n− 1) is computed. The code appears in

m1th subtree of the recursion tree and
∑m1

j=1 Sn
j shows the number of generated codes in

the previous subtrees including the root of the tree. If we consider the m1th subtree as

33

an independent tree, then m2 will show that the tree code has appeared in m2th subtree

of this tree, and recursively
∑m2

j=1 Sn−1
j will show the number of generated codes before

this subtree and so on. Consequently we can write:

r = 1 +
n−1∑
i=1

mi∑
j=1

Sn−i+1
j .

Using Lemma 2, we have
∑mi

j=1 Sn−i+1
j = Sn−i+2

mi
, and we can write:

r = 1 +
n−1∑
i=1

Sn−i+2
mi

.

Therefore the algorithm illustrated in Figure 4 computes the rank of a tree sequence in

time complexity O(n). It is assumed that the constants Sk
l ’s (1 ≤ k, l ≤ n) in the above

formula are computed in advance and stored in a two dimensional array S[1..n, 1..n].

The unranking algorithm given in Figure 5 takes r in the range of 1 · · ·Cn as input

and returns the P-sequence PT = (p1, p2, · · · , pn) of the corresponding binary tree. The

unranking algorithm essentially reverses the steps carried out in computing the rank.

According to the rank of a tree, the position of its sequence in the recurrence tree, is

specified. The position of a sequence in the recurrence tree, depends on the number of

times that each element is decremented. Therefore, this position is obtained by using Sk
l ’s

(1 ≤ k, l ≤ n + 1). In the unranking algorithm, the value of all pi’s (i = 1, · · · , n) are

initially assigned to n. In the next step, the maximum j for which Sn+1
j < r is found.

Then p1 is decremented by j, and later r = r − Sn+1
j is assigned. For evaluating p2,

Function Rank (P : Pseq) : Integer ;

Var r, i : Integer ;

Begin

r := 0 ;

For i := 1 To n− 1 Do

r := r + Sn−i+2
n−pi

;

Rank := r + 1 ;

End ;

Figure 4. Rank algorithm.

34

Function Unrank (r : Integer) : Pseq ;

Var P : Pseq ; i, j : Integer ;

Begin

For i := 1 To n Do

pi := n ;

i := n + 1 ; j := n− 1 ;

While (j <> 0) Do

If (Si
j < r) Then Begin

r := r − Si
j ;

i := i− 1 ;

pn−i+1 := pn−i+1 − j ;

End

Else

j := j − 1 ;

Unrank:= P ;

End ;

Figure 5. Unrank algorithm.

next maximum j is computed such that Sn
j < r, and p2 is decremented by j, then we

set r = r − Sn
j . The above operations are repeated till in computing any pi, we can not

find a j such that Sn+2−i
j < r. Considering the above discussion, the complexity of the

unranking algorithm is O(n).

4. Construction Algorithm

In this section a construction algorithm for a binary tree from a P-sequence is described.

The algorithm MakeTreeP illustrated in Figure 6 takes a P-sequence as an input and

its output is a binary tree which is constructed in a linked structure. The algorithm

performs as follows. For a given P-sequence P = (p1, p2, · · · , pn), initially a dummy root

is created and later MakeTreeP is called with three parameters: ′Tree′, ′True′ and ′p1
′,

where ′Tree′ shows the address of dummy root. For this dummy root one right child is

created, then p1 − 1 new nodes are created such that each of them is a left child of the

35

Procedure MakeTreeP (Tree : TreePtr ; Sw : Boolean ; j : Integer) ;

Begin

If (Sw = True) Then Begin

MakeNode (Tree ↑ . Right) ;

Tree := Tree ↑ . Right ;

End

Else Begin

MakeNode (Tree ↑ . Left) ;

Tree := Tree ↑ . Left ;

End ;

If (j − 1 > 0) Then

MakeTreeP (Tree, False, j − 1) ;

{ i is a global variable and initially set to 1 }
i := i + 1 ;

If (i <= n) Then

If (pi − pi−1 > 0) Then

MakeTreeP (Tree, True, pi − pi−1) ;

End ;

Figure 6. Construction algorithm of a binary tree from a P-sequence.

previous created node, simultaneously the address of all the created nodes are pushed

into a stack (recursively). At this stage the current node is the last created node. Now

for all 2 ≤ i ≤ n, if pi − pi−1 6= 0, then one new node as a right child of the current node

is created. Later pi − pi−1 − 1 new nodes as left children, are constructed such that each

of them is a left child of the previous created node, and their corresponding address are

pushed into the stack. These operations are controlled by the variable ′Sw′, where ′Sw′ is

the second parameter in the algorithm and initially is set to True. If pi − pi−1 = 0, then

an address is popped out of the stack and the process is continued from the beginning.

It is well known that the construction algorithm establishes a 1 − 1 correspondence

between the sequences and the set of binary trees of order n.

36

5. Conclusion

A new algorithm for the generation of the P-sequences is presented. The algorithm gen-

erates each sequence in constant average time O(1). The time complexity of ranking and

unranking algorithms presented for both sequences is O(n).

It should be noted that, the generation algorithm can be modified such that to generate

the sequences in different order. By changing the position of elements in the decrement

instruction inside the algorithm, it is possible to generate P-sequences in Ballot-order.

The average time complexity of the new generation algorithm is also O(1). Clearly, their

corresponding ranking and unranking algorithms with new orders can be easily written

in O(n).

Reference

Ahrabian, H., and Nowzari-Dalini, A., (1999) On the generation of binary trees in A-

order. International Journal of Computer Mathematics, vol.71, pp.1-7.

Bultena, B., and Ruskey, F., (1998) An Eades-McKay algorithm for well-formed paren-

theses string. Information Processing Letters, vol.68, pp.255-259.

Gupta, D.K., (1991) On the generation of P-sequences. International Journal of Com-

puter Mathematics, vol.38, pp.31-35.

Knuth, D.E., (1973) The Art of Computer Programming, Vol. 1: Fundemental Algo-

rithms. (Second Edition), Addison-Wesley, Massachusetts.

Pallo, J., and Racca, R., (1985) A note on generating binary tree in A-order and B-order.

International Journal of Computer Mathematics, vol.18, pp.27-39.

Rotem, D., (1975) On a correspondence between binary tree and certain type of permu-

tation. Information Processing Letters, vol.4, pp.58-61.

37

Rotem, D., and Varol, Y.L., (1978) Generation of binary trees from Ballot-sequences.

Journal of the ACM, vol.25, pp.396-404.

Ruskey, F., and Hu, T.C., (1977) Generating binary tree lexicographically. SIAM Journal

on Computing, vol.6, pp.745-758.

Vajnovszki, V., (1998) On the loopless generation of binary tree sequences. Information

Processing Letters, vol.68, pp.113-117.

Zaks, S., (1980) Lexicographic generation of ordered tree. Theoretical Computer Science,

vol.10, pp.63-82.

38

