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Abstract

A model for path planning based upon a natural phenomenon is presented.
An electrostatic field is shown to have a similarity to path planning in
generating multiple, alternative solution paths. Analysis of the electrostatic
model results in a partial differential equation for the potential field and
its boundary conditions which correspond to the path planning problem
requirements. A finite difference approximation for computing the numerical
solution to the partial differential equation is also derived. This finite differ-
ence approximation is the basis for a neural network architecture designed to
compute the numerical solution of the potential field. Gradient descent over
the potential field produces the multiple path solutions.

Keywords: multiple path planning, route planning, artificial potential
field, massively parallel architecture, natural parallelism

I. INTRODUCTION

This paper describes a new model for path planning problems[21]. The basis for this new
model of path planning recognizes that certain computational problems can be described by
physical analogies in nature. This new path planning model uses an analogy of electromag-
netic field theory for the mathematical model. The solution to the application problem is
provided by a partial differential equation in field theory.

The model taken from electromagnetic phenomena is based on electrostatics. The electro-

static model is used to compute multiple, parallel paths which avoid regions of high cost. The
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mathematical model describes paths through a region containing a variable cost function as
a problem in mathematical physics. One such problem is finding the distribution of current
flow through a nonuniform conducting media such as a plate of nonhomogeneous resistive
material. The cost function for the path planning problem is analogous to the nonuniform
resistivity of the media. The solution to the Laplacian partial differential equation is a po-
tential field in the media. Paths are computed which are orthogonal to the equipotential

contours of this potential field.

II. BACKGROUND

Problems may be defined as state spaces. The search algorithm solves the problem by
finding the sequence of operators which converts the initial state into the final state. This
sequence is the problem solution, and is described as a path through the problem space from
the initial state to the final state. In problem spaces which correspond to physical space, the
resulting path represents a physical route.

Trajectory generation for aircraft, unmanned guided vehicles, and other robotic systems
is a well studied application of path planning search. It has been mapped into a multidimen-
sional grid representation with each cell of the grid containing the cost of flying through that
cell. The trajectory optimization problem then is to find the minimum cost path through
the grid by searching. An optimal solution to a problem is obtained when the search results
in the best possible answer. But in many cases, the best solution may be too costly or
prohibitive to find, so reasonable solutions are suitable alternatives. Good approximations
to optimal solutions often serve well as satisfactory results.

Much research regarding combinatorial search algorithms[2; 18, 26] have focused on tradi-
tional algorithm development and analysis for sequential processors. Some research[1, 11, 15]
has addressed converting these algorithms into parallelized versions for execution on mul-
tiprocessors. Those approaches also begin with the serial perspective on algorithm design.
This research will show a unique approach to searching that does not begin with a serial view-
point, but rather a truly parallel model which encompasses the problem space representation

as well as the algorithmic model.

III. TuE MODEL

The electrostatic model is a physical model in nature which is used for the natural analogy
of parallel path planning. The natural analogy contains corresponding entities between the
physical model and the abstract path planning model. The paths of the path planning model
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correspond to the current flux lines of the electrostatic model. These flux lines describe the
distribution of current flow. The variable cost region of the path planning model corresponds
to the nonuniform conducting medium of the electrostatic model. A plate of nonhomogeneous
resistive material is an example of such a medium. With this analogy, finding good paths is
like describing the manner in which current flows through the medium. The solution of the
distribution of current flow can be used as a corresponding solution for path planning.

When a potential difference is applied at two different points in a resistive media, current
flows along paths between the points where the different potentials are applied. The point
with the higher potential is the source point, and the point with the lower potential is the
sink point. The paths of current flow are determined by the resistivity of the media and the
locations of the source and sink points. The distribution of current flow along these paths is
optimized by nature in some fashion. Current path distribution is less dense through regions
where the media has a higher concentration of resistivity. Conversely, regions with more
conductivity (lower resistivity) have a greater density of current distribution.

Current flow is along flux lines which correspond to the current density field. The current
density field is continuous, so there are an infinite number of flux lines from the source point
to the sink point. From the source to the sink, the current flux lines can be traced along
the direction specified by the current density vector field. (Just as magnetic flux lines can
be seen between the poles of a bar magnet by sprinkling metal filings upon a sheet of paper
placed on top of the magnet.)

In the electrostatic model for path planning, several analogies to nature are defined. The
variable cost function for the search problem is represented by the nonuniform resistivity of
the media. This media has the same dimensionality as the problem space. The range of each
dimension of the problem space defines the extent of a grid upon which a spatial sampling is
performed for the architecture. Time may be explicitly represented as one of the dimensions,
if the cost function is a function of time. The source and sink locations represent the start
and goal nodes, respectively of the search space.

The mathematical model is based upon electric field theory[19]. The electric field is a
vector field which is defined as

E--V¢ 1)

where ¢ is the scalar potential field. The current density field is also a vector field defined
as
j=oE (2)

where o is the conductivity of the media. From the definition for current density and

its divergence in steady state conditions the N- dimensional electric field potential ¢ =
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be derived[21] as the solution to the second order partial differential equation
V3¢ + pVo -V =0 (3)

where p = p(x1,Zs,...,2y) is the nonuniform resistivity of the media, and ¢ = p~'. The
derivation of Equation 3 is shown in Appendix A. The cost function is modeled by the
resistivity of the conducting media. Expanding the gradient and divergence operators in the

two dimensions x, y results in the following second order partial differential equation

P Po 10009 19009
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This is expressed more conveniently using subscript notation for partial derivatives as

- Qbyy + POy, + po_y¢y =0 (5)

By solving Equation 5 for ¢ and substituting into Equation 1, the current flow vector field,
7, can be found by substituting Equation 1 into Equation 2.

Since the electric field and current density field result from the gradient of a scalar field,
they are conservative fields, and the field lines emanate from source charges and terminate
on sink charges[25]. These field lines represent possible solutions to the search problem as
multiple paths. These curved lines then correspond to multiple paths of the corresponding
path planning problem. These multiple path solutions do not include all of the possible
solution paths in the exponential search space. In using the field lines as paths, the solution
space is restricted to include only those paths which do not share any path segments. The
multiple paths will not split from any common path or join together into a single path. The
multiple paths all originate at the start state as unique alternatives.

The field lines for the electrostatic model are used as the path definitions. The field lines
are computed once the electrostatic potential field ¢ is derived for the problem from the
solution to Equation 5. The current density vector field j of Equation 2 is used to trace
the field lines. This vector field is the tangential field for the solution. There are an infinite
number of field lines which leave the source point and enter the sink point. At every point
in the potential field with the exception of the source and sink, the vector field (the electric
field vector) is defined. From the source point, an angle (initial heading at the start node) is
selected from which to trace out the field line. Using a small incremental path step, the path
progresses along this direction. From this point on, the gradient vector can be computed
which will define the direction of the path descent over the potential field surface, obtaining
the path as the field line. Gradient descent over the potential field will not be troubled with
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local minima since the potential field cannot have maximum or minimum values except at
the source and sink locations(24].

In addition to the source and sink values included as boundary conditions described
previously, it is necessary to establish boundary conditions along the edge of the grid for the
problem. These boundary conditions will determine what happens to the paths where they
approach the edge of the grid. The grid itself is assumed to be large enough to include a
sufficient portion of the path planning area in which multiple solutions are needed. Since all
of the paths should be continuous from start to goal within this planning area, it is desired
that none of the solution paths run off the grid. Thus, asymptotically near the edge of the
grid, each path should approach a parallel course to the edge.

For the field lines to be asymptotically parallel at the edge of the problem grid, it is
necessary to establish the equipotential contours as normal to the grid edges as they approach

the edge. This is accomplished by setting up the following boundary conditions:
99

_ =0 6
Oy | (¥ = Ymin,;¥ = Ymax) (6)
and 5
’ =0 (7)
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The first boundary condition (Equation 6), causes the field lines, E, to be parallel to the
unit vector, x, since along the top and bottom edges of the grid the y-component of the
potential gradient is zero. Similarly, the second boundary condition (Equation 7) causes
parallel solutions of E along the left and right edges of the grid because the x-component of

the potential gradient is zero also.

IV. THE ARCHITECTURE

This section develops the architectural design of a neural network[21] that computes the
numerical solution to the Laplacian partial differential equation. The architecture imple-
ments a finite difference approximation[6] to compute a numerical solution to the scalar
partial differential equation. The numerical approximation defines an artificial neural net-
work processing unit and its weighted interconnections to a selected set of neighboring pro-
cessing units. The approximation templates of the difference formula define the connection
strengths.

Appendix B contains the details of the finite difference approximation which computes the
numerical solution to the Laplacian equation. The approximation equation for the potential
field ¢ at grid location P is

1 C, c, C, c,
Up =1 |(145) Ve + (142 ) Uau+ (1= ) Vo + (1- L) 0| ®
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where C, = 0, /0, and @Q;,7 = 1,2, 3,4 are the four nearest neighbors of the point P in the
grid.

This artificial neural network architecture uses a computational grid. Each point of the
grid is a processor, and the links of the grid consist of the links between the processors. The
mapping of the finite difference approximation into this grid is illustrated in Figure 1. The
block diagram which shows the neuron model definition which implements the five point

approximation of Equation 8 is also shown in Figure 1.

Vi1
Figure 1: Neuron Model for the 5-pt. Finite Difference Approximation

The neuron model is defined as consisting of an input function and output function. The

input function u, computes the weighted sum of the interconnections from the other neurons,
n

u, = > WiV, (9)
i=1

and the output function v; ; computes the linear ramp between the saturation voltages —V,.y,
+V,es of the operational amplifier.

The neural network is used to perform a parallel computation of the scalar potential field ¢
at every spatial point. Thus, the network computes a numerical solution to Equation 5. The
architecture of the neural network must solve an elliptic partial differential equation. There

are many numerical methods for solving partial differential equations. In this research, finite
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differences were employed to solve the potential field Equation 5. Such an approximation is
the five-point formula defined in Equation 8. For the neural network implementation, the

neuron input function wu, ; is defined as

1 Oy
Uig = o |(T+ o Jvier + (1 +

Ty

Oy o
20)%’,;‘—1 + (1 — %)Ui—l,j +(1— *y)vi,jfl (10)

20

The synaptic weights implement the non-uniformity of the cost functions (the coefficients of

Equation 10 which contain o, and o). The weights to neuron(i,j) are shown in Table 1.

Table 1: Neural Network Weight Definitions for the 5-pt. Approrimation

Weight | From Neuron Value
Wi (i+1,7) | (1+0./20)/4
W, (2,7 +1) (1+0,/20)/4
W3 (7_1,]) (1_0-13/20-)/4
We | Gy-1) | (1= ay/20)/4

The non-linear neuron output function v, ; is defined as

_V;*ef LUy < _‘/ref
Vig = Wij 0 ~Viep S Ui < AVies (11)
+V;“ef Uy > ‘}‘V;“ef

The entire search space is constructed by replicating this portion of the neural network
over the entire grid. The output of the source and sink neurons which correspond to the
start and goal nodes are clamped to +V,.; and —V,.y, respectively. Since the clamping of
the source and sink to the maximum and minimum (respectively) potential value occurs on
the boundary of the problem, it is appropriate to use these clamped values as the limits of
the neuron output function (Equation 11), since all potential values inside the boundary of
the problem are guaranteed to lie between these limits.

The electrostatic model neural network becomes an element in a system which can be
applied to the generation of physical trajectories. Such a trajectory generator is shown as a
block diagram in Figure 2. Inputs to the neural network are the start and goal coordinates
for the trajectory, and the explicit cost function values for each cell of the problem grid.
The network settling is checked against an input parameter for convergence. This check
tests if the sum-squared difference of all the neuron outputs between successive iterations
is less than the input parameter. When the neural network settles to its stable state, the
neuron outputs define the potential surface solution for the electrostatic model. This surface
is provided to the gradient descent procedure, along with the start and goal coordinates,

and a discrete signal indicating that the network outputs are settled. The descent procedure
47



also receives a direction angle as an external input. This angle is the heading at the start
coordinate to use in initializing the descent procedure. The procedure then outputs the list
of trajectory coordinates which are obtained from the descent starting with this heading.

The accumulated cost along this trajectory is also provided with the list of coordinates.

Cost Start Goal Direction
Fuction Coadinate Coadinate Angle
L
Y Y
HSM RADIENT

NEITWORK Solution IESI‘L:ENT

Netwak Path
Settled  Coadinates

Figure 2: System Block Diagram of the Electrostatic Model Neural Network

Once the neural network has settled, new direction angles may be input to direct the
trajectory generator to supply a new list of trajectory coordinates. This is used in the
trajectory generation system which is illustrated in Figure 3. The trajectory generator of
Figure 2 in contained in this system as shown in the block diagram. The current aircraft
heading is supplied to a trajectory analysis function as an initial heading. The current aircraft
location is supplied to the trajcctory generator as the start coordinate. The trajcctory
analysis function passes the initial heading as the current direction angle to the neural
network. When the network is settled, the trajectory coordinates and the final accumulated
cost of the trajectory is input to the analysis function. This function can then adjust the
direction angle and receive a new set of trajectory coordinates and accumulated cost from
the neural network, without a re-settling of the network, since the cost, start, and goal
conditions have not been changed. This allows the analysis function to employ comparison
techniques to converge on the minimum cost trajectory as a function of heading. An example
of techniques to use could be a binary search over heading, or a branch and bound search over

heading. When the analysis function finds the best trajcctory according to its search criteria,

48



it signals that the trajectory has been found and the corresponding trajectory coordinates

are output.
Cost Initial
Coordinate
Start ®
Coordinate
ag g Direction Angle ¥
Electrostatic Model ke Path

Neural Network DNetwork Settled > Analysis

Path Planner > Function

Path Best Path

Coordinates Found

Figure 3: Block Diagram of a Trajectory Generation System

V. RESULTS & DISCUSSION

The paths are extracted from the neural network once it settles. The network computes
the scalar potential field, as described previously. The final values of the nodes represent a
surface with a global maximum at the start node and a global minimum at the goal node. A
direction is selected for a path at the start node. A gradient descent algorithm is performed
over the potential surface to extract the path for that direction with bivariate interpolation of
the potential values used between the grid points. The algorithm computes the new location,
new accumulated cost, and new gradient angle. Each pass through the algorithm generates
another point along the path. This algorithm is repetatively invoked until the entire path
from the start node to the goal node is extracted from the gradient descent of the potential
surface. This will have a complexity of O(L), where L is the length of the path.

The neural network computes a finite difference approximation, which can be expressed

in matrix form. The matrix equation for the neural network is
uf+h = Au® (12)
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where u() is the ;™ update to the (n? x 1) neuron vector

U1,1

U1,2

U1

Unn

L ) .

A is the tri-diagonal square (n? X n?) matrix defined as

T iB 0 ]
Yv T Yp
A=| . . (14)
Yp
| 0 :B T |

along with the square (n x n) matricies

B=1 (15)
[ 0 1/2 0 |
1-%)4 0 (1+%)/M
T = : (16)
1-%)/4 0 (1+%)/M
I 0 1/2 0 |
(14 9)/4 0
Cy
Yp = L+ 30/ (17)
0 (1+5)/4
[ (1-3)/4 0
Cy
Yy = (1 - ?)/4 ) (18)
|0 (1-5)/4

Each iteration of Equation 12 requires O(n?) operations on a Von Neumann processor,
but only a single cycle on the neural network. The neural network implements the five
point finite difference approximation as a point iterative Jacobi[14] algorithm (all points
are computed simultaneously in parallel, however). Lapidus and Pinder show[14] that the

rate of convergence of the iterations of Equation 12 is inversely proportional to the square
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of the discretization of the grid (1/n). Therefore, the convergence of the neural network

approximation is O(n?). The complexity of the algorithm is
O(n?) + O(all paths) = O(n?) 4 no. of paths - O(path length) (19)

The O(path length) is O(n?) since the worst case length includes all nodes of the neural
network. The number of paths computed is linear in heading at the start node, so the
overall complexity of the algorithm is O(n?).

Experimental verification of the solution and performance characteristics of the massive
parallel architectures was accomplished using simulations on a VAX and a Connection Ma-
chine. The results and performance of the neural network which implements the electrostatic
model is reviewed, including the simulations on the Connection Machine. The solutions gen-
erated by the massively parallel architecture have been checked against known admissible
algorithm results.

The results using the electrostatic model show an average difference of eight percent in
computing the best cost paths relative to sequential best first search. The analog circuit sim-
ulation on the 16k CM-2 Connection Machine resulted in a real-time performance projection
of 18 milliseconds for a test case whose network had 3,600 neurons.

Several test cases were used to experiment with the architecture simulations in this
research.

Many neural network investigations have used at most 100 neurons in their test cases.
This test set included networks with several thousand neurons. Figure 4 shows an example
of the multiple paths computed by the architecture along with the benchmark optimal path.
The contour plot depicts the cost function of the test case. In the figure, seven paths are
illustrated which are separated at the start node by a 45 degree direction angle.

Figure 5 illustrates the solution cost from the simulated architecture. The path cost
shown is that of the least cost path over 360 headings around the start node with a one degree
increment. At the end of each cycle of the simulated architecture, the path defined by the
flux line at each of the 360 angles was computed and the cost of the path accumulated. The
plotted cost is the minimum of all of these 360 possible paths at each pass of the simulation.
This figure illustrates the convergence of the minimum cost path to asymptotic values for
the electrostatic model.

One of the features of the Electrostatic Model for path planning is the generation of
multiple paths in the solution space. Once the potential surface is computed by the neural
network, gradient descent from the start node over the surface extracts the path. The initial
direction angle, which is given as a heading, determines a unique path to the goal node. For

all of the test cases, a one degree increment was used at the start node heading to create the
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Figure 5: Least Cost Path Value Found During the Neural Network Settling

unique paths. This section reviews the results of all the test cases for their multiple paths.

Table 2 shows the best ten paths for the example case. The costs of the first 10 paths
had a range of 0.121 which is approximately 1.6 percent of the best path cost of 0.7672.
The algorithm computed a total of 320 paths for the test case. The costs of these paths
are plotted in sorted order from the best value to the worst value in Figure 6. The figure
illustrates a linear cost increase of only 0.027 units per path up through the first 215 paths
which were generated. This is a mere 0.35 percent increase in the cost per path. Of the 215
paths generated for the test case, these 215 nearly linearly increasing path values account
for 67 percent of the solutions which were generated by the algorithm.

Similar results held for all of the test cases. The test cases showed that the increase in
path cost values for the multiple paths starts out linearly, followed by a more dramatic rise
in the path cost values. Over the linear region of these path cost values, the slope of the
linear increase averaged only 0.22 percent of the best path value per new path. This linear
portion of the multiple paths averaged to be 63 percent of the multiple paths generated over
all of the test cases.

Assessment of the data from all of the test cases showed that the value of the paths
generated by the neural network had an average difference of 8.3 percent over the value of

the optimal path for the test case. Even if 8.3 percent is a higher penalty for using the neural
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Table 2: Costs and Headings for 10 Best Path Values of an Example Case

RANK | Path Cost Value | Heading

1 7.672 92

2 7.678 96

3 7.694 95

4 7.701 93

5 7.703 94

6 7.725 89

7 7.729 97

8 7.742 90

9 7.790 91

10 7.793 99
s -
2 4
> 1
1]
0 4+

— ———— PPPM Alternatives
5 0
= Optimal
L e e e S T R
1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301
Rank Order Multiple Path No.

Figure 6: Plot of Multiple Path Values Ordered by Cost
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network in the path planning application, the benefits of the multiple paths generated are the
compensation of the method. The data revealed a significant effect from the multiple path
generation. This effect was that the costs of the top-ranked paths generated by the neural
network increased linearly for at least the first half of the alternative paths. Furthermore,
the rate of increase averaged to be only 0.22 percent of value of the least cost path found
by the neural network. So although the value of the least cost path may be higher than
the optimal path (the optimization function is derived in Appendix C), the architecture will
generate many additional paths which do not significantly degrade in cost.

Other solution models have been based on the notion of a potential field to represent
the cost function. These methods are known as potential field method or artificial potential
fields. The potential field method as a path planning system was first introduced in 1985[12].
In these path-finding solutions, obstacles in a problem space are assigned repulsive potential
fields, which then affect the movement of the object as it approaches them. The object to be
moved and the obstacles would be assigned similar charges, thereby repulsing each other as
they drew nearer. The destination point would be assigned an opposite charge, attracting the
moving object to its final place of rest. Possible solution paths fall along potential valleys
that occur between the obstacles. From these possible paths, one is chosen according to
certain cost functions, which may be associated with distance, cumulative potential, or even
both.

This method has many advantages, including speed and wide clearance of obstacles,
which make it very useful in real-time systems. In fact, the main application of this method is
geared towards robot arm manipulation or robot navigation. There are several disadvantages
however, about which many have written in the years since this approach was published.
Many of these address the problem of local minima which result in states of rest not at the
destination. These can occur at a number of places in the problem space. most likely in
concave obstacles or narrow passages.

The approach to path-finding described in this article is fundamentally quite different.
In this approach, instead of assigning potential fields to the obstacles themselves, the only
points with pre-assigned potential are the source and destination points. The problem area
is then represented as a resistivity plane - simulating a plate with non-uniform resistance.
Obstacles in the problem space are mapped to areas of high resistivity. In accordance with
laws of physics, the difference in the potentials of the source and destination points creates
a current that flows from the higher potential to the lower. This current flows along parallel
paths of least resistance, avoiding the areas of high resistivity (obstacles). One aspect of this
approach that sets it apart from other potential field methods is that paths are complete.

There are no local minima to worry about. Each parallel solution path goes from the source
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to the destination, just as in nature current flux field flows between its source and sink.
As this research shows in various test cases, choosing the optimal path from among these
parallel paths results in a solution very close to the optimal path found by complete (as
opposed to approximate) algorithms.

How does the potential field method (PFM), or artificial potential field (APF), compare
to the electrostatic model used in the path planning model of this research? The solution to
the nonhomogeneous Laplacian of the ESM (Electrostatic Model) is a potential field. The
field in fact is the electrostatic potential. This field governs the current density field via
Equation 2 and Equation 5. The current flux is orthogonal to the current density field is
used to represent the path solutions.

The PFM/APF approach sets up charge distributions for the planning obstacles that
in tern exert an attractive or repulsive force on a particle in motion through the potential
field. Thus the field is pre-existing based on the static locations of the charge distribution
and exerts a local force to a moving particle. The ESM by contrast uses the resistivity
distribution to set up a potential field solution unique to the location of the source and sink

(start and goal nodes) locations.

VI. CONCLUSIONS

One of the most difficult tasks of this research was to develop a model of path planning
search which had a true parallelism inherent in the model. This interest came about since
strictly sequential algorithms were not directly applicable to artificial neural network archi-
tectures. Parallelized versions were not of interest either since they are targeted for loosely
coupled multiprocessor systems. The path planning model required the feasibility of a more
direct use on massively parallel architectures such as artificial neural networks.

The second interest, and perhaps a more compelling requirement for path planning,
was a desire for the resulting system to produce alternative sub-optimal solutions. These
alternative paths provide choices at the starting node to the user of the path planning
system. For various operational considerations, users often desire alternative choices when
employing automated planning systems. But this is a very difficult proposition for classical
sequential search algorithms. The principle of optimality does not support the consideration
of simultaneous, sub-optimal decisions.

It was at this point that the electrostatic model was conjectured to satisfy these require-
ments for a directly parallelized model and alternative sub-optimal paths. The idea was
simple enough — nature “automatically” distributes electrical current through conducting

material in an optimal manner, although this optimization criterion is different from that
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for a least cost path. The paths are also parallel alternatives which have an incremental
variation between the adjacent paths. Neighboring (adjacent) paths are defined using the
theory of the calculus of variations. When adjusted by a “variational” increment. a new
path neighboring the original path[3, 13| is defined. They remain adjacent to each other in
a variational sense, preserving the alternative choices for the user. Thus, the electrostatic
model was perceived as a viable approach to modeling this path planning problem.

Could the current flux lines then be used as the alternate paths? The result is that they
can as was shown. These alternative paths make intuitive sense. They avoid regions of high

cost and prefer regions of low cost.
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APPENDIX A
DERIVATION OF THE LAPLACIAN EQUATION

This appendix reviews those aspects of electric field theory which are pertinent to the
model. For a more extensive explanation of electromagnetic phenomenon, see [16, 19, 25].
The following analysis will be used to derive Equation 3.

The divergence of the current density j is defined as the charge (p) rate of change

. dp
V.4=—-L 20
J=—5 (20)
In the steady state condition, no charge distribution changes occur
dp
0 21
iy (21)
Thus, in the steady state condition,
V-3=0 (22)
Substitution of Equation 2 into Equation 22 gives
V-(cE)=0 (23)
or, equivalently through a vector identity that
Vo-E+oV-E=0 (24)
Substituting Equation 1 into Equation 24 yields
Vo-(=V¢)+oV-(=Ve)=0 (25)

After dividing the equation by (—o), the equation for the electric field potential of a nonuni-

form conductive media is

Vi + iva -Vé=0 (26)

Equation 26 is called the Laplacian Equation.

APPENDIX B
DEFINING THE FINITE DIFFERENCE APPROXIMATION

It is desired that the general second-order partial differential equation

9%u 0%u 0%u ou ou
=A B D— +F— =
9 + 51y + C’ay2 + o + dy +Fu=0 (27)
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be approximated[9, 10, 14, 17, 22, 23] on a unit grid by

Li(u) & aup — > ayug, (28)
i—1
with the n neighbors of P being Q1,...,Qn, where Q; = (z + &,y + 1;). The Taylor series

about P = (x,y) in two variables is

flotiny+ k) = f(:c,y)+ihaawf(:c,y)+jk:aayf(:c,y)

82 0?
k)2 82

Let the neighborhood of P be defined as the n points (an n+1 point approximation template)
Q: ={(z+&,y+mn)}, where &, n; are integers (h = k = ¢ for the unit grid). The expansion
of u(z + &,y +mn;) about P is

ou ou
wr+&,y+n) =Ug, = U(I,y)ler&f g
P Yip
£ 5%u 0?u
g ae|, I ey
2 2
i 07w
+ 5 8y2p+"' (30)

So Equation 28 upon substitution by Equation 30 and collection of common terms becomes

Pul 1 & 82u n Pul 1 &
Ll(U) =0 = @ EZ a Z a; & + W —;0@7%’2
+ Z S up (Z o — 040) (31)
=1 Pi=1

Substituting the coefficients of Equation 31 for those of Equation 27 gives the system of

equations

ai—ay = F (32)
Zami = F (33)
i=1
Sa& = D (34)
i=1
Samp = 2C (35)
i=1
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doai&n; = B (36)
=1
Sl — 24 (37)
=1

The solution of the coefficients «; of the above system of equations allows approximating

the value of a grid point by solving Equation 28 for up

1 n
up =— > aug, (38)
@0 ;=21
For the nonhomogeneous equation, set the quantities C, = 0, /o and C, = 0, /0, resulting
" 6 o 3
L =—+—+4+C,—+C,— =0 39
1(?) ox?  oy? * "81’+ Yoy (39)
and the coeflicients of Equation 27 are A =1, =0,C =1,D = C,, F = C,and, F' = 0.
It is desired to derive a five-point finite difference formula. The coefficients are as shown in

Table 3. Substituting the values of Table 3 into the system defined by Equation 32 through

Table 3: Coordinates of the 5-pt. Finite Difference Formula

] & |
111

21 0] 1
31-11 0
41 0]-1

Equation 37, yields the following system of equations

aptastaztay = o (40)
Qo — Qg = Cy (41)
ap — Q3 = Ce (42)
Qo+ Qg = 2 (43)
The solution to this set of equations is
Cy
C
as = 1+ 73/ (46)
Cy
g — 1—— (47)



Qg =

-G
2
&g — 4 (49)

Substituting Equation 45 through Equation 49 into Equation 28 and solving for Up gives

the finite difference formula

o 1 Cx Cy Caf: Cy
Up = 1 |:<1 + 7) Ug, + <1 + 7) Ug, + <1 - 7) Ug, + <1 - 7) UQJ (50)

APPENDIX C
OPTIMIZATION ANALYSIS

In this section, the analysis of the minimization performed by the electrostatic model is
reviewed. The analysis uses the calculus of variations [3, 4, 5, 7]. The partial differential
equation for the electrostatic solution to the nonuniformly conductive media (Equation 5)
is derivable using the calculus of variations. The derivation shows the corresponding mini-
mization function for the electrostatic model.

The objective of the calculus of variations is to find the extremal surface u(z,y) which

minimizes the variational integral

//I(u,fc=y,ux,uy)dx dy (51)

This is satisfied when the Euler Equation is found:

=2 22 2
ou Ozxrdu, Oylu, (52)

This gives a second order partial differential equation in the cases of interest.

To apply the calculus of variations to the electrostatic model, set the function to minimize

to
I=3-FE (53)
This right side is by definition
J-E=o(z,y)(¢;+ o)) (54)
so the function is
(¢, 2y, ¢, by) = o(2,y) (02 + ¢2) (55)
From this definition
or _ (56)
op
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oI

96, ~ 20 (57)
aaqu = 200, (58)
7 () = 20st+ 2002 (59
a% (%) = 20,0, + 200y, (60)
The Euler Equation (Equation 52) for two dimensions is
() ()

Substitution of Equation 56, Equation 59, and Equation 60 into Equation 61 yields

—20,0, — 2004, — 204y — 200, = 0

Dividing through by —20 gives the final result:

1 1
¢ww + Qbyy + ;O-w¢w + ;Uy¢y =0 (62)

This shows that the partial differential equation (Equation 62) minimizes the energy loss

due to heat loss (7 - E) in a nonuniform conducting medium|[8, 20).
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