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1 Introduction

Financial optimization is one of the most attracting areas in decision-making under uncertainty.
Prominent examples include: 1)asset allocation for pension plans and insurance companies; 2)se-
curity selection for stock and bond portfolio managers; 3)currency hedging for multi-national
corporations; 4)hedge fund strategies to capitalize on market conditions; 5)risk management for
large public corporations. In these situations, time periods and uncertainties play important
roles. For example, a pension plan must focus on both the long-term and short-term conse-
quences of his investment strategy. He must attempt to minimize pension contribution expenses
over time, while satisfying the needs of the retirees, and reducing risks. Besides, there are many
uncertainties in financial planning problems, such as economic factors, prices of the securities
considered, amount of cash flows, etc.. To capture both these aspects, multi-stage stochastic
programming models are well suited to address significant practical issues.

Stochastic programming (SP) models have been proposed and well studied since late 1950s
by Dantzig[1][2], Beale[3], Charnes and Cooper[4] and others. They proposed a stochastic view
to replace the deterministic one, where the unknown coefficients or parameters are random with
assumed probability distribution that is independent of the decision variables. Over these years,
progress in computational methods is impressive and large scale problems can be efficiently
solved with high reliability (Lustig et al.,1991[22]; Bixby et al., 1992[6]; Levkovitz and Mitra,
1993[7]; Mulvey et al.,1995[8]). It is these advances that have progressively made SP techniques
applicable to real-world problems. Moreover, high frequency data are readily available on a
global basis, and powerful computers are also easily found to conduct the optimization search.
The obstacles for applying stochastic optimization models are quickly receding.
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Figure 1: A scenario tree for a multi-stage stochastic program

Stochastic programming provides a general purpose-modelling framework, which captures the
real-world features such as turnover constraints, transaction costs, risk aversion, limits on groups
of assets and other consideration. However, the optimization model turns out to be intractable
for the enormous number of decision variables, especially for the multi-stage problems. Figure
1 presents an example of a scenario tree whereby the decisions expand exponentially with time
periods. Each node in this tree depicts a juncture for rendering decisions. A scenario, a complete
path from the root node to a leaf, defines a single realization of the set of random variables.

The paper is organized as follows. Basic stochastic programming models and related ap-
plications in financial optimization are introduced in sections 2 and 3 respectively. Section 4
is dedicated to the scenario generation and computation aspect is addressed in section 5. The
comparison with other methods is listed in section 6 and we conclude the paper with open
problems in this field.

2 Basic Stochastic Programming Models

The anticipative and the adaptive models are special cases of stochastic programs. The combi-
nation of them makes a recoursive model which is widely applied in financial field.

2.1 Anticipative models

Anticipative model is also referred to as static model, for which the decision does not depend
in any way on future observations of the environment. The prudent planning has to take into
account all possible future realizations since there is no opportunity to adapt decisions later on,
which may lead to overly conservative decisions.

In anticipative models feasibility is expressed in terms of probabilistic (or chance) constraints.
For example, a reliability level α, where 0 < α ≤ 1, is specified and constraints are expressed in
the form

P{ω|fj(x, ω) = 0, j = 1, 2, ..., n} ≥ α,
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where x is the m−dimensional vector of decision variables and fj : Rm × Ω → R, j = 1, 2, ..., n.
The objective function may also be of a reliability type, such as P{ω|f0(x, ω) ≤ γ}, where
f0 : Rm × Ω → R

⋃{+∞} and γ is a constant.
An anticipative model selects a policy that meets desirable characteristics of the constraints

and the objective function. In the example above, it is desirable that the probability of a con-
straint violation is less than the prespecified threshold value 1−α. The precise value of α depends
on the application at hand, the cost of constraint violation, and other similar considerations.

2.2 Adaptive models

In an adaptive model, information related to the uncertainty becomes partially available before
decision making, so optimization takes place in a learning environment, which is the essential
difference with an adaptive model. Let A be the collection of all the relevant information
available through observation, which is a subfield of all possible events. The decision x depends
on the events that can be observed, and x is termed A-adapted or A-measurable. An adaptive
stochastic program can be formulated as:

Minimize E[f0(x(ω), ω)|A]
subject to E[fj(x(ω), ω)|A] = 0 j = 1, 2, ..., n (2.1)

x(ω) ∈ X almost surely

The mapping x : Ω → X is such that x(ω) is A-measurable. This problem can be addressed by
solving for every ω the following deterministic programs:

Minimize E[f0(x, ·)|A](ω) (2.2)
subject to E[fj(x, ·)|A](ω) = 0 j = 1, 2, ..., n (2.3)

x ∈ X (2.4)

The two extreme cases, complete information and no information at all, deserve special
mention. The latter reduces the model to the anticipative form while the former is known as
distribution model, which characterizes the distribution of the optimal objective value. However,
the most interesting and valuable situation arises when partial information is available, which
is what we will discuss below.

2.3 Recourse models

The recoursive model combines the former two models in a common mathematical framework,
which seeks a policy that not only anticipates future observations but also takes into account
temporarily available information to make recourse decisions. For example, a portfolio manager
considers both future movements of stock prices (anticipation) as well as rebalancing the portfolio
positions as prices change (adaptation).

The two-stage stochastic programming problem with recourse can be written as follows:

Minimize f(x) + E[Q(x, ω)]
subject to Ax = b (2.5)

x ∈ Rm0
+
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where x is the first-stage anticipative decisions, which is made before the random variables are
observed, and Q(x, ω) is the optimal value, for any given Ω, of the following nonlinear program

Minimize q(y, ω)
subject to W (ω)y = h(ω)− T (ω)x (2.6)

y ∈ Rm1
+

where y is the second-stage adaptive decisions, which depends on the realization of the first-stage
random vector. q(y, ω) denotes the second-stage cost function, and {T (ω),W (ω), h(ω)|ω ∈ Ω}
are model parameters with reasonable dimensions. Those parameters are functions of the random
vector ω and are, therefore, random parameters. T is the technology matrix containing the
technology coefficients that convert the first-stage decision x into resources for the second-stage
problem. W is the recourse matrix and h is the second-stage resource vector.

Generally the two-stage recourse model can be formulated as follows:

Minimize f(x) + E[ min
y∈Rm1

+

{q(y, ω)|T (ω)x + W (ω)y = h(ω)}]

subject to Ax = b (2.7)
x ∈ Rm0

+

2.4 Deterministic equivalent formulation

We consider now the case where the random vector ω has a discrete and finite distribution, with
support Ω = {ω1, ω2, ..., ωN}. In this case the set Ω is called a scenario set. Denote by pl the
probability of realization of the lth scenario ωl. It is assumed that pl > 0 for all ωl ∈ Ω, and
that

∑N
l=1 pl = 1.

The expected value of the second-stage optimization problem can be expressed as

E[Q(x, ω)] =
N∑

l=1

plQ(x, ωl). (2.8)

For each realization of the random vector ωl ∈ Ω a different second-stage decision is made,
which is denoted by yl. The resulting second-stage problems can then be written as:

Minimize q(yl, ωl)
subject to W (ωl)yl = h(ωl)− T (ωl)x, (2.9)

yl ∈ Rm1
+ .

Combining now (2.8) and (2.9) we reformulate the stochastic nonlinear program (2.7) as the
following large-scale deterministic equivalent nonlinear program:

Minimize f(x) +
N∑

l=1

plq(yl, ωl) (2.10)

subject to Ax = b, (2.11)
T (ωl)x + W (ωl)yl = h(ωl) for all ωl ∈ Ω, (2.12)
x ∈ Rm0

+ , (2.13)

yl ∈ Rm1
+ . (2.14)
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2.5 Multistage models

The recourse problem is not restricted to the two-stage formulation. It is possible that obser-
vations are made at T different stages and are captured in the information sets {At}T

t=1 with
A1 ⊂ A2 · · · ⊂ AT . Stages correspond to time instances when some information is revealed and
a decision can be made. (Note that T is a time index, while T (ω) are matrices.)

A multistage stochastic program with recourse will have a recourse problem at stage τ
conditioned on the information provided by Aτ , which includes all information provided by the
information sets At, for t = 1, 2, ..., τ . The program also anticipates the information in At, for
t = τ + 1, ..., T .

Let the random vector ω have support Ω = Ω1×Ω2×· · ·×ΩT , which is the product set of all
individual support sets Ωt, t = 1, 2, ..., T . ω is written componentwise as ω = (ω1, ..., ωT ). De-
note the first-stage variable vector by y0. For each stage t = 1, 2, ..., T , define the recourse
variable vector yt ∈ Rmt , the random cost function qt(yt, ωt), and the random parameters
{Tt(ωt),Wt(ωt), ht(ωt)|ωt ∈ Ωt}.

The multistage program, which extends the two-stage model (2.7), is formulated as the
following nested optimization problem

Minimize f(y0) + E

[
min

y1∈Rm1
+

q1(y1, ω1) + . . . E

[
min

yT∈RmT
+

qT (yT , ωT )

]
. . .

]

subject to T1(ω1)y0 + W1(ω1)y1 = h1(ω1), (2.15)
...
TT (ωT )yT−1 + WT (ωT )yT = hK(ωT ),
y0 ∈ Rm0

+ .

For the case of discrete and finitely distributed probability distributions it is again possible
to formulate the multistage model into a deterministic equivalent large-scale nonlinear program.

3 Stochastic Programming Models in Financial Optimization

Lots of articles in the literature have illustrated that stochastic programming models are flexible
tools to describe financial optimization problems under uncertainty with realistic market imper-
fections and trading restrictions. Bradley and Crane (1972)[9] and Kusy and Zeimba (1986)[10]
describe stochastic linear programs for bank asset/liability management, Carino et al.(1994)[11]
formulate the asset/liability management problem of a Japanese insurance company as a mul-
tiperiod stochastic linear program, Mulvey and Vladimirou(1992)[12] propose a multiperiod
stochastic network model for the purpose of asset allocation, and Hiller and Eckstein(1993)[13],
Zenios(1993)[36], and Golub et al.(1993)[15] describe stochastic programming models for fixed-
income securities management.

In the following, we introduce some application of stochastic programming models in financial
optimization.

3.1 Stochastic Programming Model for Asset Allocation Problem

Asset allocation problem can be viewed as multiperiod dynamic decision problems where trans-
actions take place at discrete time points.To define the model, we divide the entire planning
horizon T into two discrete time intervals T1 and T2, where T1 = 0, 1, ..., τ and T2 = τ + 1, ..., T .
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The former corresponds to periods in which investment decisions are made. Period τ defines the
date of the planning horizon; we focus on the investor’s position at the beginning of period τ .
Decisions occur at the beginning of each time stage. Much flexibility exists. An active trader
might see his time interval as short as minutes, whereas a pension plan advisor will be more
concerned with much longer planning periods such as the dates between the annual Board of
Director’s meeting. It is possible for the steps to vary over time - short intervals at the beginning
of planning period and longer intervals towards the end. T2 handles the horizon at time τ by
calculating economic and other factors beyond period τ up to period T . The investor cannot
render any active decisions after the end of period τ .

Asset investment categories are defined by set A = 1, 2, ..., I, with category 1 representing
cash. The remaining categories can include broad investment groupings such as stocks, bonds,
and real estate. The categories should track well-defined market segments. Ideally, the co-
movements between pairs of asset returns would be relatively low so that diversification can be
done across the asset categories.

In the model, uncertainty is represented by a set of distinct realization s ∈ S. Scenarios may
reveal identical value for the uncertain quantities up to a certain period. Scenarios that share
common information must yield the same decisions up to that period.

We assume that the portfolio is rebalanced at the beginning of each period. Alternatively,
we could simply make no transaction except reinvest any dividend and interest—a buy and hold
strategy. For convenience, we also assume that the cashflows are reinvested in the generating
asset category and all the borrowing is done on a single period basis.

For each i ∈ A, t ∈ T1, and s ∈ S, we define the following parameters and decision variables.
Parameters:

rs
i,t =1 + ρs

i,t, where ρs
i,t is the percent return for asset i, time period t, under scenario s

(projected by the stochastic scenario generator, for example, see Mulvey et al. 1999 [16]).

πs Probability that scenario s occurs,
∑S

s=1 πs = 1.

w0 Wealth in the beginning of time period 0.

σi,t Transaction costs incurred in rebalancing asset i at the beginning of time period t (sym-
metric transaction costs are assumed, i.e., cost of selling equals cost of buying).

βs
t Borrowing rate in period t under scenario s.

Decision variables:

xs
i,t Amount of money for asset category i, in time period t, under scenario s, after rebalancing.

vs
i,t Amount of money in asset category i, in the beginning of time period t, under scenario s,

before rebalancing.

ws
t Wealth at the beginning of time period t, under scenario s.

ps
i,t Amount of asset purchased for rebalancing in period t, under scenario s.

ds
i,t Amount of asset i sold for rebalancing in period t, under scenario s.

bs
t Amount of money borrowed in period t, under scenario s.
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Given these definitions, we present a general stochastic programming model in financial
optimization.

Model SP

Maximize Z =
S∑

s=1

πsf(ws
τ ) (3.1)

Subject to∑

i

xs
i,0 = w0 ∀s ∈ S, (3.2)

∑

i

xs
i,τ = ws

τ ∀s ∈ S, (3.3)

vs
i,t = rs

i,t−1x
s
i,t−1 ∀s ∈ S, t = 1, ..., τ, i ∈ A, (3.4)

xs
i,t = vs

i,t + ps
i,t(1− σi,t)− ds

i,t ∀s ∈ S, i 6= 1, t = 1, ..., τ, (3.5)

xs
1,t = vs

1,t +
∑

i6=1

ds
i,t(1− σi,t)−

∑

i6=1

ps
i,t − bs

t−1(1 + βs
t−1) + bs

t

∀s ∈ S, t = 1, ..., τ, (3.6)
xs

i,t = xs′
i,t for all scenarios s and s′ with identical past up to time t. (3.7)

As with the single-period models, the nonlinear objective function (3.1) can take several
different forms. If the classical return-risk function is employed, then (3.1) becomes Max Z = η
Mean(wτ )− (1− η)Risk(wτ ), where Mean(wτ ) is the expected total wealth and Risk(wτ ) is the
risk of the total wealth across the scenarios at the end of period τ . Parameter η indicates the
relative importance of risk as compared with the expected value. This objective leads to an
efficient frontier of wealth at period τ by allowing alternative values of η in the range [0,1]. An
alternative to mean-risk is the von Neumann-Morgenstern expected utility of wealth at period τ .
Here, the objective becomes MaxZ =

∑S
s=1 πsUtility(ws

τ ) where Utility(W) is the Von Meumann
Morgenstern utility function. Other objective functions are possible, such as the one proposed
by Zhao and Zeimba[17].

Constraint (3.2) guarantees that the total initial investment equals the initial wealth. Con-
straint (3.3) represents the total wealth at the beginning of period τ . This constraint can be
modified to include assets, liabilities, and investment goals. The modified result is called the
surplus wealth(Muvey,1989 [18]). Most investors render investment decisions without reference
to liabilities or investment goals. Mulvey employs the notion of surplus to the mean-variance
and the expected utility models to address liabilities in the context of asset allocation strate-
gies. Constraint (3.4) depicts the wealth vs

i,t accumulated at the beginning of period t before
rebalancing in asset i. The flow balance constraint for all assets except cash for all periods is
given by constraint (3.5). This constraint guarantees that the amount invested in period t equals
the net wealth for asset. Constraint (3.6) represents flow balancing constraint for cash. Non-
anticipativity constraints are represented by (3.7). These constraints ensure that the scenarios
with the same past will have identical decisions up to that period. While these constraints are
numerous, solution algorithms take advantage of their simple structure.

Model (SP) is a split variable formulation of stochastic asset allocation problem. This formu-
lation has proven successful for solving the model using techniques such as progressive hedging
algorithm of Rockafellar and Wets(1991)[19] and the quadratic diagonal approximation of Mul-
vey and Ruszczynski(1995)[20] and Berger et al.(1994)[21]. The split variable formulation can be

7



beneficial for direct solvers that use the interior point method (Lustig, Mulvey, and Carpenter,
1991[22].

By substituting constraint (3.7) back in constraint (3.2) to (3.6), we obtain a standard
form of the stochastic allocation problem. Constraints for this formulation exhibit a dual block
diagonal structure for two stage stochastic programs and a nested structure for general multi-
stage problems. This formulation may be better some direct solvers. The standard form of the
stochastic program possesses fewer decision variables than the split variable model and is the
preferred structure by many researchers in the field. This model can be solved by means of
decomposition methods, for example, the L-shaped method (a specialization of Benders algo-
rithm). See Birge and Loveaux(1997)[23], Dantzig and Infanger(1993)[24], Dempster(1998)[25],
Infanger(1994)[26], and Kall and Wallace(1994)[27] and their numerous references.

The multi-stage model can provide superior performance over single period models. See the
references(Berger and Mulvey 1996[28], Carino et al.1994[11], Dempster 1998[25], Dert 1995[29],
Holmer 1994[30], Klaassen 1994[31] and 1998[60], Mulvey and Zeimba 1995[33], Nielsen and
Zenios 1996[34], Worzel et al. 1995[35], and Zenios 1993[36]).

3.2 Stochastic Programming Models for the Management of Fixed-income
Securities

The new fixed-income securities, including high-yield bonds, mortgage-backed securities, callable
bonds, and international bonds have been developing rapidly in recent years. Compared to the
traditional portfolio optimization, the management of fixed-income securities have to cope with
more uncertainties, so is more complex.

The management of fixed-income securities can be viewed as a multistage decision problem
in which portfolio actions are taken at successive (discrete) points in time. At each decision
period, the portfolio manager has an inventory of securities and/or cash on hand. Based upon
present credit market conditions and his assessment of future interest rates and cash flows, the
manager must decide which securities to hold in the portfolio over the next time period, which
securities to sell, and which securities to purchase from the market. These decisions are made
subject to a constraint on total portfolio size, which may be larger or smaller than the previous
period’s constraint depending upon whether a cash inflow or outflow occurred. At the next
decision period, the portfolio manager faces a new set of interest rates and a new portfolio size
constraint. He must then make another set of portfolio decisions which take into account the
new information. This decision-making process, which is repeated over many time periods, is
dynamic in the sense that the optimal first period decision depends upon the actions which will
be taken in each future period for each uncertain event.

Any proposed model for the management of fixed-income securities should be able to cope
with the uncertainties inherent in those securities. Bennett Golub et al.[37] pointed that there
are two major sources of uncertainty in the new fixed-income markets, in addition to the usual
interest rate risk. First, is the timing and amount of cash flows received from the securities.
Second, is the spread over the risk-free rate that prices the security. This spread reflects premia
on risk factor that are present in the specific fixed-income market, but are absent from Treasury
securities. The timing of the cash flows depends on the embedded (or real) options of the
security. For example, corporate bonds may be called prior to maturity. The loans backing a
mortgage security may prepay or default.

In the absence of market imperfections, dynamic portfolio investment problems have been
studied using continuous-time models, usually in the context of an individual who maximizes
expected utility of future consumption(c.f. Cox and Huang 1989 [38]). These models can be
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solved analytically if the state variables are assumed to follow diffusion process and certain
restrictions are imposed on the form of the utility function. In practice, the applications of
these models are restricted for the number of risky and riskless assets to be analyzed is limited.

For portfolio investment problem of practical importance, one has no choice but to use
stochastic programming models in which both time and the state space are discretized. An
important contribution in multi-period dynamic models was made by Bradley and Crane [9], who
proposed a stochastic programming models with recourse for bond management. Their model
allows the full spectrum of interest rate and price changes, and permits portfolio rebalancing.
After that, much work has been done in this field. For example, Zenios [39] proposed a model
for managing portfolios of mortgage-backed securities. Bennett Golub [40] developed a multi-
period dynamic portfolio optimization model to address the problem of management of fixed-
income securities. Christiana Vassiadou-Zeniou and Stavros A. Zenios [41] presented a multi-
stage stochastic program with recourse for the management of portfolios of callable bonds. In
these models, stochastic programs are used to address the time and uncertainty in financial
planning. To illustrate this in detail, we introduce the model of Andrea Beltratti et al.[42] for
the management of international bond portfolios.

To the problem of portfolio management in the international markets, there are three aspects
that need our consideration, interest rate risk in the local market, exchange rate volatility across
markets, and decisions for hedging currency risk. In this model these decisions are integrated
in a common framework, while in the past they were addressed separately. In order to get
necessary data to realize the model, Monte Carlo simulation procedures are used to generate
jointly scenarios of interest and exchange rates.

Now we give a detailed description of the problem. In this portfolio management problem, the
aim is to manage a bond portfolio in a way that it tracks a broadly defined international market
index. The indexation tracking strategy is widely used by insurance and pension fund companies,
foundations, and money management firms. A bond index in each market i = 1, 2, ..., m, is
constructed by creating a representative sample Φi of size Ni from the universe of eligible bonds
Ωi. For each security j = 1, 2, ..., Ni, in the representative set, the index specifies its relative
weight φi

j which reflects the capitalization structure of the universe set Ωi with bonds that have
characteristics identical or similar to the jth bond. The global bond index is represented by a
set Γ of country indices and the relative weights γi assigned to the bond index of each country
based on the market value of the different indices. These weights are a measure of the share of
the bond market of the ith country in the world bond market.

The manager of an international bond portfolio must determine the fraction of the portfolio
value invested in each of the m markets, and to pick specific bonds from each market Ωi to adjust
the portfolio. These decisions are usually made in three steps. An asset allocation committee
determines first the exposure of the portfolio to each market. Then traders identify mispriced
bonds in each market and construct the country-specific portfolio. Finally, once the country
-specific funds are constructed the currency exposure may be hedged.

Now we present the integrative model for tracking an international fixed income index.
The interesting contribution of the model is that it combines the following three aspects in

an integrated fashion, i.e. asset allocation in different markets, bond picking in each market,
and optimal currency hedging ratios.The model specifies optimal bond picking decisions in each
of the m markets to track the global index.

Integrative model: First-stage constraints
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The first stage (i.e. at time t0) cashflow accounting equation of the model is:

c0 +
m∑

i=1

e0i

Ni∑

j=1

ζi
0j

Y i
0j

=
m∑

i=1

e0i

Ni∑

j=1

(ζi
0j

+ δ)Xi
0j

+ v0. (3.8)

The inventory balance constraint is:

bi
0j

+ Xi
0j

= Y i
0j

+ Zi
0j

for all i ∈ Γ and j ∈ Φi. (3.9)

For the sake of simplicity we assume here that all sales and purchases are made into and from the
base currency (in which investor measures his return), thus avoiding the need to keep separate
cashflow variables.

Integrative model: Time-staged constraints

Cashflow accounting constraints of the model at any time period t after t = 0 depend on the
path lt. These constraints limit the increase in holdings for each bond in each market.

There is one constraint for each path lt ∈ Pt (the arguments lt are dropped from all variables
and parameters below for simplicity of notation):

ρt−1vt−1 +
m∑

i=1

eti

Ni∑

j=1

ki
t−1j

Zi
t−1j

+
m∑

i=1

eti

Ni∑

j=1

ζi
tjY

i
tj

=
m∑

i=1

eti

Ni∑

j=1

(ζi
tj + δ)Xi

tj + vt. (3.10)

Inventory balance equations constrain the amount of each bond sold or remaining in the
portfolio to be equal to the outstanding amount at the end of the holding period, plus any
additional amount purchased. There is one constraint for each bond and for each path lt ∈ Pt:

Zi
t−1j

+ Xi
tj = Y i

tj + Zi
tj for all i ∈ Γ, j ∈ Φi. (3.11)

Integrative model: objective function

At the end of the planning horizon T and for each path lT ∈ PT we calculate the return of
the portfolio. This value depends on the composition of the portfolio and the value of the bonds
at T and on any accrued cashflow from previous periods. The return of the portfolio is given by

Rp(lT ) .= Rp(ZT (lT )) =
vT +

∑m
i=1 eTi

∑Ni
j=1 ζi

Tj
Zi

Tj
− Vp0

Vp0
, (3.12)

where Vp0 is the initial value of the portfolio.
For our aim is to track the market indexation, the objective function maximizes the expected

utility of excess return of the portfolio over the index,

Maximize
∑

lT∈PT

πlTU
(

Rp(lT )
IT (lT )

)
, (3.13)
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where U(·) denotes the utility function. Here we choose to maximize a utility function of excess
return to allow for tradeoffs of growth versus security, which was addressed by MacLean, Ziemba
and Blazenko (1992) [43]. Choosing for instance a logarithmic utility function we can implement
in our model the investor’s wish to follow a growth optimal strategy over the long run.

Optimal currency hedging ratios

Hedging decision in the optimization model can now be incorporated. Define a new variable
(H0i)

m
i=1 to denote the amount of each currency hedged at agreed upon 1-period forward rates

(f0i)
m
i=1 at period t = 0. Let also (Hti(lt))

m
i=1 denote the amount hedged at forward rates

(fti(lt))
m
i=1 at period t under path lt.

The cashflow accounting constraints must be modified to account for the fact that at each
period t an amount Hti(lt) of the i currency will be exchanged at rate fti(lt) and any remaining
amount will be exchanged at rate eti(lt). Recall that there is one constraint for each path lt ∈ Pt,
and that the arguments lt are dropped from all variables and parameters below for simplicity of
notation.

The total cashflow in the ith currency—inflows from coupon payments and security sales
and outflows from security purchase—at period t under scenario lt is given by

wti =
Ni∑

j=1

ki
t−1j

Zi
t−1j

+
Ni∑

j=1

ζi
tjY

i
tj −

Ni∑

j=1

(ζi
tj + δ)Xi

tj (3.14)

The cashflow accounting equation (13) is rewritten to incorporate hedging as:

ρt−1vt−1 +
m∑

i=1

(ft−1iHt−1i + eti(wti −Ht−1i)) = vt. (3.15)

At the end of the planning horizon the return of the portfolio—in the base currency—will
be a function of the amount hedged and the forward and current exchange rates. The return
calculation takes the form:

Rp(lT ) .= Rp(ZT (lT )) = (3.16)

vT +
∑m

i=1

(
fT−1i

HT−1i
+ eTi

(∑Ni
j=1 ζi

jZ
i
Tj
−HT−1i

))
− Vp0

Vp0

In order to implement the portfolio optimization models we need a simulation procedure
to generate interest rate and exchange rate scenarios. Once such scenarios are generated the
calculation of bond price conditioned on the observed interest rates is straightforward; see , e.g.,
Mulvey and Zenios (1994) [44].

3.3 Stochastic Programming Models for Asset/Liability Management

Asset/Liability management(ALM) addresses the problem of an investor who faces a sequence
of liability payments in the future, and wants to construct a portfolio of securities that allows
him to meet these liabilities under a variety of plausible scenarios. From all feasible portfolios
he wants to choose the one that optimizes some optimality criterium (e.g.,minimum cost). Both
the size of the liability payments and the security returns may depend on the state of the world
in the future. This problem can be modelled as a multi-period stochastic linear program, which
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explicitly includes the possibility of portfolio rebalancing at future points in time as response
to new information that becomes available. As we are interested in presenting a modelling
framework for realistic ALM problems, market imperfections and trading restrictions are taken
into account.

In recent years the number of publications about stochastic programming for asset liability
management has risen drastically, probably inspired by the rapid increase of efficiency and
accessibility of computer systems. Some of the applications are very successful. For example, the
insurance ALM model of Carino and Zeimba[45] has been extensively used by the Frank Rusell
company in consulting ALM managers in insurance and pension fund. Their work with The
Yasuda Fire and Marine Insurance Company was a finalist at the Franz Edelman Competition
for Management Science Achievements. Similar acclaim was achieved by the Towers Perrin-
Tillinghast model of Mulvey, Gould and Morgan [46]. Stochastic programming models for Dutch
pension funds were developed by Dert [47], a general ALM model for insurers by Consigli and
Dempster [48].

Now we introduce the model presented by Klaassen [60].
In asset/liability management one generally faces a trade-off between the initial cost of the

asset portfolio of which the payoffs must be sufficient to meet the liabilities, and the value of
the portfolio that is left at the end of the model horizon. Although we have assumed that the
investor can borrow money at intermediate trading dates, we require that the final portfolio
value must be nonnegative in all scenarios. The trade-off between the initial investment and the
value of the portfolio at the end of the model horizon is captured in the objective function: the
initial portfolio investment is minimized, but any positive final portfolio value is credited to the
objective using a concave utility function U(·). We assume that this utility function satisfies the
expected utility property.

The ALM problem can now be formulated as the following multiperiod stochastic program.

minimize (1 + c)
I∑

i=1

Si,0xbi,0 − (1− c)
I∑

i=1

Si,0xsi,0

+P0y0 − e−κ∆P0z0 −
∑

s∈ST

ηs
TU(ys

T ) (3.17)

subject to
−xsi,0 + xbi,0 − xhi,0 = −x̄i,0 ∀i = 1, ..., I, (3.18)

xhs−
i,t−1 − xss

i,t + xbs
i,t − xhs

i,t = 0
∀i = 1, ..., I, s ∈ St, t = 1, ..., T − 1, (3.19)

I∑

i=1

D
n(s)
i,t xhs−

i,t−1 + ys−
t−1 − zs−

t−1 + (1− c)
I∑

i=1

S
n(s)
i,t xss

i,t

−(1 + c)
I∑

i=1

S
n(s)
i,t xbs

i,t − P
n(s)
t ys

t + e−κ∆P
n(s)
t zs

t = L
n(s)
t

∀s ∈ St, t = 1, ..., T − 1, (3.20)
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I∑

i=1

(Dn(s)
i,T + S

n(s)
i,T )xhs−

i,T−1 + ys−
T−1 − zs−

T−1 − ys
T = L

n(s)
T

∀s ∈ ST , (3.21)
xss

i,t, xbs
i,t, xhs

i,t ≥ 0
∀i = 1, ..., I, s ∈ St, t = 0, ..., T − 1, (3.22)
ys

t ≥ 0 ∀s ∈ St, t = 0, ..., T, (3.23)

0 ≤ zs
t ≤ Z̄

n(s)
t ∀s ∈ St, t = 0, ..., T − 1. (3.24)

We will refer to this formulation as the ALM model.
The first four terms in the objective function represent the net cost of additional investments

at time 0. These additional investments consist of asset purchases (including transaction costs)
and investment in the riskless one period security, while revenues from the sale of assets (net of
transaction costs) and borrowing are subtracted. The last term in the objective is the expected
utility of a final portfolio surplus.

We distinguish between three types of constraints in the model: portfolio-balance constraints,
cash-balance constraints and borrowing constraints. The portfolio-balance constraints link port-
folio holdings between successive periods (ie., before and after rebalancing) in each scenario and
for each asset. The portfolio-balance constraints are given by (3.18) for all assets at time 0, and
by (3.19) for all assets in each scenario after time 0.

The cash-balance constraints make sure that sufficient cash is generated to meet the liability
payment in each scenario at each time. For each scenario at time t < T , this constraint is
given by (3.20). At the end of a period , the investor receives dividend payments on his asset
holdings and the return on his investment in the one period riskless security but has to repay the
amount borrowed in the previous period plus interest (represented by the first three terms on
the left-hand side of (3.20)). The next two terms reflect rebalancing of the portfolio: revenues
are generated by selling assets, and money can be invested by buying assets, where both are
adjusted for transaction costs. The final two terms on the left-hand side are the investment in
the riskless one period security and the amount borrowed, respectively, during the next period.

The cash-balance constraints (3.21) at time T define the final portfolio value in each scenario.
The first three terms on the left-hand side determine the final portfolio value before meeting the
liability: the portfolio holdings are converted at the current market prices, the return on the
investment in the riskless one period security is added, and the amount due because of borrowing
subtracted. The difference between this portfolio value and the liability payment in a scenario
s ∈ ST is the final portfolio surplus ys

T .
The nonnegativity restriction on xhs

i,t prevent short sales of assets, while Equation (3.24)
states the upper bounds on borrowing.

4 Scenario Generation

To operate the stochastic programming models, scenarios generation and constructing event
trees are of very importance. We describe some methods that have been proposed to deal with
these two problems. In constructing event trees, arbitrage-free condition should be noted.

4.1 Methods for Generating Scenarios

In this subsection we describe three specific methods for generating asset return scenarios with
more detail: (i) bootstrapping historical data, (ii) statistical modelling with the Value-at-Risk
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approach, and (iii) modelling economic factors and asset returns with vector autoregressive
models.

4.1.1 Bootstrapping historical data

The simplest approach for generating scenarios use only the available data without any mathe-
matical modelling. It bootstraps a set of historical records. Each scenario is a sample of assets
returns which is obtained by sampling returns that were observed in the past. Dates from the
available historical records are selected randomly and for each date in the sample we read the
returns of all asset classes or risk factors during the month prior to that date. These are sce-
narios of monthly returns. If we want to generate scenarios of returns for a long horizon—say
1 year—we sample 12 monthly returns from different points in time. The compounded return
of the sampled series is the 1-year return. Note that with this approach the correlations among
asset classes are preserved.

4.1.2 Statistical models from the Value-at-Risk literature

Time series analysis of historical data can be used to estimate volatilities and correlation matrices
among asset classes of interest. These correlation matrices are used to measure risk exposure of
a position through the Value-at-Risk (VaR) methodology.

Denote the random variables by the K-dimensional random vector ω. The dimension of ω is
equal to the number of risk factors we want to model. Assuming that the random variables are
jointly normally distributed we can define their probability density function of ω by

f(ω) = (2π)−p/2|Q|−1/2 exp
[
−1

2
(ω − ω̄)

′
Q−1(ω − ω̄)

]
, (4.1)

where ω̄ is the expected value of ω and Q is the covariance matrix and they can be calculated
from historical data. (It is typically the case in financial time series to assume that the logarithms
of the changes of the random variables have the above probability density function, so that the
variables themselves follow a lognormal distribution.)

Once the parameters of the multivariate normal distribution are estimated we can use it in
Monte Carlo simulations, using either the standard Cholesky factorization approach or scenario
generation procedures based on principal component analysis discussed in Jamshidian and Zhu
(1997)[50].

The simulation can be applied repeatedly at different states of an event tree. However, we
may want to condition the generated random values on the values obtained by some of the
random variables. For instance, users may have views on some of the variables, or a more
detailed model may be used in the simulation hierarchy to estimate some of the variables. This
information can be incorporated when sampling the multivariate distribution.

The conditional sampling of multivariate normal variables proceeds as follows. Variable ω is
partitioned into two subvectors ω1 and ω2, where ω1 is the vector of dimension K1 of random
variables for which some additional information is available and ω2 is the vector of dimension
K2 = K −K1 of the remaining variables. The expected value vector and covariance matrix are
partitioned similarly as

ω̄ =




ω̄1

ω̄2


 and Q =




Q11 Q12

Q21 Q22


 . (4.2)
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The marginal probability density function of ω2 given ω1 = ω1
∗ is given by

f(ω2|ω1 = ω1
∗) =

(2π)−p2/2|Q22.1|−1/2 exp
[
−1

2
(ω2 − ω̄2.1)

′
Q−1

22.1(ω2 − ω̄2.1)
]

, (4.3)

where the conditional expected value and covariance matrix are given by

ω̄2.1(ω∗1) = (ω̄2 −Q21Q
−1
11 µ1) + Q21Q

−1
11 ω∗1, (4.4)

and

Q22.1 = Q22 −Q21Q
−1
11 Q12, (4.5)

respectively. Scenarios of ω2 for period t conditioned on values of ω1 given by ω∗1 can be generated
from the multivariate normal variables from (4.3) through the expression

ωt
2i = ω0

2i exp
[
σi

√
tω2i

]
,

where ω0
2i is today’s value and σi is the single-period volatility of the ith component of the

random variable ω2.
Consiglio and Zenios (2001)[51] use the Riskmetrics methodology in conjunction with dis-

crete lattice models to generate joint scenarios of term-structure and exchange rates. Interest
rate differences among two countries are key determinants of the exchange rate between the
currencies. Hence, exchange rate scenarios are conditioned on the interest rates of the two cur-
rencies, the base currency and the foreign currency. The standard assumption applies that the
logarithms of the ratios of exchange rates at period t to period t− 1, and the logarithms of the
ratios of spot interest rates at period t to period t− 1 follow a multivariate normal distribution.
Daily and weekly rates do not follow normal distributions but there is lack of empirical evidence
against normality for monthly data such as those used by Consiglio and Zenios.

4.1.3 Scenario generation using vector autoregressive models

Vector autoregressive models are often used to generate scenarios. To illustrate this, we consider
an ALM simulation system for Dutch pension funds as an example (see Boender 1997[52]). As
the scope of ALM systems for Dutch pension funds is often limited to long term strategic
decisions, the investment model only considers a small set of broad asset classes: deposits,
bonds, real estate and stocks. Apart from the returns on these assets, each scenario should
contain information about future wage growth in order to calculate the future values of the
pension liabilities.

In order to generate asset returns and the wage growth rate a vector autoregressive model
is applied by Boender (1997):

Rt = c + V ht−1 + εt, εt ∼ N(0, Q), t = 1, 2, ..., T, (4.6)
Rit = ln(1 + rit), i = 1, 2, ..., m, t = 1, 2, ..., T, (4.7)

where m is the number of asset time series, rit is the discrete rate of change of variable i in
year t, Rt is an m-dimensional vector of continuously compounded rates, c is the m-dimensional
vector of coefficients, V is an m × m matrix of coefficients, εt is the m-dimensional vector of
error terms and Q is the m×m covariance matrix.
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The specification of the vector autoregressive model should be chosen carefully. Although
some inter-temporal relationships between the returns might be weakly significant based on his-
torical data, that does not imply that these relationships are also useful for generating scenarios
for a financial optimization model with a long time horizon. To avoid any problems with un-
stable and spurious predictability of returns, we do not use lagged variables for explaining the
returns of bonds, real estate, and stocks in the vector autoregressive model. The time series of
the return on deposits and the increase of the wage level on the other hand are known to have
some memory, so we model them by a first order autoregressive process.

There are many ways to estimate vector autoregressive models, see, e.g., Judge et al.
(1988)[53]. After the vector autoregressive model has been used to generate scenarios of as-
set returns and wage growth, the liability values can be added to each scenario in a consistent
manner by applying appropriate actuarial rules or financial valuation principles (Embrechts
2000)[54].

4.2 Constructing Event Trees

A stochastic programming model is based upon an event tree for the key random variables. Each
node of the event tree has multiple successors, in order to model the process of information being
revealed progressively through time. The stochastic programming approach will determine an
optimal decision for each node of the event tree, given the information available at that point. As
there are multiple succeeding nodes the optimal decisions will be determined without exploiting
hindsight. If a stochastic programming model is formulated then the optimal policy will be
tailor-made to fit the condition of the state of financial institution and the economy in each
node, while anticipating the optimal adjustment of the policy later on as the tree evolves and
more information is revealed.

A key issue for the successful application of stochastic programming in financial optimization
is the construction of event trees with asset returns. The underlying return distributions have
to be discretized with a small number of nodes in the event tree, otherwise the computational
effort for solving a multi-stage stochastic programming model can easily explode. Clearly, a
small number of nodes describing the return distribution at every stage of the event tree might
lead to some approximation error. An important question is to which extent the approximation
error in the event tree will bias the optimal solutions of the model.

In this section we will consider three different methods to construct event trees for stochastic
programming models: (i) random sampling, (ii) adjusted random sampling, and (iii) tree fitting.
In order to compare these methods we will apply them to construct trees with asset and liability
returns for the estimated vector autoregressive model.

4.2.1 Random sampling

First we introduce random sampling from the error distribution of the vector autoregressive
model. Given the estimated coefficients and the estimated covariance matrix of the vector
autoregressive model, we can draw one random vector of yearly returns for bonds, real estate,
stocks, deposits and wage growth. If we would like to construct an event tree with ten nodes
after one year (we assume that the duration of each stage is one year), we can simply repeat
this procedure ten times, sampling independent vectors of returns for each node. The nodes at
stage two in the event tree can also be sampled randomly, however the conditional distribution
from stage one to stage two depends on the outcomes at the first stage. For example, wage
growth follows an autoregressive process, so the expected wage growth from year one to year
two depends on the realized wage growth rate in the previous period.
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An entire event tree for the stochastic program can be created by applying random sampling
recursively, from stage to stage, while adjusting the conditional expectations of wage growth
and deposits in each node based on previous outcomes.

The random sampling procedure for constructing a sparse multi-period event tree apparently
leads to unstable investment strategies. An obvious way to deal with this problem is to increase
the number of nodes in the randomly sampled event tree, in order to reduce the approxima-
tion error relative to the vector autoregressive model. However, the stochastic program might
become computationally intractable if we increase the number of nodes at each stage, due to
the exponential growth rate of the tree. Alternatively, the switching of asset weights might be
bounded by adding constraints to the model or enforcing robustness through the choice of an
objective function (Mulvey, Vanderbei and Zenios 1995 [55]). Although we might get a more
stable solution in this case, the underlying problem remains the same: the optimal decisions are
based on an erroneous representation of the return distributions in the event tree.

4.2.2 Adjusted random sampling

An adjusted random sampling technique for constructing event trees can resolve some of the
problems of the simple random sampling method. First, assuming an even number of nodes, we
apply antithetic sampling in order to fit every odd moment of the underlying distribution. For
example, if there are ten succeeding nodes at each stage then we sample five vectors of error
terms from the vector autoregressive model. The error terms for the five remaining nodes are
identical but with opposite signs. As a result we match every odd moment of the underlying
error distributions (note that the errors have a mean of zero). Second, we rescale the sampled
values in order to fit the variance. This can be achieved by multiplying the set of sampled returns
for each particular asset class by an amount proportional to their distance from the mean. In
this way the sampled errors are shifted away from their mean value, thus changing the variance
until the target value is achieved. The adjusted values for the error terms are substituted in the
estimated equations of the vector autoregressive model to generate a set of nodes for the event
tree.

Using adjusted random sampling to match the mean and the variance, we substantially
reduce useless trading. The additional computational effort for adjusting the random samples
is negligible.

4.2.3 Fitting the mean and the covariance matrix

A third method for constructing event trees is to estimate returns that match the first few
moments of the underlying return distributions. This can be achieved by solving a non-linear
optimization model following Hoyland and Wallace (1999)[56]. The decision variables in the
optimization model are the returns and the probabilities of the event tree, while the objective
function and the constraints enforce the desired statistical properties. The probabilities and
returns in all nodes of the event tree can be estimated simultaneously. However, with this
approach it might take longer to construct a desirable event tree than to solve the stochastic
programming model for ALM itself. The tree fiting problem can be simplified by applying the
method at each stage recursively as suggested in Kouwenberg (1998)[65]. This requires the
assumption that the return distributions are not path dependent. This assumption is valid for
long term asset and liability management with broad asset classes, but fails when modelling
money management problems with path-dependent securities.

To illustrate the concepts, we write down the tree fitting equations to estimate a set of
perturbations that will fit the mean and the residual covariance matrix of the vector autoregres-
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sive process. The probabilities are assumed uniform in order to ease comparison with random
sampling. Let i = 1, 2, ..., m, denote the random time series that are modelled by the vector
autoregressive process. In our example these are the returns on stocks, bonds, deposits, real
estate and the wage growth rate. Suppose that a total of M succeeding nodes at stage t + 1 are
available to describe the conditional distribution of these random variables in a particular node
at stage t. We define the perturbation εl

ti as the realization in node l for the ith element of the
vector εt.

A tree fitting model that matches the mean of zero and the estimated covariance of vector
autoregressive model (4.6)-(4.7) estimates the perturbations by solving equations (4.8) and (4.9).
Equation (4.8) specifies that the average of the perturbations should be zero, while equation (4.9)
states that they should have a covariance matrix equal to Q:

1
M

M∑

l=1

εl
ti = 0, for all i = 1, 2, ...,m, (4.8)

1
(M − 1)

M∑

l=1

εl
tiε

l
tj = Qij , for all i = 1, 2, ...,m, j = 1, 2, ..., m. (4.9)

Obtaining a solution of the non-linear system (4.8)-(4.9) can be difficult, specially when
higher order moments like skewness and kurtosis are also included as additional restrictions.
Instead of solving a system of nonlinear equations we may solve instead a non-linear optimization
model that penalizes deviations from the desired moments in the objective function. Good
starting points for this optimization can be obtained using the adjusted random sampling method
of the previous subsection, which is computationally very efficient. After solving the non-linear
fitting model, we can substitute the optimal set of perturbations in the estimated equations of
the vector autoregressive model to generate conditional return distributions. By applying this
procedure recursively, from node to node and from stage to stage, we generate an event tree
that fits the time varying conditional expectation and the covariance matrix of the underlying
return distributions.

Finally, for completeness we would like to mention some other promising methods for con-
structing event trees from the stochastic programming literature. Mulvey and Zenios (1994)[44]
discusses simulation techniques to generate scenarios of returns for fixed-income portfolio mod-
els, based on a underlying fine-grained interest rate lattice. Pflug and Swietanowski (1998)[57]
derive promising theoretical results for optimal scenario generation for multiperiod financial op-
timization. Shtilman and Zenios (1993)[58] derive theoretical results for the optimal sampling
from lattice models. Further theoretical and empirical research in this area is important, as the
event trees used as input are crucial for the effectiveness of the stochastic programming approach
to finanial planning problem.

4.3 Arbitrage Free Event Tree

The absence of arbitrage opportunities is an important property for event trees of asset returns
that are used as input for stochastic programming models. If there is an arbitrage opportunity
in the event tree, then the optimal solution of the stochastic programming model will exploit it.
An arbitrage strategy creates profits without taking risk, and hence it will increase the objective
value of nearly any financial planning model. So the presence of arbitrage opportunities in a
portfolio optimization model can lead to substantial biases in the optimal solution that are due
to profit opportunities which exist in the model. Even though the pofit opportunities are often
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unlikely to marerialize in reality, it is prudent for long term financial planning applications to
generate scenarios that do not allow for arbitrage.

A potential problem for stochastic programming models in financial optimization are arbi-
trage opportunities in the event tree that are due to approximation errors. Klaassen (1997)[59]
was the first to address this issue. Arbitrage opportunities might arise because the underlying
return distributions are sometimes approximated poorly with a small number of nodes in the
event tree. If the application only involves broad asset classes such as a stock index, a bond
index and real estate index, then arbitrage opportunities are unlikely to occur unless the errors
in the event tree are very big. However, applications that involve options, multiple bonds or
other interest rate derivative securities can be quite vulnerable to these problems. For example,
the prices of European call and put options with equal strike price should satisfy put- call parity
in each node of the event tree. If this relationship is violated because of a small approximation
error, then the event tree contains an arbitrage opportunity and hence a source of spurious
profits for the stochastic programming model.

To deal with the arbitrage free problem, Klaassen (1998)[60] proposes an aggregation method.
It starts with a very fine-grained event tree of asset prices without arbitrage opportunities and
then reduce it to a smaller tree, while preserving the property of no-arbitrage. Recursively, a
combination of nodes at a particular time period can be replaced by one agregated node, while
preserving the no-arbitrage property. If a node has only one particular successor remaining at
the next time, then the intermediate period can be eliminated. This method can reduce the
recombining lattice to a much smaller event tree with less trading dates, while meeting the
arbitrage free condition. Another method for reducing a fine-grained lattice of security prices to
a sparse event tree without arbitrage is discussed in Gondzio, Kouwenberg and Vorst (1999)[61].
They apply their method to an option hedging problem with two sources of uncertainty: the
stock price and stochastic volatility. First a three-dimensional fine-grained grid of time versus
stock price and volatilty is constructed to calculate option prices. Second, the points on the grid
are partitioned into groups at a small number of trading dates, corresponding to the decision
stages in the stochastic programming model. Each groups of points on the grid is represented by
a single aggregated node in the event tree of the stochastic programming model. If the prices in
each aggregated node are calculated as a conditional expectation under the risk neutral measure
of the prices in the corresponding partition on the grid, then the aggregated event tree will not
contain arbitrage opportunities.

Although the absence of arbitrage opportunities is important for financial stochastic pro-
grams with derivative securities, one should keep in mind that it is only a minimal requirement
for the event tree. The fact that the stochastic program can not generate riskless profits from
arbitrage opportunities does not imply that the event tree is also a good approximation of the
underlying return process. We still have to take care that the conditional return distributions
of the assets are represented properly in each node of the event tree. In order to avoid com-
putational problems that arise if the tree becomes too big, one could reduce the number of
stages of the stochastic program. In this way more nodes are available to describe the return
distributions accurately. It is also important to include more nodes for the earlier stages, while
larger errors in the later stages will have a small effect on the first-stage decisions which are
the decisions implemented today by the decision makers. End effects of stochastic programming
models for financial applications are studied by Carino and Ziemba (1998)[45] and Carino, Myers
and Ziemba (1998)[62].
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5 Algorithm and implementations

Stochastic programming is one of the possible approaches that can be used to model real-life
financial planning problems. However, taking into account both uncertainty and the dynamic
structure of decision problem inevitably leads to an explosion of dimensionality in stochastic
programming models. The models grow in size very quickly with the number of stages and the
number of scenarios at each stage. In practice they have to be solved numerically. A very rich
literature is devoted to designing algorithms for them.

The first group of methods are variants of the simplex methods which take advantage of the
structure of the constraint matrix to construct compact representations of the basis inverse and
to improve pivotal strategies (see [63]). The special block-angular structure of the constraint
matrix of stochastic programs has prompted the development of specialized algorithms. Modern
implementations of the simplex method, such as IBM’s OSL or CPLEX by Ilog, incorporate
many theoretical results of research on this problem, making commercially available two excellent
versions of this algorithm for the solution of stochastic programming problems.

The second group are linear decomposition methods coming down from the famous decom-
position principle of Dantzig and Wolfe[64]. Special purpose decomposition algorithms break up
the deterministic equivalent formulation into smaller problems, which can be solved either seri-
ally or in parallel. In any case they are much smaller than the original problem hence solution
times are substantially improved. OSL supports some decomposition methods. However, most
software implementations of decomposition methods are supported by academic researchers. In
general such systems are very efficient and quite robust, but they are not of industrial quality.

Except for these, Kouwenberg(1998)[65] solved the deterministic equivalent linear program
of the stochastic programming model using an interior point algorithm that exploits the sparse
block-angular structure . The fixed-income models and the asset allocation models can also be
represented as network flow problems and can be solved using special purpose network opti-
mization algorithms (Mulvey and Vladimirou, 1992[12], Nielsen and Zenios,1996[34]).

Work on the solution of stochastic programs has also focused on the intelligent sampling
and pruning of the event tree. Clearly not all events on an event tree will have an effect on the
optimal solution. It is important to sample only those events that have the most impact on the
solution. Importance sampling (Dantzig and Infanger 1991[66]) and EVPI (expected value of
perfect information, Dempster and Gassmann 1991[67]) have appeared as promising avenues for
restricting the tree size, and structuring problems of moderate size. For a discussion of solution
techniques and an extensive list of references see Censor and Zenios [68](1997, Ch. 13).

There have been numerous applications of stochastic programming models in various ar-
eas. Actual and potential applications in finance are particularly rich. They are surveyed in
Dupacova(1991)[69], Mulvey and Zeimba(1995)[70], and Zeimba and Mulvey(1998)[71].

6 Conclusion

The literature on financial optimization models is vast and dates back to the seminal contribution
of Markowitz (1952) [72]. Four alternative modelling approaches have emerged as suitable
frameworks for representing financial optimization problems.They are mean-variance models,
discrete-time multi-period models, continuous-time models, and stochastic programming. The
mean-variance framework of Markowitz (1952) is widely considered as the starting point for
modern research about portfolio optimization. Although this kind of model gets profound insight
into the problem, it is of limited use in practice because of two major drawbacks. Firstly,
variance is not always a good risk measure for investors; Secondly, a single-period model might
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be inappropriate for multi-period investment problems with long horizons. Continuous-time
models and discrete-time models solved with dynamic programming and optimal control can
provide good qualitative insights about fundamental issues in investments and ALM. However,
their practical use as a tool for decision making is limited by the many simplifying assumptions
that are needed to derive the solutions in a reasonable amount of time.

The stochastic programming approach for financial optimization can be considered as a prac-
tical multi-period extension of the normative investment approach of Markowitz (1952). The
advantage of stochastic programming models for multi-period investment and ALM problems
is that important practical issues such as transaction costs, multiple state variables, market in-
completeness, taxes and trading limits, regulatory restrictions and corporate policy requirements
can be handled simultaneously within the framework.

Of course this flexibility comes at a price and stochastic programming also has a drawback.
The computational work explodes as the number of decision stages increases. When implement-
ing a stochastic programming model, we are therefore often forced to make a trade off between
the number of decision stages in the model and the number of nodes in the event tree that are
used to approximate the underlying returns distributions.

Because stochastic programming can deal simultaneously with all important aspects of fi-
nancial optimization problem, much work has been done in this area. But there are still a lot
of interesting topics for further investigations. Some of them are mentioned as follows.

To character the realistic problems, it is very important to set up stochastic programming
models that incorporate more consideration of uncertainties. For example, to the portfolio
selection problem, in addition to the usual interest rate changes, uncertainty in the timing and
amount of cashflows, changes in the default and other risk premia and so on should be considered.
To the ALM, effort should be given to expand the applicability of stochastic programming to
address enterprise-wide risk management problems.

When generating scenarios, an important issue is how to measure the approximation error
of the returns in the event tree compared to the true underlying distribution. Once appropriate
measures have been identified, one could try to develop methods for constructing event trees
that minimize the approximation error (assuming the size of the event tree is fixed). A promising
first step in this direction is made by Pflug and Swietanowski (1998)[57].

When the computational side of stochastic programming is considered, there seems to be
a need for flexible and efficient model generation tools. Specialized optimization algorithms
and the ever increasing computational power of computers make it feasible to solve large scale
multi-stage financial optimization models with millions of variables and constraints on desktop
computers nowadays. However, most commercial mathematical modelling languages are not
capable of generating the data of these huge problems efficiently. Moreover, if the modelling
language does not exploit the special structure of the stochastic program, it can easily run
into memory problems that could be avoided. Model generation seems to have become the
bottleneck that limits the size of multi-stage stochastic programming models applied to financial
optimization.

Besides, the present boom of large-scale real-life applications has brought new challenging
questions. An important task is an adequate reflection of the dynamic aspects, including further
development of tractable numerical approaches. Additional problems are related with the fact
that the probability distribution P is rarely known completely and/or that it has to be approxi-
mated for reasons of numerically tractability. Because of this one mostly solves an approximate
stochastic program instead of the underlying true decision problem. The task is to generate
the required input, i.e., to approximate P bearing in mind the required type of the problem;
see e.g. [73]. Moreover, without additional analysis, the obtained output(the optimal value and
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optimal solutions of the approximate stochastic program) should not be used to replace the
sought solution of the true problem; see [74]for discussion of suitable output analysis methods.
These methods have to be tailored to the structure of the problem and they should also reflect
the source, character and precision of the input data.

In current applications, the methods of output analysis address mainly the two-stage (mul-
tiperiod) stochastic programs. The reason is that the structure of multistage problems is much
more involved and one cannot rely on intuitive straightforward generalizations. At the same
time validation experiments, e.g. [75], provide an evidence that even three-stage stochastic pro-
grams may outperform significantly the existing static models. Hence, an extensive research in
multistage stochastic programming is an important complex task of the day.
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